Роберт Шекли «Абсолютная защита. Принципы построения системы инженерно-технической защиты информации

В начале 90-х годов почти каждый второй выпуск журнала или газеты содержал статью, посвященную компьютерным вирусам. Сейчас частота публикаций несколько снизилась, но тема эта все равно остается одной из самых популярных. Авторы с увлечением описывали эффекты, производимые вирусами (осыпаются буквы на экране, стираются файлы и т.д.), предлагали свои системы классификации и методы борьбы. Поэтому писать о компьютерных вирусах неинтересно: о них и так все знают. Со временем вирусы не исчезли, но и вреда такого, как ожидалось, не принесли. Пользователи повысили бдительность, научились применять антивирусные программы, и проблема перешла на второй план.

Теперь, когда есть мощная и надежная вычислительная техника, удобные программы и средства связи, задача безопасности снова становится актуальной. Причем уровень, на котором она решается, совсем другой. Сейчас атакам подвергается интеллектуальная и коммерческая собственность, денежные счета (не только в банках), корпоративные сети, закрытая информация. Объектов для взлома стало, увы, намного больше.

Но почему распространение вирусов и хакерство нужно обсуждать совместно? Потому что хакер – это наиболее вероятный создатель компьютерного вируса. И еще, потому что хакер, даже не озабоченный пополнением числа вирусов, все равно может использовать технологию вирусов для взлома компьютерной системы.

Мне хочется рассмотреть пути для создания абсолютной системы защиты от любых вирусов и разобрать причины, по которым такая система никогда не будет создана на практике, хотя теоретически ее создание вполне осуществимо.

Итак, в чем же проблема? Она была описана в фантастическом рассказе Франсиско Павона «Когда стены стали прозрачными», опубликованном около десяти лет назад. Некий изобретатель создал приставку к телевизору, которая позволяла видеть сквозь стены. Нетрудно догадаться, какой стала жизнь людей в этих условиях. Все знали, что за ними кто-нибудь может наблюдать, но не могли удержаться от того, чтобы не подсмотреть, как живет сосед. В результате жизнь общества превратилась в кошмар , и пришлось принимать радикальные меры. В первую очередь, технику попытались победить техникой, но это, как и следовало ожидать, мало помогло. «Но еще долго власти обнаруживали и карали тех, кто не смог пересилить дурной привычки заглядывать в чужую жизнь».

Современные пользователи уже могут попасть примерно в такие же условия, с той только разницей, что «просвечивают» не их дома, а компьютеры. В техническом плане это стало уже не виртуальной, но абсолютной реальностью. А если учесть, что компьютеры оборудуются теперь и видеокамерами, то фантазия Павона близка к действительному осуществлению. Вы не верите, что с помощью видеокамеры, подключенной к вашему компьютеру можно заглянуть в ваш дом? А скажите, вы можете получить с помощью этой камеры свое изображение? Можете. А превратить его в файл, запаковать архиватором и отправить по электронной почте? Тоже нет проблем? Так если вы все это можете, то почему вы думаете, что какая-нибудь программа не сможет сделать это за вас, лучше вас и без вашего ведома?

И вот тут надо снова вспомнить о вирусных технологиях. О них ходит очень много непроверенных слухов. Например, излюбленная история – о вирусе, который портит механику винчестера, вызывая резонанс. Дескать, придумали такую программу изнывающие от отсутствия клиентов сотрудники некой ремонтной службы. Интересно, что люди сосредотачивают свое внимание на нереальных или трудноосуществимых проблемах, упуская из виду проблемы настоящие.

Что можно сделать с компьютером? Практически все что угодно на уровне программ, это только вопрос квалификации и времени. Компьютеры создавались не для того, чтобы служить украшением стола, а для того чтобы на них можно было работать. Все, что они умеют, когда-то и кем-то было запрограммировано. Зная необходимые команды, нетрудно создать программу, которая сможет выполнить любое физически осуществимое действие. Поэтому если какая-нибудь уважаемая фирма создала приложение, которое позволяет вам отправлять письма по электронной почте, нет никаких гарантий, что какой-нибудь умелец не создаст программу, которая будет тихо воровать информацию с вашего диска, используя те же возможности и линии связи, что и фирменное приложение. Конечно, работу такой программы можно обнаружить, но возникает вопрос: с какой вероятностью?

Мы привыкли к тому, что вирус как-то должен себя проявлять. В этом и заключалась цель и способ самовыражения «технокрыс». Неважно, безопасный это был вирус или разрушительный, но как только он давал о себе знать, мы бежали за свежей версией антивирусной программы или вызывали консультанта, и борьба шла до победного конца. Ну, в крайнем случае, переформатировали винчестер. А специалисты по борьбе с вирусами пополняли свою коллекцию еще одним экземпляром.

А как обнаружить и победить вирус, который внешне никак себя не проявляет? Раньше создавать такие вирусы не имело смысла. Теперь, когда многие компьютеры имеют постоянное подключение к корпоративной или внешней сети (режим online), а другие подключаются периодически, такой вирус может заниматься воровством данных.

Современная антивирусная программа хранит сведения примерно о десяти тысячах вирусов. Каждый год появляется еще тысяча новых. Дело не в том, что существует много квалифицированных программистов, которым нравится писать вирусы. Это уже перестало быть модным. Число таких программ увеличивается, в основном, за счет клонов, то есть модификации уже существующих программных кодов. Для выполнения этой работы не обязательно обладать высокой программистской квалификацией. Кроме того, упростились способы распространения вирусов. Раньше вирус обязательно должен быть внедрен в некоторую полезную программу, а теперь, с развитием сетей и увеличением объемов дистрибутивов, это не обязательно. Вирус можно просто «подкинуть» как автономную программу, и ее будет очень трудно обнаружить среди многих тысяч файлов на винчестере. Поэтому можно с уверенностью сказать, что даже самая лучшая антивирусная программа никогда не сможет обеспечить абсолютной защиты. Это, скорее, средство профилактики и оперативного реагирования. Антивирусная программа может только понизить вероятность заражения компьютера вирусом.

Кроме того, такая программа – коммерческий продукт, и его создатели вынуждены следовать условиям рынка. Например, «достоинством» считается высокая скорость работы антивирусного средства. Но ведь вирусов становится все больше, а жесткие диски тоже растут в объеме, значит, повышение скорости происходит за счет ухудшения качества поиска? Действительно, многие антивирусные программы имеют несколько режимов поиска, обеспечивающих разное время обработки диска. И не всегда пользователь выбирает самый надежный режим. Поэтому если мы хотим надежно защитить наши компьютеры от взлома, надо поставить заслон вирусным технологиям.

