Аварии на радиоактивных объектах примеры. Аварии на химически опасных объектах. Медико-тактическая характеристика очага химического пораже. Радиация вокруг нас

В настоящее время практически в любой отрасли народного хозяйства и науки во все более возрастающих масштабах используются радиоактивные вещества и источники ионизирующих излучений. Особенно высокими темпами развивается ядерная энергетика. Атомная наука и техника таят в себе огромные возможности, но вместе с тем и большую опасность для людей и окружающей среды.

Ядерные материалы приходится возить, хранить, перерабатывать, что создает дополнительный риск радиоактивного загрязнения окружающей среды, поражения людей, животных и растительного мира.

Среди техногенных источников ЧС наибольшую опасность по тяжести поражения, масштабам и долговременности действия поражающих факторов представляют именно радиационные катастрофы. В обычных условиях радиационная обстановка в стране определяется:

во-первых, природной радиоактивностью, включая космические излучения;

во-вторых, радиоактивным фоном обусловленным проведенными испытаниями ядерного оружия (с 1945 по 1991 г. не менее 1900 испытаний) ;

в-третьих, наличием территорий, загрязненных радиоактивными веществами вследствие произошедших в предыдущие годы аварий на предприятиях атомной промышленности и энергетики;

в-четвертых, эксплуатацией радиационно-опасных объектов.

Радиационно-опасный объект (РОО) - объект, на котором хранят, перерабатывают, используют или транспортируют радиоактивные вещества, при аварии на котором или его разрушении может произойти облучение ионизирующим излучением или радиоактивное загрязнение людей, сельскохозяйственных животных и растений, объектов экономики, а также окружающей природной среды.

К типовым РОО относятся:

Атомные станции;

Предприятия по переработке отработанного ядерного топлива и захоронению радиоактивных отходов;

Предприятия по изготовлению ядерного топлива;

НИИ и проектные организации, имеющие ядерные установки и стенды;

Транспортные ядерные энергетические установки;

Военные объекты.

Потенциальная опасность РОО определяется количеством радиоактивных веществ, которое может поступить в окружающую среду в результате аварии.

В Российской Федерации имеются около 250 судов с ядерными энергетическими установками. В пунктах отстоя в ожидании утилизации находятся 185 атомных подводных лодок, причем, 120 из них с 200 ядерными реакторами стоят с не выгруженным ядерным топливом. Кроме того, 70% АПЛ стратегического назначения нуждаются в ремонте, 50% технически и морально устарели, будут выведены из строя к 2015 году. Из оставшихся 75% будут потеряны из-за окончания гарантийного срока корабельных комплексов.

Потенциальную радиационную угрозу представляют 30 НИИ со 113 исследовательскими ядерными установками. 50 таких реакторов находятся в Московской области, а 9 из них непосредственно в Москве.

К радиационно-опасным объектам относятся и 16 региональных спецкомбинатов «Радон» по переработке, транспортировке и захоронению отходов. Пункты захоронения радиоактивных отходов (ПЗРО) специальных комбинатов «Радон» расположены рядом с городами Москва, Санкт-Петербург, Волгоград, Нижний Новгород, Грозный, Иркутск, Казань, Самара, Мурманск, Новосибирск, Ростов-на-Дону, Саратов, Екатеринбург, Благовещенск республики Башкортостан, Челябинск и Хабаровск.

Особое место среди РОО занимают атомные электростанции (АЭС), атомные теплоэлектроцентрали (АТЭЦ), атомные станции теплоснабжения (ACT) и атомные станции промышленного теплоснабжения (АСПТ).

Атомные станции теплоснабжения существуют только в России (3 станции). Лидером по выработке электроэнергии атомными электростанциями являются США (836,63млрд кВт·ч/год), Франция (436 млрд. кВт.ч/год).

В Российской Федерации работают 10 атомных электростанций (в их числе Ростовская АЭС), которые производят около 160 млрд. кВт.ч/год.

Преимуществами атомных электростанций перед тепловыми являются их экологическая чистота, практическая независимость от источников топлива (цикл зарядки - 3 года), более низкая себестоимость производимой электроэнергии.

Главными недостатками АЭС, по мнению специалистов, являются:

тяжелые последствия аварий, для исключения которых АЭС оборудуются сложнейшими системами безопасности с многократными запасами и резервированием, обеспечивающими исключение расплавления активной зоны даже в случае максимальной проектной аварии;

высокая стоимость утилизации ядерных отходов, появляющихся в результате эксплуатации АЭС, а также утилизация самих АЭС после окончания срока эксплуатации. Основным и наиболее опасным элементом атомных станций является ядерный реактор. На атомных электростанциях наиболее широко распространены корпусные водо-водяные энергетические реакторы ВВЭР (теплоноситель и замедлитель нейтронов - вода) и водографитные реакторы канального типа РБМК - реактор большой мощности, канальный (теплоноситель- вода, замедлитель- графит).

В активной зоне реактора, где размещены тепловыделяющие элементы (ТВЭЛ), происходит реакция деления ядер урана-235. В результате торможения осколков деления их кинетическая энергия преобразуется в тепловую и нагревает реактор.

Во время реакции в ТВЭЛ накапливаются радиоактивные продукты ядерного деления. Их качественный состав примерно тот же, что и осколков деления при взрывах ядерных боеприпасов, но количество радионуклидов по периоду полураспада существенно отличается.

Процесс деления в ТВЭЛ длится несколько лет, поскольку загрузка реакторов ядерным горючим осуществляется, как правило, не чаще одного раза в три года. За этот срок короткоживущие изотопы распадаются. Одновременно идет накопление радионуклидов с большим периодом полураспада (стронций Sr-90, цезий Cs-137, а также плутоний Ри-239 (-240,-241,-242).

В ходе трехгодичного периода эксплуатации реактора процентное содержание долгоживущих радионуклидов (стронций - 90, цезий -137, плутоний -239 (-240, -241, -242) в продуктах ядерного деления увеличивается. В случае радиационной аварии долгоживущие радионуклиды создают устойчивое радиоактивное загрязнение местности. Несмотря на принимаемые технические и организационные меры, полностью избежать аварий на радиационно-опасных объектах, и прежде всего на АЭС, пока не удается.

Эксплуатация радиационно-опасных объектов неизбежно сопровождается появлением потенциальных опасностей как для обслуживающего эти объекты персонала, так и для населения и окружающей природной среды. Реализация этих опасностей осуществляется при возникновении радиационных аварий на объекте.

Радиационная авария (РА) - авария на радиационно-опасном объекте, приводящая к выходу или выбросу радиоактивных веществ или ионизирующих излучений за границы объекта.

Радиационная авария присуща не только АЭС, но и всем предприятиям ядерного топливного цикла, а также предприятиям, использующим радиоактивные вещества. К таким предприятиям можно отнести предприятия, добывающие урановую или ториевую руду; заводы по переработке руды; обогатительные заводы, заводы по изготовлению ядерного топлива; хранилища РВ и многие другие. Радиационные аварии могут возникнуть в процессе испытаний, хранения, транспортировки ядерного оружия. Тем не менее, особенность расположения АЭС (в густонаселенных районах), количество имеющихся на них ядерного топлива и ядерных отходов предопределяют особую актуальность рассмотрения радиационных аварий именно на АЭС.

Аварии на атомных станциях подразделяются на проектные и запроектные (гипотетические). Система технической безопасности АЭС, как правило, обеспечивает локализацию максимальной проектной аварии (МПА), но не позволяет избежать гипотетических аварий. Об этом свидетельствуют данные МАГАТЭ.

Радиационные аварии на РОО подразделяются на три типа:

Локальная - нарушение в работе РОО, при котором не произошел выход радиоактивных продуктов или ионизирующего излучения за предусмотренные границы оборудования, технологических систем, зданий и сооружений в количествах, превышающих установленные для нормальной эксплуатации предприятия значения.