Другой аспект проблемы - это человеческий фактор. Сравнительно недавно мне попалась книга Дениса Фэри (по прозвищу Knightmare – Кошмар) «Секреты суперхакера» (изд-во Невский проспект, 1997). Я прочел ее на одном дыхании, как самый увлекательный детектив. В книге нет ни листингов хакерских программ, ни даже команд операционной системы. Кошмарик делится опытом, как при помощи подручных средств (хитрости, ловкости, логики и т.д.) проникнуть в защищенную компьютерную систему. Разумеется, я не призываю заниматься хакерством, а тем более выходить через своего провайдера в Интернет и пытаться что-либо взламывать. Но для того чтобы обезопасить себя от атак хакеров, надо в первую очередь знать приемы, которыми пользуются эти ребята.

Для того чтобы не пересказывать содержание книги, давайте рассмотрим в качестве модели компьютерной системы безопасности обычный кодовый замок. Если исключить динамит и автоген, можно привести ряд вполне пригодных способов, чтобы открыть этот замок, не зная кода. Самое простое – подсмотреть, когда кто-нибудь откроет его, и запомнить кодовую комбинацию. Более трудоемкий способ – подобрать код методом перебора. Что вы говорите? Миллион комбинаций? Но при желании можно попробовать и миллион, было бы время. А ведь может и повезти. Кроме того, можно использовать побочные эффекты. Например, если замком часто пользуются, то некоторые кнопки на нем начинают сильнее блестеть. Можно также внедриться в число лиц, которые знают код. Можно попытаться использовать и какой-нибудь недостаток в конструкции замка. Можно много чего еще сделать. Примерно так работают и компьютерные взломщики. В первом приближении взлом системы компьютерной защиты заключается в подборе необходимого кода (пароля), но вряд ли кто-нибудь будет заниматься прямым перебором. В этом смысле компьютерный «замок» очень надежен. Но в том-то все и дело, что существуют обходные пути. Они возникают из-за того, что легальные пользователи должны получать доступ в систему. Система защиты могла бы быть абсолютно надежной, если бы никто не мог получить от нее доступ, но такая система никому не нужна. Поэтому самым слабым звеном в системе компьютерной защиты является, как вы уже, наверное, догадались, человек.

Что касается программных и аппаратных средств, то каждый элемент или свойство компьютерной системы влияет на ее надежность определенным образом. Например, многозадачность современной операционной системы понижает степень безопасности: среди многих одновременно работающих программ может спрятаться и хакерская поделка. Или наоборот, существование компакт дисков (CD-ROM) повышает надежность данных, так как эти диски нельзя перезаписать.

Теперь пора перечислить способы, которые позволяют (теоретически) выполнить атаку на компьютер на современном уровне. Самое главное для атакующего – каким либо образом забросить на ваш компьютер «шпионскую» программу и вынудить вас ее запустить. Такая программа, не будучи вирусом, скорее всего, будет использовать вирусную технологию. Но старые добрые файловые и бутовые вирусы теперь уже слишком неудобны для осуществления взлома. Гораздо эффективнее принцип «троянских коней». В идеале «шпионская» программа должна представлять собой полноценное замаскированное приложение для Windows.

Как ни странно, многие известные компании невольно закладывают основу для будущей компьютерно-шпионской лихорадки. Например, уважаемая фирма Netscape опубликовала в Интернете исходный код своего будущего броузера. Цель очевидна: дать возможность разработчикам всего мира усовершенствовать программу, а затем использовать самое лучшее. Надо надеяться, что фирмы проверяют исходные коды своих продуктов. Но какое поле деятельности для изготовителей троянских коней! Ведь они (изготовители) получили в свои руки код программы, которая в скором времени появится на рынке. Замаскировать в ней свою особую часть не составит труда. А откуда мы берем новые версии броузеров? Правильно, с нелецензированных дисков. Как вы собираетесь определить, от Netscape будет там программа или от какого-нибудь Кошмарика? И броузер Netscape – не исключение. Часто, например, опубликовываются исходные коды компьютерных игр.

Разумеется, самыми уязвимыми являются компьютеры, постоянно подключенные к Интернет или корпоративной сети. Если же вы только «выскакиваете» в Интернет на минутку, чтобы забрать почту, вряд ли вам стоит беспокоиться.

Для полноты картины остается добавить, что монитор любого компьютера является радиостанцией, излучающей в пространство сигнал, несущий информацию обо всем, что выводится на экран. Этот сигнал распространяется по металлическим элементам здания (трубам, проводке и т. д.), и может быть уловлен и раскодирован. Но эта проблема уже хорошо известна и не раз обсуждалась в печати.

Есть ли от всего этого абсолютные способы защиты? Как ни странно, есть. Перечислить их (к сожалению) не трудно. Защитить информацию от кражи можно только, если поместить ее на компьютер, который не имеет модема или сетевого адаптера. Видимо, в будущем вся вычислительная техника будет разделена на сетевую и автономную. Конечно, тут играет роль ценность самой информации. Иногда эта информация бывает настолько важна, что не жаль купить второй компьютер. А уж если купили, поставьте его подальше от труб парового отопления.

Защиту от действия несанкционированных программ может обеспечить база данных фирменных файлов , которая содержит информацию о файлах популярных дистрибутивов (имя, длину, дату создания, контрольную сумму), и программу для проверки винчестера. Идея очевидна, но для ее реализации необходимо выполнение двух условий. Во-первых, пользователи должны прекратить устанавливать на свои машины что попало, а, во-вторых, фирмы производители должны договориться и создать такую базу данных (ее придется часто обновлять и сделать доступной для широкого круга пользователей).

Очень важно иметь программу-монитор порта модема с элементами антивирусной защиты, но... опять-таки ее потенциал будет ограничиваться необходимостью дать возможность работать легальному пользователю.

К абсолютным можно причислить и механические (аппаратные) средства, но они почти не разрабатываются. На дискете есть механическая защита от записи, а на винчестере нет. Замок, запирающий клавиатуру или дисковод, - одно из надежнейших средств, но при условии, что ключи не валяются на вашем на рабочем столе.

Пока надежными средствами сохранения программ от вирусов являются компакт диски, но скоро их вытеснят диски с перезаписью информации (DVD или другие), и опять стойкость программ уменьшится.