Местная - нарушение в работе РОО, при котором произошел выход радиоактивных продуктов в пределах санитарно - защитной зоны и количествах, превышающих установленные нормы для данного предприятия.

Общая - нарушение в работе РОО, при котором произошел выход радиоактивных продуктов за границу санитарно - защитной зоны и количествах, приводящих к радиоактивному загрязнению прилегающей территории и возможному облучению проживающего на ней населения выше установленных норм.

Отметим, что ядерного взрыва при авариях на АЭС не может быть в принципе, а ударная волна, образующаяся при тепловом взрыве реактора, распространяется на незначительные расстояния и представляет опасность только для обслуживающего станцию персонала и конструкций объектов АЭС.

Основным поражающим фактором (опасностью) при авариях на реакторах АЭС, как и других РОО (кроме арсеналов для хранения ядерных боеприпасов), является радиоактивное загрязнение местности.

Источником загрязнения является атомный реактор как мощный источник накопленных радиоактивных веществ.

Хотя количество радионуклидов в активной зоне реактора велико, реальную опасность при аварии представляют только выброшенные из реактора радионуклиды. Доля выброса радионуклидов зависит от многих факторов, включая конструкцию реактора, состояние активной зоны, историю аварийного процесса и многое другое.

Поскольку период полураспада основных продуктов деления, вызывающих радиоактивное загрязнение внешней среды сравнительно велик (исключение составляет йод -131), такого резкого уменьшения мощности дозы, как это имеет место на следе ядерного взрыва, не наблюдается, т.е. спад уровней радиации на местности более медленный, чем после ядерного взрыва.

При авариях на АЭС значительная часть продуктов деления ядерного топлива находится в парообразном или аэрозольном состоянии. Воздействие радиоактивного загрязнения окружающей среды на людей в первые часы и сутки после аварии определяется внутренним облучением в результате вдыхания радионуклидов из облака и внешним облучением от радиоактивного облака и радиоактивных выпадений на местности, а также поверхностным загрязнением в результате осаждения радионуклидов из облака выброса. В последующем, в течение многих лет, вредное воздействие и накопление дозы облучения у людей будет обусловлено вовлечением в биологическую цепочку выпавших радионуклидов и употреблением загрязненных продуктов питания и воды.

При аварии на Чернобыльской АЭС в 1986 году выброс в атмосферу парообразных или арозольных радионуклидов продолжался в течение 10 суток. Метеорологическая обстановка в этот период характеризовалась неустойчивым ветром как в приземном слое, так и на высоте 700-1500 м. Направление ветра изменялось в пределах 360 градусов, фактически описав круг. Поэтому конфигурация следа имеет очень сложную форму и даже «пятнистый» характер («цезиевые пятна»).

Для характеристики радиоактивного заражения территории, оценки радиационной обстановки и определения мер радиационной защиты при ликвидации последствий при гипотетической, запроектной и др. авариях на АЭС условно на местности выделяют зоны радиоактивного заражения (загрязнения) (РЗ), которые на картах изображают в виде эллипсов умеренного (зона А), сильного (зона Б), опасного (зона В), чрезвычайно опасного (зона Г) и зона радиационной опасности (зона М).

При этом, внешние границы зон PЗ принято характеризовать параметрами: поглощенная доза излучения за 1-ый год; мощность поглощенной дозы излучения за 1 час после аварии, катастрофы. Значения этих радиационных характеристик зон РЗ приведены ниже и отличаются от зон РЗ при ядерном взрыве. Данные зоны РЗ и их характеристики используются при оценке радиационной обстановки методом прогнозирования, т.е. заблаговременно. Реальная же конфигурация следа заражения, определенная при радиационной разведке, будет иметь сложную форму.

После определения границ зон радиоактивного заражения, устанавливают границы территорий, имеющих различную степень опасности для здоровья людей. Они характеризуются возможной дозой облучения.

Зона экстренных мер защиты населения - территория, в пределах которой доза внешнего гамма -облучения населения за время формирования следа радиоактивного загрязнения от выброса РВ при аварии на РОО может превысить 75 рад, а доза внутреннего облучения щитовидной железы за счет поступления в организм человека радиоактивного йода - 250 рад.

Таблица 1. Характеристики зон радиоактивного заражения (РЗ) местности при аварии на АЭС

Зона профилактических мероприятий - территория, в пределах которой доза внешнего гамма -облучения населения за время формирования следа радиоактивного загрязнения от выброса РВ при аварии на РОО может превысить 25 рад (но не более 75), а доза внутреннего облучения щитовидной железы радиоактивным йодом может превысить 30 рад (но не более 250).

Зона ограничений - территория, в пределах которой доза внешнего облучения населения за время формирования следа радиоактивного загрязнения от выброса РВ при аварии на РОО может превысить 10 рад (но не более 25), а доза внутреннего облучения щитовидной железы радиоактивным йодом не превышает 30 рад.

Зона возможного радиоактивного загрязнения - территория, в пределах которой прогнозируются дозовые нагрузки, превышающие 10 рад в год.

При аварии, повлекшей за собой радиоактивное загрязнение обширной территории, на основании контроля и прогноза радиационной обстановки устанавливается зона радиационной аварии (ЗРА).

Зона радиационной аварии - это территория, на которой суммарное внешнее и внутреннее облучение может превышать 5 рад за первый год. В ЗРА проводится мониторинг радиационной обстановки и осуществляются мероприятия по снижению уровней облучения населения на основе принципа оптимизации (т.е. выбора наилучшего варианта действий).

На территории, подвергшейся радиоактивному загрязнению, после стабилизации обстановки в районе аварии в период ликвидации ее долговременных последствий для жизни и хозяйственной деятельности населения устанавливаются зоны:

Зона отчуждения. В этой зоне запрещается постоянное проживание населения, ограничивается хозяйственная деятельность и природопользование;

Зона отселения. Это территория за пределами зоны отчуждения, на которой плотность загрязнения почв цезием-137 от 15 до 40 Ки/км 2 или эквивалентных доз других радионуклидов, население подлежит обязательному отселению.

Зона проживания с правом на отселение. Это территория за пределами зоны отчуждения и зоны отселения с плотностью загрязнения почв цезием - 137 от 5 до 15 Ки/км 2, при которой население имеет право на отселение;

Зона проживания с льготным социально-экономическим статусом. Это территория за пределами зоны отчуждения, зоны отселения и зоны проживания с правом на отселение с плотностью радиоактивного загрязнения почвы цезием - 137 от 1 до 5 Ки/км 2 .

Для защиты работающего на АЭС персонала и населения на территории вокруг станции c момента начала ее эксплуатации устанавливаются санитарная зона и зона наблюдения.

Вокруг АЭС создается санитарная зона R= 3 км., которая подразделяется на 3 зоны:

1. Зона строгого режима с предельно допустимой дозой (ПДД) = 5 бэр/год. В ней предусматривается постоянный радиационный контроль в местах работ людей, повседневный радиационный контроль объектов и территории.

2. Зона режима радиационной безопасности с ПДД = 0.5 бэр/год в которой проводится повседневное радиометрическое обследование людей, транспорта и путей их движения после проведения работ.

3. Санитарно - защитная зона. В ней предусматривается систематическое измерение уровней ионизирующих излучений и радиоактивного заражения.

Кроме того, устанавливается зона наблюдения R= 30 км., в которой проводится контроль за радиоактивностью объектов и внешней среды с установленной периодичностью.

Федеральный закон № 3-ФЗ от 09.01.1996 «О радиационной безопасности населения» устанавливает государственное нормирование в сфере обеспечения радиационной безопасности. Статья 9 определяет пределы дозовых нагрузок для населения и персонала, причем более жесткие, чем ранее действующие. Эти нормы периодически пересматриваются в сторону ужесточения и с сентября 2009 года Постановлением Роспотребнадзора (Главного санитарного врача России) от 7 июля 2009 года № 47 введены «Нормы радиационной безопасности НРБ-99/2009».

Эти нормы распространяются на следующие виды воздействия ионизирующего излучения на человека:

Облучения персонала и населения в условиях нормальной эксплуатации техногенных источников ионизирующего излучения (ИИИ);

Облучение населения и персонала в условиях радиационной аварии;

Облучение работников промышленных предприятий и населения всеми природными ИИИ;

Медицинское облучение населения.

Важнейшим условием сохранения работоспособности и здоровья населения является соблюдение принципа непревышения допустимых пределов индивидуальных доз облучения (в условиях военного времени применяется термин «дозы, не приводящие к потере работоспособности», в условиях мирного времени - «основные пределы доз»).

Работоспособность в военное время определяется как возможность личного состава нештатных аварийно-спасательных формирований, рабочих и служащих выполнять свои профессиональные обязанности в течение определенного времени после внешнего облучения.

Дозы, не приводящие к потере работоспособности (военное время):

Однократная (в течении первых 4-х суток) - до 50 рад

Многократная (в течении 10 - 30 суток) - до 100 рад.

Многократная (в течении 1 года) - до 300 рад.

Превышение указанных значений доз приводит к уменьшению (потере) работоспособности или (и) к лучевой болезни.

Основные пределы доз (мирное время):

для населения средняя годовая эффективная доза равна 0.001 зиверта (1 мЗв) или эффективная доза за период жизни (70 лет) - 0.07 зиверта (70 мЗв);

для работников РОО средняя годовая эффективная доза равна 0.02 зиверта (20 мЗв) или эффективная доза за период трудовой деятельности (50 лет) - 1 зиверту (1 000 мЗв). Допустимо облучение в годовой эффективной дозе до 0.05 зиверта, но при условии, что она, исчисленная за пять последовательных лет, не превысит 0.02 зиверта.

Регламентируемые значения основных пределов доз облучения не включают в себя дозы, создаваемые естественным и искусственным радиационным фоном, а также дозы, получаемые гражданами при проведении медицинских рентгенорадиологических процедур и лечения.

В условиях радиационной аварии приведенные основные пределы доз не применяются, а устанавливается зона радиационной аварии и проводятся мероприятия по снижению уровней облучения населения (противорадиационного вмешательства). В случае радиационных аварий допускается облучение, превышающее установленные нормы, в течение определенного промежутка времени и в пределах, определенных для таких чрезвычайных ситуаций.

Описание презентации по отдельным слайдам:

1 слайд

Описание слайда:

2 слайд

Описание слайда:

Ионизирующее излучение – любое излучение, взаимодействие которого с окружающей средой приводит к образованию электрических ионов разных знаков Радиационно опасный объект - это объект, на котором хранят, перерабатывают или транспортируют радиоактивные вещества, при аварии на котором может произойти облучение ионизирующим излучением людей или радиоактивное загрязнение окружающей среды.

3 слайд

Описание слайда:

Под радиоактивным загрязнением окружающей среды понимается присутствие радиоактивных веществ на поверхности местности, в воздухе, в теле человека в количестве, превышающем уровни, установленные нормами радиационной безопасности.

4 слайд

Описание слайда:

К радиационно опасным объектам относятся: предприятия ядерного топливного цикла (предприятия урановой и радиохимической промышленности, места переработки и захоронения радиоактивных отходов); атомные станции (атомные электрические станции (АЭС), атомные теплоэлектроцентрали (АТЭЦ), атомные станции теплоснабжения (АТС); объекты с ядерными энергетическими установками (корабельными, космическими и войсковыми атомными электростанциями); ядерные боеприпасы и склады для их хранения.

5 слайд

Описание слайда:

7 слайд

Описание слайда:

Международная шкала событий на АЭС для оценки серьезности происшедшего, быстрого оповещения и выбор адекватных мер безопасности

8 слайд

Описание слайда:

9 слайд

Описание слайда:

Лучевая болезнь возникает при воздействии на организм ионизирующих излучений в дозах, превышающих предельно допустимые

10 слайд

Описание слайда:

11 слайд

12 слайд

Описание слайда:

уточнить наличие в районе вашего проживания радиационно опасных объектов и получить возможно более подробную и достоверную информацию о них; выяснить в ближайшем территориальном управлении ГО ЧС способы и средства оповещения населения при аварии на радиационно опасном объекте; изучить инструкцию о порядке действий населения в случае возникновения радиационной аварии; создать и иметь определенные запасы необходимых герме­тизирующих материалов, йодных препаратов, продовольствия и воды.

13 слайд

14 слайд

Описание слайда:

Если вы находитесь на улице, немедленно защитите органы дыхания платком, шарфом и укройтесь в ближайшем здании, лучше в собственной квартире. Войдя в помещение, в коридоре следует снять с себя верхнюю одежду и обувь, поместить их в пластиковый пакет или пленку. Если вы находитесь в своем доме (квартире), немедленно закройте окна, двери, вентиляционные отверстия, включит радиоприемник или телевизор и будьте готовы к приему информации о дальнейших действиях. Обязательно загерметизируйте помещение и укройте продукты питания в полиэтиленовые мешки, пакеты или пленку. При получении указаний через СМИ проведите йодную про­филактику, принимая в течение 7 дней по одной таблетке (0,125 г) йодистого калия, а при отсутствии - йодистый раствор: три-пять капель 5%-ного раствора йода на стакан воды, для детей до 2 лет 1/4 дозы. При приготовлении и приеме пищи все продукты, выдерживающие воздействие воды, промывайте струей воды. Помещение оставляйте лишь в крайней необходимости и на короткое время. При выходе из помещения защитите орга­ны дыхания, наденьте плащ, или накидку или табельные средства защиты кожи. После возвращения переоденьтесь.

15 слайд

16 слайд

Описание слайда:

Подготовка к возможной эвакуации заключается в сборе самых необходимых вещей. Это документы, деньги, личные вещи, продукты, средства индивидуальной защиты. Необходимо сложить в чемодан или рюкзак одежду и обувь, однодневный запас продуктов, нижнее белье и другие необходимые вещи. Оберните чемодан (рюкзак) полиэтиленовой пленкой. Покидая при эвакуации квартиру, отключите все электро- и газовые приборы, вынесите быстро портящиеся продукты, а на дверь прикрепите объявление «В квартире № __ никого нет». При посадке в транспорт или при формировании пешей колонны, зарегистрируйтесь у председателя эвакокомиссии. Прибыв в безопасный район, примите душ и смените белье и обувь на незараженные.

Описание слайда:

Уборка помещения должна проводиться влажным способом с тщательным стиранием пыли с мебели и подоконников. Обувь, в которой ходили по улице, ополаскивать водой (особенно подошву) и оставлять ее за порогом квартиры (дома). Желательно оставлять вне квартиры (дома) и верхнюю одежду, в которой ходили по улице. При ведении приусадебного хозяйства для снижения радиоактивного загрязнения выращиваемых продуктов в почву целесообразно вносить известь, калийные удобрения и торф. Во время уборки урожая плоды, овощи и корнеплоды не складируют на землю. Выращенные сельхозпродукты подвергаются радиационному контролю. Не рекомендуется употреблять в пищу рыбу и раков из местных водоемов. Заготовка дикорастущих ягод, грибов, лекарственных трав может проводиться по разрешению местных властей. На открытой местности не раздевайтесь, не садитесь на землю, не купайтесь в открытых водоемах. Воду употребляйте только из проверенных источников, а продукты питания - приобретенные в магазинах. Тщательно мойте руки и полощите рот 0,5%-ным раствором питьевой соды.

Лекция № 16

Аварии на радиационно-опасных объектах.

План:

1. Введение.

2. Основные направления деятельности по вопросам гражданской защиты.

3. Заключение.

1. Введение.