Вот небольшой «тест» (правильные ответы на вопросы очевидны), который позволит вам проверить свою готовность к хакерским атакам:
- Меняете ли вы пароль доступа к Интернет (если вы подключены к Сети) так часто, как рекомендует провайдер?
- Всегда ли вы защищаете свои дискеты от записи, если на них скопированы программы?
- Готовы ли вы ждать хотя бы 10 минут в начале каждого дня, пока антивирусная программа проверит компьютер?
- Восстановили ли вы защиту от вирусов в SetUp вашего компьютера после инсталляции Windows 95/98 (с включенной защитой эта система не устанавливается)?
- Имеют ли посторонние возможность «покопаться» в вашем компьютере, когда вы ушли на обед (к начальству, в отпуск и т. д.)?
- Не висит ли листочек с вашими паролями на стене возле вашего рабочего стола?
- Если ваш компьютер подключен к корпоративной сети и монитор доступа сигнализирует, что кто-то обратился к вашему диску, всегда ли вы проверяете, кто это сделал и зачем?
- Всегда ли, когда ваш компьютер подключен в режиме online к корпоративной сети, такое соединение действительно необходимо?
- Вы получили послание по электронной почте с присоединенным exe-файлом. Запустите вы этот файл сразу, проверите его сначала антивирусной программой или сразу уничтожите?
- Кто-то из ваших собеседников в chat room предложил переписать полезную (на его взгляд) программу. Используете ли вы ее?
- Как часто вы используете пиратские копии программного обеспечения?
- Знаете ли вы о методах работы компьютерных взломщиков?

Мне бы очень не хотелось, чтобы эта статья была воспринята как призыв к шпиономании или отказу от компьютеров. Просто прогресс в использовании вычислительной техники столь стремителен, а сами компьютеры и программное обеспечение стали так сложны, что здравый смысл подсказывает: и средства защиты информации (то есть нашей с вами собственности) должны перейти на качественно иной уровень. Но пользователи пока, увы, защищаются подручными средствами: кто как может.

3.4.1. Основные термины и определения

Современная криптография включает в себя следующие основные разделы:

  • криптосистемы с секретным ключом (классическая криптография);
  • криптосистемы с открытым ключом;
  • криптографические протоколы.

Введем некоторые понятия, необходимые в дальнейшем:

алфавит - конечное множество используемых для шифрования информации знаков;
текст - упорядоченный набор из элементов алфавита;
шифр - совокупность обратимых преобразований множества открытых данных на множество зашифрованных данных, заданных алгоритмом криптографического преобразования (криптоалгоритмом);
ключ - сменный элемент шифра, применяемый для закрытия отдельного сообщения, т.е. конкретное секретное состояние параметров криптоалгоритма, обеспечивающее выбор одного варианта преобразования из совокупности возможных; именно ключом определяется в первую очередь безопасность защищаемой информации и поэтому применяемые в надежных шифрах преобразования в большой степени зависят от ключа;
зашифрование - преобразование открытых данных в закрытые (зашифрованные) с помощью определенных правил, содержащихся в шифре;
расшифрование - обратный процесс;
шифрование - процесс зашифрования или расшифрования;
криптосистема - состоит из пространства ключей, пространства открытых текстов, пространства шифротекстов и алгоритмов зашифрования и расшифрования;
дешифрование - процесс преобразования закрытых данных в открытые при неизвестном ключе и (или) неизвестном алгоритме (вскрытие или взлом шифра);
синхропосылка - исходные параметры криптоалгоритма;
раскрытие криптоалгоритма - результат работы криптоаналитика, приводящий к возможности эффективного определения любого зашифрованного с помощью данного алгоритма открытого текста;
стойкость криптоалгоритма - способность шифра противостоять всевозможным попыткам его раскрытия, т.е. атакам на него.

3.4.2. Оценка надежности криптоалгоритмов

Все современные шифры базируются на принципе Кирхгофа, согласно которому секретность шифра обеспечивается секретностью ключа, а не секретностью алгоритма шифрования. В некоторых ситуациях (например, в военных, разведывательных и дипломатических ведомствах) нет никаких причин делать общедоступным описание сути криптосистемы. Сохраняя такую информацию в тайне, можно дополнительно повысить надежность шифра. Однако полагаться на секретность этой информации не следует, так как рано или поздно она будет скомпрометирована. Поэтому анализ надежности таких систем всегда должен проводиться исходя из того, что противник имеет всю информацию о применяемом криптоалгоритме, ему неизвестен только реально использованный ключ . В связи с вышеизложенным можно сформулировать общее правило: при создании или при анализе стойкости криптосистем не следует недооценивать возможностей противника. Их лучше переоценить, чем недооценить.

Стойкость криптосистемы зависит от сложности алгоритмов преобразования, длины ключа, а точнее от объема ключевого пространства, метода реализации: при программной реализации необходимо дополнительно защищаться от разрушающих программных воздействий (вирусов, червей, троянских программ). Хотя понятие стойкости шифра является центральным в криптографии, количественная оценка криптостойкости - проблема до сих пор не решенная.

Методы оценки качества криптоалгоритмов , используемые на практике:

  • всевозможные попытки их вскрытия;
  • анализ сложности алгоритма дешифрования;
  • оценка статистической безопасности шифра.

В первом случае многое зависит от квалификации, опыта, интуиции криптоаналитиков и от правильной оценки возможностей противника. Обычно считается, что противник знает шифр, имеет возможность его изучения, знает некоторые характеристики открытых защищаемых данных, например тематику сообщений, их стиль, стандарты, форматы и т.п.

Во втором случае оценку стойкости шифра заменяют оценкой минимальной сложности алгоритма его вскрытия. Однако получение строгих доказуемых оценок нижней границы сложности алгоритмов рассматриваемого типа проблематично. Иными словами, всегда возможна ситуация, когда алгоритм вскрытия шифра, сложность которого анализируется, оказывается вовсе не самым эффективным.

Сложность вычислительных алгоритмов можно оценивать числом выполняемых элементарных операций, при этом необходимо учитывать их стоимость и затраты на их выполнение. В общем случае это число должно иметь строгую нижнюю оценку и выходить за пределы возможностей современных компьютерных систем. Качественный шифр невозможно раскрыть способом более эффективным, нежели полный перебор по всему ключевому пространству, при этом криптограф должен рассчитывать только на то, что у противника не хватит времени и ресурсов, чтобы это сделать.

В третьем случае можно сформулировать следующие необходимые условия стойкости криптосистемы, проверяемые статистическими методами:

  • должна отсутствовать статистическая зависимость между входной и выходной последовательностями;
  • выходная последовательность по своим статистическим свойствам должна быть похожа на истинно случайную последовательность;
  • при неизменной входной информационной последовательности незначительное изменение ключа должно приводить к непредсказуемому изменению выходной последовательности;
  • при неизменном ключе незначительное изменение входной последовательности должно приводить к непредсказуемому изменению выходной последовательности;
  • не должно быть зависимостей между ключами, последовательно используемыми в процессе шифрования.