Проблемы безопасности при эксплуатации радиационно-опасных Объектов (РОО) в последнее время встают все острее, в связи, с чем возникает необходимость качественных изменений в подготовке соответствующих специалистов по Гражданской Защите. Здесь на первое место выдвигается профессиональное мышление, сформированное твердыми знаниями и глубоким пониманием всех процессов. В связи с этим необходимы более широкие и максимально подробные программы по атомной и ядерной физике, постоянно обновляемые новым теоретическим и фактическим материалом, цифрами, достижениями.

В этой работе мы попытаемся систематизировать и обобщить практическую и теоретическую информацию о радиационной обстановке в г. Москве, а также дать общие рекомендации по учету и профилактике ЧС на радиационно-опасных объектах столицы Российской Федерации.

2.Основные направления деятельности по вопросам гражданской защиты.

2.1 Общие сведения

Ядерные энергетические установки и другие объекты экономики, при авариях и разрушениях которых могут произойти массовые радиационные поражения людей, животных и растений, называют радиационно-опасными объектами (РОО).

Выброс радиоактивных веществ за пределы ядерно-энергетического реактора, в результате чего может создаться повышенная радиационная опасность, представляющая собой угрозу для жизни и здоровья людей, называется радиационной аварией.

К радиационно-опасным объектам, при авариях на которых может быть загрязнение окружающей среды, относятся: атомные электростанции, атомные тепловые электростанции, суда с атомными реакторами, исследовательские реакторы, лаборатории и клиники, использующие в своей работе радиоактивные вещества.

Радиационная авария - это авария на радиационно-опасном объекте, приводящая к выходу или выбросу радиоактивных веществ и (или) ионизирующих излучений за предусмотренные проектом для нормальной эксплуатации данного объекта границы в количествах, превышающих установленные пределы безопасности его эксплуатации.

При прогнозе радиационной обстановки учитывается масштаб аварии, тип реактора, характер его разрушения и характер выхода радиоактивных веществ из активной зоны, а также метеоусловия в момент выброса РВ.

В зависимости от границ распространения радиоактивных веществ и радиационных последствий выделяют:

· локальные аварии (радиационные последствия ограничиваются зданием,

· сооружением с возможным облучением персонала)

· местные аварии (радиационные последствия ограничиваются территорией

· объекта)

· общие аварии (радиационные последствия распространяются за границу

· территории объекта).

В первые часы и сутки после аварии действие на людей загрязнения окружающей среды определяется внешним облучением от радиоактивного облака (продукты деления ядерного топлива, смешанные с воздухом), радиоактивных выпадений на местности (продукты деления, выпадающие из радиоактивного облака), внутренним облучением вследствие вдыхания радиоактивных веществ из облака, а также за счет загрязнения поверхности тела человека этими веществами. В дальнейшем, в течение многих лет, накопление дозы облучения будет происходить за счет употребления загрязненных продуктов питания и воды.

Важной особенностью аварийного выброса радиоактивных веществ является то, что они представляют собой мелкодисперсные частицы, обладающие свойством плотного сцепления с поверхностями предметов, особенно металлических, а также способностью сорбироваться одеждой и кожными покровами человека, проникать в протоки потовых и сальных желез. Это снижает эффективность дезактивации (удаление радиоактивных веществ) и санитарной обработки (мероприятия по ликвидации загрязнения поверхности тела человека).

Размер зон загрязнения местности находится в зависимости от категории устойчивости атмосферы и выхода активности - выброса РВ из активной зоны реактора в зависимости от масштаба аварии.

По категории устойчивости атмосфера подразделяется на сильно неустойчивую - конверсия (А), нейтральная-изотермия (Д), очень устойчивая - инверсия (Г). В дневное время преобладает неустойчивая, к вечеру нейтральная устойчивость атмосферы. В ночное время и ранние утренние часы преобладает инверсия - очень устойчивое состояние атмосферы.

При одноразовом выбросе РВ из аварийного реактора и устойчивом ветре движение радиоактивного облака происходит в одном направлении. В этом случае след радиоактивного облака имеет вид эллипса.

Доза облучения людей на ранней фазе протекания аварии формируется за счет гамма- и бета-излучения PВ, содержащихся в облаке, а также вследствие ингаляционного поступления в организм радиоактивных продуктов, содержащихся в облаке. Данная фаза продолжается с момента начала аварии до прекращения выброса продуктов ядерного деления (ПЯД) в атмосферу и окончания формирования радиоактивного следа на местности.

На средней фазе источником внешнего облучения являются РВ, выпавшие из облака и находящиеся на почве, зданиях и т.п. Внутрь организма они поступают в основном с загрязненными продуктами питания и водой. Средняя фаза длится от момента завершения формирования радиоактивного следа до принятия всех мер по защите населения. Продолжительность этой фазы может быть от нескольких дней до года после возникновения аварии. Поздняя фаза длится до прекращения выполнения защитных мер и отмены всех ограничений деятельности населения на загрязненной территории. В этой фазе осуществляется обычный санитарно-дозиметрический контроль радиационной обстановки, а источники внешнего и внутреннего облучения те же, что и на средней фазе.

В целях исключения массовых радиационных потерь и переобучения населения, рабочих и служащих сверх установленных доз, их действия в условиях радиоактивного заражения строго регламентируются и подчиняются режиму радиационной защиты.

Режимы радиационной защиты - это порядок действия людей, применения средств и способов защиты в зонах радиоактивного заражения, предусматривающий максимальное уменьшение возможных доз облучения. Для обеспечения радиационной безопасности при нормальной эксплуатации объектов необходимо руководствоваться следующими положениями:

1. Не превышение допустимых пределов индивидуальных доз облучения человека от всех источников ионизирующего излучения (принцип нормирования).

2. Запрещение всех видов деятельности по использованию источников ионизирующего излучения, при которых полученная для человека и общества польза не превышает риск возможного вреда, причиненного дополнительным к естественному фону облучения (принцип обоснования).

3. Поддержание на возможно низком и достижимом уровне с учетом экономических и социальных факторов индивидуальных доз облучения и числа облучаемых лиц при использовании любого источника ионизирующего излучения (принцип оптимизации).

Основные дозовые пределы (НРБ-96)

Основным нормативным документом, регламентирующем уровни облучения профессиональных работников и населения является "Нормы радиационной безопасности (НРБ-96)".

Нормы радиационной безопасности устанавливают следующие категории облучаемых лиц:

Персонал - лица, работающие с техногенными источниками излучения (группа А) и лица, находящиеся по условиям работы в сфере их воздействия (группа Б);

Все население, включая лиц из персонала, вне сферы и условий их профессиональной деятельности.

Основные дозовые пределы (см. таблицу 1).

Допустимые уровни монофакторного воздействия (для одного радионуклида, одного вида внешнего излучения, одного пути поступления), являющиеся производными от основных дозовых пределов: предел годового поступления радионуклида в организм (ПГП), допустимые среднегодовые объемные активности (ДОА) и т.п.

Контрольные дозы и уровни, которые устанавливаются администрацией учреждения по согласованию с органами Госсанэпиднадзора в зависимости от достигнутого уровня радиационной безопасности, при условии, что радиационное воздействие будет ниже допустимого.

Таблица 1

Дозы облучения и все остальные допустимые производные уровни для персонала группы Б не должны превышать 1/4 значения для персонала группы А.

При расчете доз облучения персонала и населения учитывается как внешнее, так и внутреннее облучение. Годовая эффективная доза облучения равна сумме эффективной дозы внешнего облучения, накопленной за календарный год и ожидаемой эффективной дозы внутреннего облучения, обусловленной поступлением радионуклидов в организм за тот же период. Интервал времени для определения величины ожидаемой эффективной дозы устанавливается равным 50 годам для персонала и 70 годам для населения. Соблюдение предела годовой дозы предотвращает возникновение детерминированных эффектов, а вероятность стохастических эффектов сохраняется при этом на приемлемом уровне.

Примечание: Дозовые пределы, приведены в таблице 1 применяются для вновь строящихся, проектируемых и реконструированных предприятий. Для действующих предприятий эти пределы вводятся после реконструкции или с 1 января 2000 года. До этого действующие объекты руководствуются основными дозовыми пределами, приведенными в таблице 1а и положениями изложенными ниже.

Группы критических органов (в порядке убывания радиационной чувствительности):

1 группа - все тело, гонады и красный костный мозг;

2 группа - мышцы, щитовидная железа, печень, почки, легкие, хрусталики глаз и другие органы, не входящие в 1 и 2 группы.

3 группа - кожа, костная ткань, кисти, предплечье, лодыжки и стопы.

Установлены следующие дозовые пределы:

Предельно допустимая доза (ПДД) - наибольшее значение индивидуальной дозы за год, которая при равномерном воздействии в течении 50 лет не вызовет в состоянии здоровья персонала (категория А) неблагоприятных изменений, обнаруживаемых современными методами.

Предел дозы (ПД) - предельная эквивалентная доза за год для ограниченной части населения (категория Б). ПД устанавливается ниже ПДД для предотвращения необоснованного облучения людей. Ожидаемая эквивалентная доза для населения интегрируется за 70-летний период.

Таблица 1а

Основные дозовые пределы облучения персонала и населения не включают в себя дозы от природных и медицинских источников излучения, а так же дозу вследствие аварий. На эти виды облучения устанавливаются специальные ограничения. Для учащихся в возрасте 21 года, проходящих обучение с использованием ионизирующего излучения, годовые накопленные дозы не должны превышать значений, установленных для населения.

Планируемое повышенное облучение при ликвидации аварии разрешается только в тех случаях, когда нет возможности избежать такого облучения в связи со спасением жизни людей, предотвращением дальнейшего развития аварии и облучения большого количества людей. Планируемое повышенное облучение допускается только для мужчин старше 30 лет при их добровольном письменном согласии, после информирования о возможных дозах облучения и риске для здоровья.

Облучение в дозе до 100 мЗв в год допускается с разрешения территориальных органов госсанэпиднадзора, а до 200 мЗв в год – с разрешения Госкомсанэпиднадзора России. Лица, подвергшиеся облучению в дозе, превышающей 100 мЗв, в дальнейшем не должны подвергаться облучению в дозе более 20 мЗв/год.

Однократное облучение в дозе свыше 200 мЗв рассматривается как потенциально опасное. Лица, подвергшиеся такому облучению, должны выводится из зоны облучения, и направляться на медицинское обследование. Дальнейшая работа с источниками облучения этим лицам может быть разрешена только медицинской комиссией.

Все лица, привлекаемые для проведения аварийных и спасательных работ, приравниваются к персоналу. Они должны быть обучены для работы в зоне радиационной аварии и пройти медосмотр. Повышенное облучение не допускается для работников, ранее уже получивших дозу 200 мЗв в год, а так же для лиц, имеющие медицинские противопоказания.

НРБ-96 разработаны с учетом Международных основных норм безопасности для защиты от ионизирующих излучений и безопасности источников излучений (1994 г.) и отражают современные состояние и подходы в части обеспечения санитарно-эпидемиологического благополучия и радиационной безопасности населения. Новые нормы существенно отличаются от НРБ-76/87. Поэтому требуется их тщательно изучить, в особенности специалистам практикам. А государственную и частную нормативно-распорядительную документацию предприятий (объектов) следует привести в полное соответствие с ними.

Чрезвычайная ситуация – это обстановка на определенной территории, сложившаяся в результате аварии, катастрофы, опасного природного явления, стихийного или иного бедствия, которые могут повлечь или повлекли за собой человеческие жертвы, ущерб здоровью людей или окружающей природной среде, значительные материальные потери и нарушения условий жизнедеятельности людей.

Чрезвычайные ситуации по характеру возникновения классифицируются следующим образом:

1. ЧС Техногенного характера: транспортные аварии; аварии на производственных объектах, аварии с выбросом химических веществ; аварии с выбросом радиоактивных веществ; аварии на взрывоопасных и пожароопасных объектах; аварии с выбросом биологически опасных веществ; народно-хозяйственные катастрофы; аварии на системах жизнеобеспечения населения;

2. ЧС Природного характера: геологические опасные явления; гидрометеорологические, гелиогеофизические стихийные бедствия; природные пожары; особо опасные эпидемии, эпизоотии, эпифитотии;

3. ЧС Экологического характера: ЧС, связанные с изменением состояния суши; ЧС, связанные с изменением свойств атмосферы; ЧС, связанные с изменением состояния гидросферы; ЧС, связанные с изменением состояния биосферы.

При развитии гипотетической аварии на радиационно-опасном объекте, в районе может сложиться радиационная обстановка, значительно превышающая радиационный фон. Население района может оказаться в зоне опасного радиоактивного заражения. Размеры зоны зависят от метеорологической обстановки в районе.

Основные направления деятельности МГ СЧС по вопросам гражданской защиты, по вопросам гражданской защиты, предупреждения и ликвидации чрезвычайных ситуаций.

Главной задачей в области ГЗ, предупреждения и ликвидации чрезвычайных ситуаций считать обеспечение готовности органов управления и сил МГСЧС к всестороннему обеспечению мероприятий гражданской защиты, подготовку к защите населения и территорий столицы от чрезвычайных ситуаций.

Основными направлениями деятельности МГСЧС являются:

1. Создание и поддержание в готовности систем управления, сил и средств, чрезвычайных резервов финансовых и материальных ресурсов.

2. Организация наблюдения и контроля за состоянием окружающей среды и потенциально опасных объектов, прогнозирование чрезвычайных ситуаций.

3. Разработка и осуществление мер, направленных на защиту населения, повышение устойчивости функционирования отраслей экономики и городского хозяйства в чрезвычайных ситуациях.

4. Совершенствование и обеспечение функционирования городской системы подготовки органов управления, специалистов МГСЧС, обучение населения действиям в чрезвычайных ситуациях.

5. Оповещение населения о возникновении чрезвычайной ситуации и порядке действий в сложившейся обстановке.

6. Проведение работ по ликвидации чрезвычайных ситуаций, первоочередному жизнеобеспечению населения, в первую очередь пострадавшего.

Большое значение при защите населения отводится своевременному оповещению о чрезвычайной ситуации. Для того чтобы своевременно предупредить население о чрезвычайных ситуациях, необходимо твердо знать сигналы оповещения ГЗ и уметь правильно действовать по ним.

Основным способом оповещения людей в чрезвычайных ситуациях считается подача речевой информации с использованием государственных сетей радио- и телевещания. Перед подачей речевой информации включаются сирены, производственные гудки и другие сигнальные средства, что означает подачу предупредительного сигнала "ВНИМАНИЕ, ВСЕМ!", по которому население обязано включить радио- и телеприемники для прослушивания экстренного сообщения.

В чрезвычайных ситуациях мирного времени подаются следующие сигналы:

- "Воздушная тревога";

- "Отбой воздушной тревоги";

- "Радиационная опасность";

- "Химическая тревога".

Остановимся подробнее на сигнале "РАДИАЦИОННАЯ ОПАСНОСТЬ": При выявлении начала радиоактивного заражения данного населенного пункта или при угрозе радиоактивного заражения в течение ближайшего часа подается данный сигнал.

Сигнал доводится до населения в течение 2-3 минут с помощью всех местных технических средств связи и оповещения, по радио- и телевизионной сети передачей текста: "Внимание! Граждане! Радиационная опасность!". Излагаются рекомендации о мерах защиты и режимах поведения. Сигнал дублируется звуковыми и световыми средствами. По сигналу необходимо: надеть средства защиты органов дыхания (противогаз, респиратор, ПТМ, ВМП), взять

подготовленный запас продуктов питания, воды, медикаментов, надеть приспособленную одежду и перчатки и следовать в ЗС. Если обстоятельства заставляют укрываться дома или на рабочем месте, следует быстро закончить работу по герметизации помещения. По указаниям органов ГЗ принять радиозащитное средство.