Существует много различных криптоалгоритмов, при этом нет ни одного, подходящего для всех случаев. В каждой конкретной ситуации выбор криптоалгоритма определяется следующими факторами:

  • особенностью защищаемой информации (документы, исходные тексты программ, графические файлы и т.п.);
  • особенностями среды хранения или передачи информации;
  • ценностью информации, характером защищаемых секретов, временем обеспечения секретности;
  • объемами информации, скоростью ее передачи, степенью оперативности ее предоставления пользователю;
  • возможностями собственников информации, владельцев средств сбора, обработки, хранения и передачи информации по ее защите;
  • характером угроз, возможностями противника.

3.4.3. Классификация методов шифрования информации

Основные объекты изучения классической криптографии показаны на рис. 3.4 , где А и В - законные пользователи, W - противник или криптоаналитик. Учитывая что схема на рис. 3.4 а фактически является частным случаем схемы на рис. 3.4 б при В = А, в дальнейшем будет рассматриваться только она.

Процедуры зашифрования E (encryption) и расшифрования D (decryption) можно представить в следующем виде:

Функции за- и расшифрования взаимно обратные, иначе говоря, для любого текста X справедливо:


Рис. 3.9.

Гаммированием называют процедуру наложения на входную информационную последовательность гаммы шифра, т.е. последовательности с выходов генератора псевдослучайных последовательностей (ПСП) G. Последовательность называется псевдослучайной, если по своим статистическим свойствам она неотличима от истинно случайной последовательности, но в отличие от последней является детерминированной, т.е. знание алгоритма ее формирования дает возможность ее повторения необходимое число раз. Если символы входной информационной последовательности и гаммы представлены в двоичном виде, наложение чаще всего реализуется с помощью операции поразрядного сложения по модулю 2. Надежность шифрования методом гаммирования определяется качеством генератора гаммы.

3.4.5. Генераторы псевдослучайных последовательностей

Качественные ПСП, являясь по своей сути детерминированными, успешно заменяют во многих приложениях (в первую очередь связанных с защитой информации) случайные последовательности, которые чрезвычайно сложно формировать.

Можно выделить следующие задачи, требующие решения при организации защиты информационных систем:

  • обеспечение работоспособности компонентов и системы в целом при наличии случайных и умышленных деструктивных воздействий;
  • обеспечение секретности и конфиденциальности информации или наиболее важной ее части;
  • защита от НСД;
  • обеспечение аутентичности информации (целостности, подлинности и пр.);
  • обеспечение аутентичности участников информационного обмена;
  • обеспечение юридической значимости пересылаемых электронных документов;
  • обеспечение неотслеживаемости информационных потоков в системе;
  • защита прав собственников информации.

Во всех рассмотренных случаях генераторы ПСП применяются либо непосредственно, либо косвенно, когда на их основе строятся генераторы случайных последовательностей, генераторы контрольных кодов и хеш-генераторы. Во всех случаях требуются последовательности с равномерным законом распределения.

Можно выделить следующие функции генераторов ПСП в системах защиты информации:

  • формирование гаммы при шифровании информации в режимах гаммирования и гаммирования с обратной связью;
  • формирование ключей и паролей пользователей;
  • формирование случайных запросов при аутентификации удаленных абонентов;
  • формирование затемняющих множителей при слепом шифровании;
  • формирование контрольных кодов целостности информации;
  • хеширование информации при организации парольных систем, построении протоколов электронной подписи, аутентификации по принципу запрос-ответ и др.

Требования к качественному генератору ПСП:

  • непредсказуемость;
  • определенные статистические свойства;
  • большой период формируемых последовательностей;
  • эффективная реализация.

Непредсказуемость. Данное требование означает, что для противника, имеющего возможность анализировать фрагмент ПСП конечной длины, три задачи вычислительно неразрешимы:

  • предсказание следующего элемента последовательности;
  • определение предыдущего элемента последовательности;
  • определение использованной при генерации ключевой информации.

В первых двух случаях самая эффективная возможная стратегия - бросание жребия, в третьем - полный перебор по всему ключевому пространству.

Определенные статистические свойства. Это требование означает, что ни один из существующих статистических тестов не в состоянии обнаружить на выходе генератора какие-либо закономерности статистических зависимостей между различными последовательностями, формируемыми при инициализации генератора случайными значениями.

Принципы построения генераторов ПСП. Можно выделить два подхода при использовании в составе генераторов ПСП нелинейных функций: это использование нелинейной функции непосредственно в цепи обратной связи и двухступенчатая схема, в которой задача первой ступени (по сути счетчика) заключается всего лишь в обеспечении максимально большого периода при данном числе N элементов памяти Q. Во втором случае нелинейная функция является функцией выхода . На

По совокупности вышеперечисленных требований наиболее приемлемое решение - генераторы ПСП, использующие многораундовые преобразования при построении функций или .

Наиболее обоснованными математически следует признать генераторы с использованием односторонних функций. Непредсказуемость данных генераторов основывается на сложности решения ряда математических задач (например, задачи дискретного логарифмирования или задачи разложения больших чисел на простые множители). Существенным недостатком генераторов этого класса является низкая производительность.

3.4.6. Поточные шифры

Шифр Вернама можно считать исторически первым поточным шифром. Так как поточные шифры в отличие от блочных осуществляют поэлементное шифрование потока данных без задержки в криптосистеме, их важнейшим достоинством является высокая скорость преобразования, соизмеримая со скоростью поступления входной информации. Таким образом обеспечивается шифрование практически в реальном масштабе времени вне зависимости от объема и разрядности потока преобразуемых данных.

В синхронных поточных шифрах (см. рис. 3.9) гамма формируется независимо от входной последовательности, каждый элемент (бит, символ, байт и т.п.) которой таким образом шифруется независимо от других элементов. В синхронных поточных шифрах отсутствует эффект размножения ошибок, т.е. число искаженных элементов в расшифрованной последовательности равно числу искаженных элементов зашифрованной последовательности, пришедшей из канала связи. Вставка или выпадение элемента зашифрованной последовательности недопустимы, так как из-за нарушения синхронизации это приведет к неправильному расшифрованию всех последующих элементов.

В самосинхронизирующихся поточных шифрах осуществляется гаммирование с обратной связью - гамма зависит от открытого текста, иначе говоря, результат шифрования каждого элемента зависит не только от позиции этого элемента (как это происходит в случае синхронного поточного шифрования), но и от значения всех предыдущих элементов открытого текста. Свойство самосинхронизации объясняется отсутствием обратной связи на принимающей стороне, в то время как в случае синхронного поточного шифрования схемы за- и расшифрования абсолютно идентичны.

С.П.Расторгуев

Абсолютная система защиты. Попытка определения.

В статье сделана попытка определить абсолютную систему защиты, относительно которой могут быть оценены любые другие, в том числе и программные системы защиты АИС.

Прежде чем синтезировать абсолютную систему защиты попробуем кратко охарактеризовать основные способы защиты, реализуемые в живой природе. Результаты анализа известных в природе способов защиты схематично могут быть представлены в виде рис. 1.

Рис. 1. Способы защиты.

Способ 1.

Средства пассивной защиты полностью перекрывают все возможные каналы воздействия угроз извне. Это главное требование способа N 1. Обратная сторона данного способа защиты - накладные расходы на поддержание "брони". Так как "броня" является частью всей системы, то её крепость уже оказывает значительное влияние на вес системы и на ее жизнедеятельность.

Способ 2.

Второй способ предполагает отказ от крепкой "брони", отдавая предпочтение изменению расположения в пространстве и во времени.

Размножение (создание собственной копии) также относится ко второму способу защиты с ориентацией на временную координату, представляя собой своего рода передачу эстафетной палочки во времени.

Способ 3.

Девизом этого способа является утверждение, что лучшая защита - это нападение.

Способ 4.

В основе этого способа лежит возможность изменения самого себя. Это приемы типа; слиться с ландшафтом, стать похожим на лист дерева и т.п. Данный способ позволяет стать другим, неинтересным для нападающего объектом.

Важно и то, что, собственное изменение неизбежно отражается на окружающей среде, тем самым изменяя и ее. Можно не пользоваться способом N 3, если хватит ума изменить агрессора так, чтобы он превратился в раба или занялся самоуничтожением. Именно на этом пути в качестве главного оружия выступают инфекции, аналогом которых в кибернетическом пространстве являются, на мой взгляд, компьютерные вирусы. Подробнее данная тема рассмотрена в работе , где показана алгоритмическая общность биологических, социальных, психических и компьютерных инфекций.

Все перечисленные способы прошли тысячелетнюю опытную эксплуатацию и реально существуют в живой природе. Заяц поняв, что убежать от лисы ему не удалось (изменить месторасположение в пространстве относительно нападающего объекта) пытается уничтожить нападающего. Ящерица замирает в неподвижности сливаясь с ландшафтом (изменение самого себя) и т.п..

Все то же самое мы видим и в социальном мире. Бронежилеты и бункеры, выступающие в качестве брони, реализуют первый способ защиты. Быстрые ноги и мощные двигатели - второй. Огнестрельное оружие - третий. Наложение грима или изменение мировоззрения - четвертый.

Безусловно, в идеале, хотелось бы определить влияние каждого из способов на уровень защищенности или на качество функционирования защитного механизма. Понятно, что для каждого набора входных данных существует своя оптимальная стратегия защиты. Проблема в том, чтобы узнать - каким именно будет этот входной набор данных.

Поэтому, защищающемуся субъекту для того, чтобы уцелеть недостаточно владеть всеми четырьмя способами. Ему надо уметь грамотно сочетать все названные способы с теми входными событиями, которые на него обрушиваются или способны обрушиться. Таким образом, мы выходим на постановку задачи по организации защиты со следующими входными данными:

1) способы защиты,

2) методы прогнозирования;

3) механизм принятия решения, использующий результаты прогнозирования и имеющиеся способы защиты.

Определив для себя исходные данные можно дать определение абсолютной системе защиты.

Абсолютной системой защиты назовем систему, обладающую всеми возможными способами защиты и способную в любой момент своего существования спрогнозировать наступление угрожающего события за время, достаточное для приведения в действие адекватных способов защиты.

Вернемся к определению системы защиты и попробуем его формализовать, определив систему защиты в виде тройки

(Z,P,F)....................... (1)

где Z = (Z 1 .Z 2 .Z 3 .Z 4) - способы защиты, Р - прогнозный механизм. Результат работы механизма прогнозирования - представляющее опасность событие, которое должно произойти в момент времени t 1 (t 1 >t), и оценка вероятности, что оно произойдет, т.е.

Р = (Sob, t 1),

t - текущее время. F - функция от Z и Р, принимающая значение больше 0, если за время t 1 система способна применить адекватный угрозе имеющийся у нее способ защиты.

Тогда, если F(Z,P)>0 для любого t. система защиты (Z,P,F) является абсолютной системой защиты.

Абсолютная система защиты лежит на пересечении методов прогнозирования и способов защиты; чем хуже работает механизм прогнозирования, тем более развитыми должны быть способы защиты и наоборот.

Схематично алгоритм функционирования абсолютной системы защиты можно попытаться представить в виде рис. 2.

По алгоритму схемы рис. 2 защищается любая система: отдельно взятый человек, государство, мафиозная структура, банк и т.п.. При этом, безусловно, что полнота реализации блоков и наполненность баз данных для каждой системы свои.

Рис. 2. Алгоритм работы абсолютной системы защиты.

Спроецировать приведенную схему в практические системы защиты государства и/или человека не сложно, аналогии напрашиваются сами собой. В частности, для государства:

прогнозирование внешних событий - разведка:

прогнозирование внутренних событий - министерство внутренних дел;

способы защиты:

первый способ (броня) - граница (пограничные войска);

второй способ (изменение места) - исход народа на другую землю;

третий способ (уничтожение) - армия;

четвертый (внесение изменений) - пропаганда, диверсии, террор (МИД, СМО и т.п.);

блок принятия решений - правительство;

блок занесения информации в БД - аналитические службы.

Более интересно, так как никто этого еще не пробовал, попытаться перенести основные принципы построения абсолютной системы защиты в область защиты программного обеспечения и предложить функциональную структуру для программных систем защиты АИС.

В приложение к проектированию программных системы защиты АИС сказанное означает, что данная система должна состоять из следующих блоков:

1) контроля окружающей среды и самой системы защиты. При этом контроль должен быть направлен не на контролирование текущего состояния системы, типа просчета контрольных сумм и т.п. Контролироваться должны команды, выполнение которых предполагается в ближайшем будущем (контроль должен осуществляться в режиме эмуляции команд, на которые предполагается передать управление) ;

2) парольной защиты всей системы и отдельных ее элементов, криптографические способы защиты (способ 1), в том числе контроль целостности;

3) периодического изменения месторасположения элементов защитного механизма в АИС (способ 2). Предполагается, что основные исполняемые файлы, ответственные за реализацию механизма прогнозирования и всех способов защиты, должны самостоятельно мигрировать в вычислительной среде (менять диски, директории, компьютеры) и изменять свои имена;

4) уничтожения "незнакомых" программных объектов. Тем самым осуществляется восстановление заданной среды (способ 3 - "убить незнакомца"). Вырожденный вариант этого способа -всем хорошо известные механизмы принудительного восстановления целостности среды;

5) самомодификации исполняемого алгоритма и кода (подробнее см. ). В данном блоке реализуется периодическая смена алгоритма путем выбора алгоритма из множества равносильных алгоритмов (способ 4). Кроме того, данный способ предполагает использование программных закладок и вирусов для влияния на "недружественную" внешнюю среду. Распространяемые (может быть и умышленно) программные закладки и вирусы постепенно подготавливают вычислительную среду для новых программно-аппаратных платформ.