Основными мероприятиями по предупреждению и снижению действия поражающих факторов при радиационной аварии являются:

Оповещение населения об аварии и информирование его о порядке действий в создавшихся условиях;

Укрытие;

Использование средств индивидуальной защиты;

Предотвращение потребления загрязненных продуктов питания и воды;

Эвакуация населения;

Ограничение доступа на загрязненную территорию.

Меры защиты:

Предохранить органы дыхания средствами защиты - противогазом, респиратором, а при их отсутствии - ватно-марлевой повязкой, шарфом, полотенцем, смоченными водой;

Закрыть окна и двери, отключить вентиляцию, включить радио, радиоточку, телевизор и ждать дальнейших указаний;

Укрыть продукты питания в полиэтиленовых мешках. Сделать запас воды в емкостях с плотно прилегающими крышками. Продукты и воду поместить в холодильник, шкафы, кладовки;

Не употреблять в пищу овощи, фрукты, воду, заготовленные после аварии;

Строго соблюдать правила личной гигиены;

Приготовиться к возможной эвакуации. Собрать документы, деньги, продукты, лекарства, средства индивидуальной защиты;

Укрыться при поступлении команды в ближайшем защитном сооружении.

При авариях на радиационно-опасных объектах в облаке радиоактивных продуктов содержится значительное количество радиоактивного йода-131, который сорбируется щитовидной железой человека и вызывает ее поражение.

Наиболее эффективным методом защиты от действия радиоактивного йода-131 является йодная профилактика. С этой целью осуществляется прием внутрь лекарственных препаратов стабильного йода (йодный калий в таблетках или порошках).

Доза принимаемого йодистого калия различна для взрослых и детей: взрослые и дети старше 5 лет - 0,25 г, дети от 2 до 5 лет - 0,125 г, дети до 2 лет - 0,04 г. Однако нужно помнить, что йодистый калий следует принимать только по рекомендации Главного управления по делам ГЗЧС в случае аварии на радиационно-опасном объекте. Данная информация сообщается после сигнала "Внимание всем!".

3. Заключение:

Аварии на радиационно-опасных объектах могут привести к заражению значительной части территории города и повлечь за собой человеческие жертвы.

Общие проблемы безопасности включают глобальный комплекс мероприятий от обоснования требований к персоналу и формирования режимов допуска к информации и работам до ограничений по мерам радиационной, электро-, пожаро- , и взрыво-безопасности. При этом важнейшим является предупреждение аварийности и несанкционированных действий, на что должны быть направлены стройная и четкая система организационно-технического обеспечения, и однозначно толкуемая документация.

В настоящее время особо актуальными стали проблемы учета РОО, поэтому система отчетности требует оптимизации. Соображения безопасности не могут не учитываться на самых ранних стадиях проектирования РОО, поэтому соответствующие требования должны предъявляться к конструктивным системам и программно-аппаратным средствам обеспечения безопасной эксплуатации РОО.

При условии соблюдения всех объективных параметров безопасности субъективный фактор приобретает первостепенную важность в соблюдении мер безопасности, бесперебойности функционирования систем эксплуатации, и организационно-технических мер предотвращения несанкционированных действий. Немаловажное значение имеет обучение мерам предупреждения и снижения аварийности и последствий аварий, для чего персонал обязан уметь работать во всеобъемлющей системе контроля, оперативно и квалифицированно действовать при локализации произошедших аварий, проводить комплекс первоочередных и последующих мероприятий по ликвидации последствий аварий. Нельзя обойти вопросы экологических проблем существования всех компонентов РОО. Кроме непосредственно радиоактивных материалов необходимо учитывать наличие активных (в том числе ядовитых), особо чистых веществ, цветных, тяжелых и драгоценных металлов.

Контрольные вопросы :

1. Какие последствия могут возникнуть после аварий на радиационно-опасных объектах

2. Какие последствия возникли после аварии в Чернобыльской АЭС?

3. Как воздействуют радиоактивные вещества на организм человека?

4. В каких ситуациях человек получает лучевую болезнь?

Причинами проектных аварий, как правило, являются исходные события, связанные с нарушением барьеров безопасности, предусмотренных проектом каждого реактора. Именно в расчете на эти исходные события и строится система безопасности АЭС.

Первый тип аварий - нарушение первого барьера безопасности, а проще - нарушение герметичности оболочек твэлов (тепловыделяющих элементов) из-за кризиса теплообмена или механических повреждений. Кризис теплообмена - это нарушение температурного режима (перегрев) твэлов.

Второй тип аварий - нарушение первого и второго барьеров безопасности. При попадании радиоактивных продуктов в теплоноситель вследствие нарушения первого барьера дальнейшее их распространение останавливается вторым, который образует корпус реактора.

Третий тип аварий - нарушение всех барьеров безопасности. При нарушенных первом и втором барьерах теплоноситель с радиоактивными продуктами деления удерживается от выхода в окружающую среду третьим барьером - защитной оболочкой реактора. Под ним понимается совокупность всех конструкцией, систем и устройств, которые должны с высокой степенью надежности обеспечить локализацию выбросов.

Ядерную аварию может вызвать также образование критической массы при перегрузке, транспортировке и хранении твэлов. всех барьеров безопасности.

Последствия аварий на РОО

Основными поражающими факторами радиационных аварий являются:

воздействие внешнего облучения (гамма - и рентгеновского; бета – и гамма-излучения; гамма - нейтронного излучения и др.);

внутреннее облучение от попавших в организм человека радионуклидов (альфа - и бета-излучение);

сочетанное радиационное воздействие как за счет внешних источников излучения, так и за счет внутреннего облучения;

комбинированное воздействие как радиационных, так и нерадиационных факторов (механическая травма, термическая травма, химический ожог, интоксикация и др.).

После аварии на радиоактивном следе основным источником радиационной опасности является внешнее облучение. Ингаляционное поступление радионуклидов в организм практически исключено при правильном и своевременном применении средств защиты органов дыхания.

Внутренне облучение развивается в результате поступления радионуклидов в организм с продуктами питания и водой. В первые дни после аварии наиболее опасны радиоактивные изотопы йода, которые накапливается щитовидной железой. Наибольшая концентрация изотопов йода обнаруживается в молоке, что особенно опасно для детей.

Через 2-3 месяца после аварии основным агентом внутреннего облучения становится радиоактивный цезий, проникновение которого в организм возможно с продуктами питания. В организм человека могут попасть и другие радиоактивные вещества (стронций, плутоний), загрязнение окружающей среды которыми имеет ограниченные масштабы.

Характер распределения радиоактивных веществ в организме:

накопление в скелете (кальций, стронций, радий, плутоний);

концентрируются в печени (церий, лантан, плутоний и др.);

равномерно распределяются по органам и системам (тритий, углерод, инертные газы, цезий и др.);

радиоактивный йод избирательно накапливается в щитовидной железе (около 30%), причем удельная активность ткани щитовидной железы может превышать активность других органов в 100-200 раз.

Основными параметрами, регламентирующими ионизирующее излучение, является экспозиционная, поглощенная и эквивалентная дозы.

Экспозиционная доза - основана на ионизирующем действия излучения, это - количественная характеристика поля ионизирующего излучения. Единицей экспозиционной дозы является рентген (Р). При дозе 1Р в 1см 2 воздуха образуется 2,08 · 10 9 пар ионов. В международной системе СИ единицей дозы является кулон на килограмм (Кл/кг) · 1Кл/кг=3876 Р.

радиационная авария облучение дозиметрический

Поглощенная доза - количество энергии, поглощенной единицей массы облучаемого вещества. Специальной единицей поглощенной дозы является 1 рад. В международной системе СИ - 1 Грей (Гр).1 Гр=100 рад.

Эквивалентная доза (ЭД) - единицей измерения является бэр. За 1 бэр принимается такая поглощенная доза любого вида ионизирующего излучения, которая при хроническом облучении вызывает такой же эффект, что и 1 рад рентгеновского или гамма-излучения. В международной системе СИ единицей ЭД является Зиверт (Зв).1 Зв равен 100 бэр.

Организм человека постоянно подвергается воздействию космических лучей и природных радиоактивных элементов, присутствующих в воздухе, почве, в тканях самого организма. Уровни природного излучения от всех источников в среднем соответствуют 100 мбэр в год, но в отдельных районах - до 1000 мбэр в год.

Международная комиссия по радиационной защите (МКРЗ) рекомендовала в качестве предельно допустимой дозы (ПДД) разового аварийного облучения 25 бэр и профессионального хронического облучения-до 5 бэр в год и установила в 10 раз меньшую дозу для ограниченных групп населения.

Для оценки отдаленных последствий действия излучения в потомстве учитывают возможность увеличения частоты мутаций. Доза излучения, вероятнее всего удваивающая частоту самопроизвольных мутаций, не превышает 100 бэр на поколение. Генетически значимые дозы для населения находятся в пределах 7-55 мбэр/год.

При общем внешнем облучении человека дозой в 150-400 рад развивается лучевая болезнь легкой и средней степени тяжести; при дозе 400-600 рад - тяжелая лучевая болезнь; облучение в дозе свыше 600 рад является абсолютно смертельным, если не используются меры профилактики и терапии.

При облучении дозами 100-1000 рад в основе поражения лежит так называемый костномозговой механизм развития лучевой болезни. При общем или локальном облучении живота в дозах 1000-5000 рад - кишечный механизм развития лучевой болезни с превалированием токсемии

При остром облучении в дозах более 5000 рад развивается молниеносная форма лучевой болезни. Возможна смерть "под лучом" при облучении в дозах более 20 000 рад. При попадании в организм радионуклидов, происходит инкорпорирование радиоактивных веществ. Опасность инкорпорации определяется особенностями метаболизма, удельной активностью, путями поступления радионуклидов в организм. Наиболее опасны радионуклиды, имеющие большой период полураспада и плохо выводящиеся из организма, на пример радий-266, плутоний-239. На поражающий эффект влияет место депонирования радионуклидов: стронций-89 и стронций-90 - кости; цезий-137 - мышцы.

При авариях на ядерно-опасных объектах суммарную дозу облучения населения можно условно представить следующим образом:

Д = Д внешн (ом) +Д внешн (к) +Д внутр (ингал) +Д внутр (пища, вода),

Где Д внешн (ом) - доза внешнего облучения соответственно от радиоактивного облака и загрязненной местности;

Д внешн (к) - доза внешнего облучения от радиоактивной пыли, попавшей на кожные покровы человека;

Д внутр (ингал) - доза внутреннего облучения, полученная через органы дыхания (йод-131);

Д внутр (пища, вода) - доза внутреннего облучения, полученная с пищей и водой, загрязненными радионуклидами долгоживущих элементов (цезия, стронция, плутония).

3.ПОСЛЕДСТВИЯ АВАРИЙ НА РОО

Радиоактивное загрязнение окружающей среды является наиболее важным экологическим последствием радиационных аварий с выбросами радионуклидов, основным фактором, оказывающим влияние на состояние здоровья и условия жизнедеятельности людей на территориях, подвергшихся радиоактивному загрязнению. Основными специфическими явлениями и факторами, обусловливающими экологические последствия при радиационных авариях и катастрофах, служат радиоактивные излучения из зоны аварии, а также из формирующегося при аварии и распространяющегося в приземном слое облака (облаков) загрязненного радионуклидами воздуха; радиоактивное загрязнение компонентов окружающей среды.

Воздушные массы, двигавшиеся 26 апреля 1986 г. на запад, 27 апреля на север и северо-запад, 28–29 апреля от северного направления повернули на восток, юго-восток и далее 30 апреля юг (на Киев).

Последующее длительное поступление радионуклидов в атмосферу происходило за счет горения графита в активной зоне реактора. Основной выброс радиоактивных продуктов продолжался в течение 10 суток. Однако истечение радиоактивных веществ из разрушенного реактора и формирование зон загрязнения продолжались в течение месяца. Долгосрочный характер воздействия радионуклидов определялся значительным периодом полураспада. Осаждение радиоактивного облака и формирование следа происходили длительное время. В течение этого времени изменялись метеорологические условия и след радиоактивного облака приобрел сложную конфигурацию. Фактически сформировались два радиоактивных следа: западный и северный. Наиболее тяжелые радионуклиды распространялись на запад, а основная масса более легких (йод и цезий), поднявшись выше 500–600 м (до 1,5 км), была перенесена на северо-запад.

В результате аварии около 5% радиоактивных продуктов, накопившихся за 3 года работы в реакторе, вышли за пределы промышленной площадки станции. Летучие изотопы цезия (134 и 137) распространились на огромные расстояния (значительное количество по всей Европе) и были обнаружены в большинстве стран и океанах Северного полушария. Чернобыльская авария привела к радиоактивному загрязнению территорий 17 стран Европы общей площадью 207,5 тыс. км2, с площадью загрязнения цезием выше 1 Кю/км2.

Если выпадения по всей Европе принять за 100%, то из них на территорию России пришлось 30%, Белоруссии - 23%, Украины - 19%, Финляндии - 5%, Швеции - 4,5%, Норвегии - 3,1%. На территориях России, Белоруссии и Украины в качестве нижней границы зон радиоактивного загрязнения был принят уровень загрязнения 1 Кю/км2.

Аварии на радиационно-опасных объектах

Радиационно - опасный объект (РОО) - объект, на котором хранят, перерабатывают, используют или транспортируют радиоактивные вещества, при аварии на котором или его разрушении может произойти облучение ионизирующим излучением или радиоактивное загрязнение людей, с/х животных и растений, объектов народного хозяйства, а также окружающей природной среды (ГОСТ Р 22.0.05-94).

При эксплуатации ядерных энергетических установок могут происходить радиационные аварии.

Радиационная авария – авария на РОО, приводящая к выходу или выбросу радиоактивных веществ и (или) ионизирующих излученийза предусмотренные проектом для нормальной эксплуатации данного объекта границы в количествах, превышающих установленные пределы безопасности его эксплуатации.

Аварии на радиационно-опасных объектах могут сопровождаться выходом газоаэрозольного облака, которое перемещается по направлению ветра. Радиоактивные вещества из облака, оседаяна местность, загрязняют её. Население, попавшее в зону распространения газоаэрозольного облака, подвергается при этом внешнему и внутреннему радиоактивному облучению. Внешнее облучение характеризуется воздействием на субъект ионизирующего излучения, проходящего извне. Внутреннее облучение - это облучение организма, отдельных его органов и тканей ионизирующим излучением от попавших внутрь организма радиоактивных веществ.

Кроме искусственных источников существуют и естественныеисточники излучения, создающие естественный радиационный фон. Нормальный естественный фон считаетсяна уровне 10-20 мкР/ч.

При авариях на АЭС характерно, во-первых, радиоактивное заражение атмосферы и местности легколетучими радионуклидами (йод, цезий и стронций), а, во-вторых, цезий и стронций обладают длительными периодами полураспада – до 30 лет. Значительная часть продуктов выброса находится в парообразном и аэрозольном состоянии, доза внешнего облучения составляет 15%, а внутреннего – 85%.

В случае радиационных аварий допускается облучение, превышающее установленные нормы, в течение определенного промежутка времени и в пределах, определенных для таких ситуаций.