В качестве примера можно остановиться на программной закладке Микрософт в WINDOWS 3.1, подробно описанной Э.Шулманом в журнале д-ра Добба ("Исследуя AARD-код системы Windows", N 3-4, 1994), цель которой заключается в дискредитации программных продуктов конкурирующих фирм. При этом в "жучке" использованы все возможные средства его собственной защиты: XOR-кодирование, динамическая самомодификация, специальные приемы защиты от отладчиков. Надо признать, что появление данной закладки столь же неизбежно, как и появление биологических вирусов в живой природе. Было бы удивительно, если бы нечто подобное не возникло именно в тот момент, когда "сражение программных продуктов за свое место под процессором" в самом разгаре.

Определив таким образом структуру защитного механизма можно перейти к его количественной оценке согласно (1) и определению места конкретной системы защиты относительно абсолютной. На мой взгляд, предложенный подход, позволяет осуществлять какое-то сравнение систем защиты друг с другом через сопоставление их абсолютной защитной системе, являющейся в данном случае недостижимым идеалом. Но это уже другая тема.

Литература

1. С.П.Расторгуев. "Программные методы защиты информации в компьютерах и сетях". М.: Агентство "Яхтсмен". 1993 г.

2. АБСОЛЮТНАЯ ЗАЩИТА И ЕЕ ОТНОСИТЕЛЬНОСТЬ

Итак, назовем возможного агрессора «индуктором», а возможную жертву «перципиентом». Основная задача индуктора ("экстрасенса") при работе с обычным человеком ("неэкстрасенсом") заключается в том, чтобы овладеть его воображением, суметь внушить ему мысль о возможности экстрасенсорного воздействия. Это достигается за счет приобщения, «подключения» человека к специальной системе верований.

"Вновь подключенный", ощущая превосходство экстрасенса как профессионала, причастного к "скрытому знанию" данной системы верований, открывает свою психику для манипуляций со стороны индуктора, превращаясь в перципиента. В зависимости от поставленной задачи, воздействие индуктора может положительным или отрицательным образом сказываться на здоровье и самочувствии перципиента, а также не отражаться на нем вовсе.

"Абсолютной защитой" против патогенных факторов любой системы верований является принципиальное неверие и, в особенности, насмешка. Следует заметить, однако, что пассивно используемая защита неверия не всегда эффективна и может давать пробои. Известна, например, история одного журналиста, собиравшего материал о шаманах. Однажды, присутствуя на церемонии, он неожиданно почувствовал, что входит в измененное состояние, что шаман, имеющий безраздельную власть над умами своих суеверных соплеменников, каким-то непостижимым образом коснулся и его собственного цивилизованного сознания. Неизвестно, чем бы все это кончилось, если бы у журналиста не оказался под рукой портативный магнитофон, на транзисторах, конденсаторах, пассиках и валиках которого он сосредоточил все свое внимание. Эти детальки были в тот момент воплощением величия и мощи нашей технократической цивилизации и порожденной ею системой верований, в рамках которой бормочущий нелепые заклинания шаман был всего лишь невежественным дикарем.

В данном случае магнитофон послужил не чем иным, как инструментом активации неверия, обеспечив тем самым требуемую защиту. Очевидно, что если бы этот журналист знал кое-что о биополях, магнитофон вряд ли смог бы ему помочь. Ведь и магнитофон действует, так сказать, посредством полей, полей электромагнитных, и шаман действует посредством полей, в том числе и электромагнитных.

Как частная система верований концепция биополя органично вписывается в целостную систему мира, выстраиваемую современной наукой, картину мира, которая сегодня для преобладающего большинства людей составляет предельную, абсолютную систему верований, тождественную «реальности». Выполняя по отношению к биологическим объектам фактически ту же функцию, которую по отношению к физическим объектам выполняет гипотетическое гравитационное поле, биологическое поле представляется чем-то не менее "реальным".

Однако наряду с концепцией биополя право на «реальное» существование неизбежно получает логическое следствие этой концепции - принципиальная возможность дистантного (внечувственного, полевого) взаимодействия между биологическими объектами и, следовательно, возможность оперирования биополями. А когда человеку кажется, что оперируют его биополями, то хвататься за магнитофон в поисках защиты от "средневекового мракобесия" уже бесполезно.

Итак, существует ряд традиционных патогенных верований, насмеяться над которыми (то есть применить абсолютную психическую защиту) не составляет особого труда, - в крайнем случае достаточно три раза поплевать через левое плечо или повернуть картуз на голове козырьком назад. С современной биопольной системой верований, однако, дела обстоят сложнее и картузом здесь не отвертеться. В связи с выходом данной системы верований на просторы популярной прессы, абсолютная защита от нее крайне затруднена, "не верить вообще" становится все труднее.

Не легче удерживаться и в рамках невовлеченной "малой веры": к моим, мол, биополям, ваши никакого отношения не имеют. Имеют, и самое непосредственное! Поэтому в настоящее время возрастает значение таких форм защиты, которые бы не просто пытались откреститься от этой системы верований, но разрабатывались на ее же основе.

Существуют две формы "защиты от биополя" - с изменением объекта восприятия и с изменением субъекта восприятия. Однако прежде, чем перейти к описанию принципиальных механизмов психической защиты, необходимо сказать несколько слов о механизмах психического нападения, о том, ЧТО подвергается нападению и КАК это нападение происходит. Инструмент психического нападения мы будем далее условно называть "отрицательным зарядом", а для описания механизма нападения воспользуемся условной «пространственной» моделью внутреннего мира.