В зонах, подверженных радиационному воздействию, защитные мероприятия проводятся, когда уровень дозы облучения населения в год более 0,1 бэр (биологический эквивалент рентгена), если меньше, то население проживает по обычному режиму жизнедеятельности.

Мероприятия по защите населения:

Следует защитить себя от внешнего и внутреннего облучения: быстро защитить органы дыхания табельными средствами защиты (респиратор, противогаз), а при их отсутствии ватно-марлевыми повязками, шарфом, платком;

Укрыться в ближайшем здании, лучше в собственной квартире;

Войдя в помещение, в коридоре следует снять с себя верхнюю одежду и обувь, поместивих в пластиковый пакет или пленку;

Немедленно закрыть окна, двери и вентиляционные отверстия;

Включить радиоприёмники, телевизоры и радиорепродукторы;

Занять место вдали от окон, быть в готовности к приему информации и указаний о действиях.

Обязательно! загерметизировать помещение и укрыть продукты питания. Для этого подручными средствами заделать щели в окнах и дверях, заклеить вентиляционные отверстия. Открытые продукты поместить в полиэтиленовые мешки, пакеты или плёнку. Сделать запас воды в емкостях с плотно прилегающими крышками. Продукты и воду поместить в холодильники, закрываемые шкафыили кладовки.

При полученииуказаний по средствам массовой информации провести профилактику препаратами йода. Профилактика эффективна при проведении заблаговременно или в самом начале поступления р/а йода. Если прошло хотя бы 2 часа, эффект снижается до 10%. Защита обеспечивается в течение 24 часов при приеме стабильного йода (йодистый калий и др. йодиды). Йодистый калий принимают 1 таб. в течение 7 суток детям до 2 лет 0,04 г на прием, старше 2 лет и взрослым – по 0,125 г на 1 прием; при отсутствии его заменяют водно-спиртовым раствором йода после еды 3 раза в день: детям до 2 лет по 1-2 капли 5% настойки на 100 мл молока, воды; старше 2 лет 3-5 капель на стакан в течение 7 дней. Следует помнить; что препараты йода противопоказаны для беременных женщин.

Наносят сетку из настойки йода на поверхность кистей рук 1 раз в течение 7 суток. Особое внимание: употребление алкоголя в этот период для снятия стресса не оказывает профилактического действия при облучении, а усугубляет течение лучевого поражения.

При приготовлении и приёме пищи все продукты, выдерживающие воздействие воды, промыть.

Строго соблюдать правила личной гигиены, предотвращающиеилизначительно снижающие внутреннее облучение организма. Проводить влажную уборку помещений. В случае загрязненности помещения защитить органы дыхания.

Помещения оставлять лишь в крайней необходимости и на короткое время. При выходе защитить органы дыхания, надеть плащ (накидку из подручных материалов)или табельные средства защиты кожи, не садиться на землю, скамейки, не курить, не раздеваться. Поливать территорию у дома, чтоб не было пыли.

Исключить купание в открытых водоемах, не ходить в лес с высокой травой, не собирать грибы, ягоды, цветы

Верхнюю одежду вытряхивать, обувь обтирать. После возвращения - переодеться Лицо, руки, шею обмыть, рот прополоскать 0,5%-м раствором питьевой соды.

Пожары и взрывы

Пожаро - взрывоопасный объект (ПВОО)- объект, на котором производят, используют, перерабатывают, хранят или транспортируют легковоспламеняющиеся и пожаро - взрывоопасные вещества, создающие реальную угрозу возникновения техногенной ЧС. К ним относятся производства, где используются взрывчатые и имеющие высокую степень возгораемости вещества, а также железнодорожный и трубопроводный транспорт, как несущий основную нагрузку при доставке жидких, газообразных пожаро - и взрывоопасных грузов.

Пожароопасность возросла, т.к. в промышленности и строительстве применяются новые вещества и материалы, сложные и энергоемкие технологические процессы.

Аварии на ПВОО могут привести к тяжелым социальным и экономическим последствиям. Наиболее опасные ПВО объекты: нефтеперерабатывающие заводы, химические предприятия, трубопроводы, склады нефтепродуктов; цехи приготовления и транспортировки угольной пыли, древесной муки, сахарной пудры, выбойные и размольные отделения мельниц; лесопильные, деревообрабатывающие, столярные производства.

Пожары при промышленных авариях вызывают разрушение сооружения из-за сгорания или деформации их элементов от высоких температур.



Наиболее опасны пожары в административных зданиях. Как правило, внутренние стены облицованы панелями из горючего материала. Потолочные плиты также выполнены из горючих древесных плит. Очень опасен в пожарном отношении применяемый при изготовлении мебели поролон, который при горении выделяет ядовитый дым, содержащий цианистые соединения.

Может взрываться и гореть древесная, угольная, торфяная, алюминиевая, мучная, зерновая и сахарная пыль, а также пыль хлопка, льна, пеньки. Самовозгораются скипидар, камфора, барий, пирамидон и другие химикаты.

Аварии на объектах нефтегазодобывающей промышленности всегда приносят большие бедствия.

Нередки пожары от возгорания горючего при перевозках. При этом обрываются провода, и парализуется все движение.

В РФ пожары вспыхивают каждые 4-5 мин., каждый час в огне погибает 1 чел., а в течение года от 7 до 8 тыс. Относительные показатели количества пожаров в РФ к числу населения в 3,5 раза превышают аналогичные показатели в развитых странах, а показатели гибели людей в результате пожаров – в 4-9 раз.

Непосредственными причинамивозникновения пожара или взрыва могут быть замыкание в электропроводах, утечка газа, самовозгорание некоторых веществ и материалов, беспечное обращение с огнём.

Основными причинами пожаров в жилье являются:

Неосторожное обращение с огнем (курение, в том числе и в нетрезвом состоянии);

Открытый огонь (неосторожность при проведении электрогазосварочных работ и др.);

Неисправность и неправильная эксплуатация электрооборудования и электробытовых приборов;

Неисправность и неправильная эксплуатация печей, дымоходов и других отопительно-нагревательных приборов и устройств;

Игры детей с огнем;

Грозовые разряды.

Для возникновения пожара необходимо совмещение в одномместе, водно время трех основных составляющих:

1) горючего вещества(как дерево,бумага, бензин, керосин, природный газ и т.д.);

2) окислителя (как правило, это кислород, находящийся в воздухе);

3) источников воспламенения, например искры или пламени костра, горелки.

Отсутствие одного из перечисленных составляющих делает невозможным возникновение пожаров или приводит к прекращению горения и ликвидации пожара.

пожара являются непосредственное воздействие огня на горящий предмет (горение) и дистанционное воздействиена предметы и объекты высоких температур за счёт излучения.

Вторичными последствиями пожаров могут быть взрывы, утечка ядовитых веществ в окружающую среду, действие токсических продуктов горения, обрушение зданий и другие явления. Большой ущерб не затронутым пожаром помещениям и хранящимся в них предметам может нанести вода, применяемая для тушения пожара.

Основными поражающими факторами взрыва являются воздушная ударная волна и осколочные поля, создаваемые летящими обломками разрушаемых конструкций.

В результате действия поражающих факторов взрыва происходит разрушение или повреждение зданий, сооружений, технологического оборудования, транспортных средств и других объектов, гибель людей.

Вторичными последствиями взрывов являются поражение находящихся внутри объектов и помещений людей обломками обрушенных конструкций зданий и сооружений, их погребение под обломками. В результате взрывов могут возникнуть пожары, утечка опасных веществ из поврежденного оборудования.

При пожарах и взрывах характерны ожоги тела и верхних дыхательных путей, черепно-мозговые травмы, множественные переломы и ушибы, комбинированные поражения. Гибнут или получают ожоги различных степеней, термические и механические повреждения домашние и сельскохозяйственные животные.

Большой ущерб народному хозяйству наносится в результате прекращения функционирования разрушенных объектов.



Просмотров