Из книги Гиперборейское учение автора Татищев Б Ю

1. 15. Абсолютная духовность Богочеловека и технологии построения религий. А вот здесь нам следует уточнить один не только важный, но и, по сути, довольно «скользкий» аспект обсуждаемой темы. И из истории, и из жизненной практики сего дня нам хорошо известны случаи, когда

Из книги Алмазная Сутра автора Раджниш Бхагван Шри

Абсолютная пустота 30 декабря 1977 года Первый вопрос:Ошо, даже в моих отношениях с вами слова становятся все менее и менее важными. К чему было Будде и Бодхисаттве вообще говорить?О чем вы говорите? О каком разговоре? Его никогда не было. Никто ничего никому не говорил и никто

Из книги Пифагор. Том I [Жизнь как Учение] автора Бязырев Георгий

АБСОЛЮТНАЯ СФЕРА ТВОРЧЕСТВА Не укрыто от Бога ничто. Только тех посвящает Он в чудо,Кто и в мыслях не делает то, Что греховно, безнравственно, худо…За годы, проведенные в тайных Школах Египта, Пифагор освоил множество наук: йогу, медицину, алхимию, химию, астрологию, музыку,

Из книги Принципы современной психической самозащиты автора Данченко Владимир

2. АБСОЛЮТНАЯ ЗАЩИТА И ЕЕ ОТНОСИТЕЛЬНОСТЬ Итак, назовем возможного агрессора «индуктором», а возможную жертву «перципиентом». Основная задача индуктора ("экстрасенса") при работе с обычным человеком ("неэкстрасенсом") заключается в том, чтобы овладеть его воображением,

Из книги Введение в астральный план автора Эзотерика Автор неизвестен -

ОТНОСИТЕЛЬНОСТЬ УРОВНЕЙ Для понимания данного предмета нам придется снова опуститься в область аналогий и, исходя из условий среды, попытаться уяснить себе суть происходящего.С точки зрения кристаллизаций энергии, структуры могут отличаться по жесткости, хотя исходным

Из книги Огненный Подвиг. часть II автора Уранов Николай Александрович

Из книги Просветление – не то, что ты думаешь автора Цзы Рам

Относительность В: Можно сказать, что кто-то подобный Рамане Махарши, пребывая в абсолютном состоянии, не затронут относительностью?Уэйн: Вы говорите о механизме тела-ума по имени Рамана Махарши, который выходит за пределы всех относительных соображений?В: Да, разве у

Из книги Термодинамика автора Данина Татьяна

06. Абсолютная и относительная температура Любую частицу и любой химический элемент можно охарактеризовать при помощи абсолютной и относительной температуры.Абсолютная температура – это внешнее проявление качества, изначально присущее любой частице и любому

Из книги Секрет целительства Рэйки автора Адмони Мириам

Абсолютная защита Метод Рэйки имеет абсолютную защиту – он не может принести вреда. Эта защита достигается несколькими способами, и первый из них заключается в том, что тот, кто мог бы пожелать использовать эту энергию в неправедных целях, заведомо не получит к ней

Из книги Высший вкус жизни. Выход из материальной игры автора Усанин Александр

Бог и Абсолютная Истина. Что такое язычество? Каждый видит этот мир через призму собственного представления о себе. Если вы считаете себя отделенным от Бога – вы не сможете увидеть связь этого мира собой, вследствие чего вы будете испытывать дисгармоничные желания и

Из книги Спираль познания: Мистицизм и Йога автора

2.1.1. АБСОЛЮТНАЯ РЕАЛЬНОСТЬ И КОСМИЧЕСКИЙ ЗАКОН СЕМЕРИЧНОСТИ Представление о необходимости и достаточности Семи Космических Принципов для описания всего многообразия физических и метафизических явлений лежит в основе эзотерического мировоззрения, а также широко

Из книги Нострадамус: благая весть. Предсказание известного прорицателя автора Ридинг Марио

Тема Святая империя и абсолютная власть Дата: 1566 год Катрен 8/66 Quand l’escriture D. M. trouvee, Et cave antique ? lampe descouverte, Loy, Roy, et Prince Ulpian esprouvee, Pavillon Royne et Duc sous la couverte. Когда найдутся слова Д. М. И древнюю пещеру обнаружат под светом фонаря, Закон, король и князь будут проверены Ульпианом, И

Из книги Сверхвозможности человека автора Мавлютов Рамиль

Абсолютная память Есть люди, которые с абсолютной точностью запоминают все, что они когда-либо видели или слышали. Например, японка Акира Харагучи могла назвать по памяти первые 100 тысяч разрядов числа Пи… Российский журналист Шерешевский без труда запоминал ряды или

Из книги Не счастья ради [Руководство по так называемым предварительным практикам тибетского буддизма] автора Кхьенце Дзонгсар Джамьянг

Из книги Самовоспоминание автора Бертон Роберт Эрл

Масштаб и относительность Ничто, кроме самовоспоминания, не имеет смысла. По мере изучения Системы масштаб этой одной единственной идеи становится главенствующим. Ни одна идея не может даже приблизиться по важности к идее самовоспоминания, и ничто не может сравниться с

Из книги Аура дома автора Фад Роман Алексеевич

Глава 10 Цвета в интерьере, расположение мебели, детали декора, использование амулетов в соответствии с определенными зонами. Талисманы и защита рабочего кабинета, спальни, ванной, коридора. Защита дома и придомовой территории. Офис Советы при покупке квартиры, дома,

При разработке принципов построения системы инженерно-технической защиты информации учитывались рассмотренные принципы, принципы обеспечения безопасности живых существ, используемых природой, и известные пути нейтрализации различ­ных угроз человеком.

Так как информационная безопасность является частью пред­метной области, определяемой общим понятием «безопасность», включающей и безопасность живых существ, то полезную под­сказку по мерам обеспечения информационной безопасности мож­но получить в результате анализа решений этой проблемы приро­дой. Проблема безопасности в живой природе крайне важна, так как от эффективности ее решения зависит сохранение видов живых существ. Способы защиты в живой природе доказали свою эффек­тивность за длительный период эволюции и могут быть полезны­ми для обеспечения информационной безопасности. Они рассмот­рены С. П. Расторгуевым в и приведены на рис. 2.1.

Рис. 2.1. Природные способы защиты живых существ

Для защиты от хищников некоторые живые существа создают механические преграды («броню»), которые надевают на себя (че­репахи, ежи, раки и др.), или в виде своего «дома» (пчелы, осы, нор­ковые животные и др.). Другие, не имеющие такой «брони», име­ют длинные ноги, развитые крылья или плавники и спасаются от врага бегством (изменением местоположения) или обеспечивают сохранение вида интенсивным размножением. Например, многие насекомые и даже растения выживают благодаря своей плодови­тости, которая компенсирует массовую гибель беззащитных осо­бей. Третья группа живых существ снабжена мощными клыками, когтями, рогами и другими средствами защиты, способными отог­нать или уничтожить нападающего. Наконец, четвертая группа, не имеющая указанных средств защиты, выживает путем маскировки себя (мимикрии) под окружающую среду, изменения характерис­тик окружающей среды с целью дезориентации хищника (хамеле­он, осьминог и др.), а также миметизма (отпугивания грозным вне­шним видом). Например, бабочка «вицерой» принимает окраску ядовитой бабочки «монарх», безвредная «змеиная» гусеница ими­тирует движение змеи и т. д.

Против угроз воздействий различных сил человечество за свою 1: историю выработало достаточно эффективные меры в виде раз-| личных естественных и искусственных рубежей защиты. В сред­ние века человек надевал на себя металлические или кожаные до­спехи (сейчас -- бронежилеты), окружал дома и города высокими и мощными стенами и заборами, что продолжает делать и сейчас. Наиболее распространенный способ защиты преступников от ор­ганов правосудия - убегание. Наконец, возможности человека по изменению своего внешнего вида или окружающей среды сущест­венно превосходят все то, на что способна «неразумная» природа. Учитывая, что угрозы воздействия на информацию пред­ставляют собой силы различной физической природы (механичес­кой, электрической, электромагнитной, тепловой и др.), система за­щиты должна создавать вокруг носителей информации с локаль­ными размерами преграды - рубежи защиты от этих сил.


В отличие от сил воздействий, направленных на источники ин­формации, утечка информации происходит при распространении носителей с защищаемой информацией от ее источников. Мерами защиты от утечки являются также преграды, создаваемые вокруг источников информации. Но эти преграды должны задержать не силы воздействий, а носителей информации.

На источник информации как объект защиты могут быть рас­пространены принципы и способы защиты, используемые приро­дой и созданные человеком, в том числе подходы к созданию абсо­лютной системы защиты, рассмотренные в . Под абсолютной системой понимается система, обеспечивающая полную (гаранти­рованную) защиту при любых угрозах. Абсолютная система оп­ределена как система, обладающая всеми возможными способами защиты и способная в любой момент своего существования спро­гнозировать наступление угрожающего события за время, доста­точное для приведения в действия адекватных мер по нейтрализа­ции угроз.

Абсолютная система является гипотетической, идеальной, так как любая реальная система защиты не может в принципе обладать всеми характеристиками и свойствами абсолютной. Механизмы прогнозирования и принятия решений в процессе функционирова­нии допускают ошибки. Кроме того, следует иметь в виду, что ор­ганы разведки и подготовленные злоумышленники хорошо осве­домлены о современных способах защиты и активны в поиске не­типовых вариантов обмана механизма прогнозирования и обхода мер защиты. Однако реализация механизмов абсолютной системы в реальной системе позволит приблизиться к возможностям иде­альной защиты.

Следовательно, система защиты информации должны содер­жать:

Рубежи вокруг источников информации, преграждающих рас­пространение сил воздействия к источникам информации и ее носителей от источников;

Силы и средства достоверного прогнозирования и обнаружения угроз;

Механизм принятия решения о мерах по предотвращению или нейтрализации угроз;

Силы и средства нейтрализации угроз, преодолевших рубежи защиты.

Основу построения такой системы составляют следующие принципы:

Многозональность пространства, контролируемого системой инженерно-технической защиты информации;

Многорубежность системы инженерно-технической защиты ин­формации;

Равнопрочность рубежа контролируемой зоны;

Надежность технических средств системы защиты информации;

Ограниченный контролируемый доступ к элементам системы защиты информации;

Адаптируемость (приспособляемость) системы к новым угро­зам;

Согласованность системы защиты информации с другими системами организации.

Многозональность защиты предусматривает разделение (тер­ритории государства, организации, здания) на отдельные контро­лируемые зоны, в каждой из которых обеспечивается уровень бе­зопасности, соответствующий цене находящейся там информации. На территории Советского Союза создавались зоны, закрытые для иностранцев, приграничные зоны, закрытые города. Уровень безо­пасности в любой зоне должен соответствовать максимальной цене находящейся в ней информации. Если в ней одновременно разме­щены источники информации с меньшей ценой, то для этой инфор­мации уровень безопасности, а следовательно, затраты будут избы­точными. Так как уровень безопасности в каждой зоне определя­ется исходя из цены находящейся в ней информации, то многозо­нальность позволяет уменьшить расходы на инженерно-техничес­кую защиту информации. Чем больше зон, тем более рационально используется ресурс системы, но при этом усложняется организа­ция защиты информации. Зоны могут быть независимыми, пере­секающимися и вложенными (рис. 2.2).

Для независимых зон уровень безопасности информации в одной зоне не зависит от уровня безопасности в другой. Они созда­ются для разделения зданий и помещений, в которых выполняют­ся существенно отличающиеся по содержанию и доступу работы. Например, администрация организации размещается в одном зда­нии, научно-исследовательские лаборатории - в другом, а произ­водственные подразделения - в третьем.

Примером пересекающихся зон является приемная руководи­теля организации, которая, с одной стороны, принадлежит зоне с повышенными требованиями к безопасности информации, источ­никами которой являются руководящий состав организации и со­ответствующие документы в кабинете, а с другой стороны, в при­емную имеют доступ все сотрудники и посетители организации. Требования к безопасности информации в пересекающейся зоне являются промежуточными между требованиями к безопасности в пересекающихся зонах. Например, уровень безопасности в прием­ной должен быть выше, чем в коридоре, но его нельзя практически обеспечить на уровне безопасности информации в кабинете.

Вложенные зоны наиболее распространены, так как позволя­ют экономнее обеспечивать требуемый уровень безопасности ин­формации. Безопасность информации i-й вложенной зоны опре­деляется не только ее уровнем защиты, но и уровнями защиты в предшествующих зонах, которые должен преодолеть злоумышлен­ник для проникновения в i-ю зону.

Каждая зона характеризуется уровнем безопасности находя­щейся в ней информации. Безопасность информации в зоне зави­сит от:

Расстояния от источника информации (сигнала) до злоумышленника или его средства добывания информации;

Количества и уровня защиты рубежей на пути движения зло­умышленника или распространения иного носителя информа­ции (например, поля);

Эффективности способов и средств управления допуском людей и автотранспорта в зону;

Мер по защите информации внутри зоны.

Рис. 2,2. Виды конролируемых зон

Чем больше удаленность источника информации от места на­хождения злоумышленника или его средства добывания и чем больше рубежей защиты, тем большее время движения злоумыш­ленника к источнику и ослабление энергии носителя в виде поля или электрического тока. Количество и пространственное распо­ложение зон и рубежей выбираются таким образом, чтобы обеспе­чить требуемый уровень безопасности защищаемой информации как от внешних (находящихся вне территории организации), так и внутренних (проникших на территорию злоумышленников и со­трудников). Чем более ценной является защищаемая информация, тем большим количеством рубежей и зон целесообразно окружать ее источник и тем сложнее злоумышленнику обеспечить разведы­вательный контакт с ее носителями. Вариант классификация зон по условиям доступа приведен в табл. 2.1 .



Просмотров