Вероятностный анализ безопасности ваб 5 оиаэ. Исходные данные и предположения при проведении количественных оценок значений частот ПАЗ. Вероятностная оценка безопасности

Диссертация

Швыряев, Юрий Васильевич

Ученая cтепень:

Доктор технических наук

Место защиты диссертации:

Код cпециальности ВАК:

Специальность:

Ядерные энергетические установки, включая проектирование, эксплуатацию и вывод из эксплуатации

Количество cтраниц:

1 Краткий обзор состояния проблемы.

2 Методология вероятностного анализа безопасности АС.

2.1 Общая вероятностная модель безопасности АС.

2.3 Отбор и группировка инициирующих событий.

2.3.1 Определение понятия и классификация инициирующих событий.

2.3.2 Составление полного перечня внутренних ИС.

2.3.3 Группирование ИС.

2.4 Разработка деревьев событий.

2.4.1 Основные понятия и порядок построения ДС.

2.4.2 Основные принципы разработки ДС.

2.5 Методология анализа надежности СБ.

2.5.1 Общие положения.

2.5.2 Классификация отказов элементов.

2.5.3 Построение моделей надежности систем.

2.5.4 Количественный анализ надежности СБ.

2.6 Методика анализа зависимых отказов.

2.6.1 Виды зависимых отказов.

2.6.2 Анализ зависимостей при построении деревьев событий.

2.6.3 Анализ зависимостей при разработке моделей надежности систем.

2.6.4 Качественный анализ отказов общего вида.

2.7 Анализ надежности персонала.

2.7.1 Общие положения.

2.7.2 Основные этапы выполнения анализа надежности персонала

2.8 Оценка параметров надежности элементов.

2.8.1 Термины и определения используемые при анализе данных.

2.8.2 Определение групп компонентов для задачи анализа данных

2.8.3 Использованные источники данных.

2.8.4 Определение границ компонентов.

2.8.5 Определение видов отказов элементов.

2.8.6 Классификация событий по условиям обнаружения и восстановления.

2.8.7 Номенклатура показателей надежности.

2.8.8 Моделирование отказов элементов на деревьях отказов.

2.8.9 Методы применяемые для задачи оценки параметров надёжности.

2.9 Подход к оценке и обоснованию безопасности АС на основе результатов ВАБ.

2.9.1 Общие положения.

2.9.2 Качественная оценка безопасности на основе результатов

2.9.3 Количественная оценка безопасности на основе результатов

2.10 Выводы по главе 2.

3 Применение ВАБ при проектировании АЭС с реакторами ВВЭР нового поколения.

3.1 Введение.

3.2 Концепция безопасности.

3.2.1 Реакторная установка В-392.

3.2.2 Системы безопасности АЭС-92.

3.3 Оценка эффективности проектных решений для

АЭС-92 на основе результатов ВАБ.

3.3.1 Краткая характеристика ВАБ уровня 1.

3.3.2 Результаты ВАБ уровня 1.

3.3.3 Анализ значимости.

3.3.4 Анализ чувствительности.

3.3.5 Анализ неопределенностей значений частоты ПАЗ.

3.3.6 Оценка уровня безопасности АЭС «Куданкулам » на основе результатов ВАБ.

3.4 Проектные решения по повышению экономичности.

3.4.1 Снижение затрат на сооружение АЭС.

3.4.2 Повышение показателей надежности выработки энергии.

3.5 Выводы по главе 3.

4 Применение ВАБ при проектировании АЭС «Бушер-1».

4.1 Краткая характеристика концепции безопасности проекта АЭС «Бушер-1».

4.2 Оценка уровня безопасности АЭС «Бушер » на основе результатов ВАБ уровня 1.

4.2.1 Краткая характеристика ВАБ уровня 1.

4.2.2 Исходные данные и предположения при проведении количественных оценок значений частот ПАЗ.

4.2.3 Устранение логических петель.

4.2.4 Результаты оценки частоты повреждения активной зоны.

4.3 Оценка уровня безопасности АЭС «Бушер-1» на основе результатов ВАБ. fc 4.4 Выводы по главе 4.

5 Применение ВАБ для действующих АЭС с реакторами ВВЭР.

5.1 Применение ВАБ для энергоблоков 3, 4 Нововоронежской АЭС.

5.1.1 Введение.

5.1.2 Результаты ВАБ по проекту 1.4.TACIS-91.

5.1.3 Результаты ВАБ по проекту NOVISA.

5.1.4 Результаты ВАБ по проекту R2.01/96 TACIS-96.

5.1.5 Применение ВАБ при обосновании возможности продления назначенного срока службы энергоблоков 3,4 НВАЭС .

5.1.6 Выводы по разделу 5.1.

5.2 Разработка стратегии технического обслуживания

СБ для АЭС с реакторами В-320.

5.2.1 Выводы по разделу 5.2.

5.3 Применение ВАБ для оптимизации регламентов технического ^ обслуживания и ремонтов СБ АЭС с реактором В-320.

5.3.1 Обоснование внесения изменений в технологический регламент проведения капитальных ремонтов СБ.

5.3.2 Оптимизация технического обслуживания и ремонтов систем безопасности АЭС с В-320.

5.3.3 Выводы к разделу 5.3.

Введение диссертации (часть автореферата) На тему "Вероятностный анализ безопасности при проектировании и эксплуатации атомных станций с реакторами ВВЭР"

Атомные станции (АС) вследствие накопления в процессе эксплуатации значительных количеств радиоактивных продуктов и наличия принципиальной возможности выхода их при авариях за предусмотренные границы представляют собой источник потенциальной опасности или источник риска радиационного воздействия на персонал, население и окружающую среду. Степень радиационного риска прямо зависит от уровня безопасности АС, которая является одним из основных свойств АС, определяющих возможность их использования в качестве источников тепловой и электрической энергии.

В соответствии с «Общими положениями обеспечения безопасности атомных станций » ОПБ -88/97 /3/ понятие (или термин) «Безопасность АС » определено как «свойство АС при нормальной эксплуатации и нарушениях нормальной эксплуатации, включая аварии, ограничивать радиационное воздействие на персонал, население и окружающую среду установленными пределами».

В соответствии с «Федеральным Законом о Техническом Регулировании » /2/ понятие безопасности объектов определено как «состояние, при котором отсутствует недопустимый риск, связанный с причинением вреда жизни или здоровью граждан, имуществу физических или юридических лиц, государственному или муниципальному имуществу, окружающей среде, жизни или здоровью животных и растений». В свою очередь понятие риска в этом Законе определяется как «вероятность причинения вреда жизни или здоровью граждан, имуществу физических или юридических лиц, государственному или муниципальному имуществу, окружающей среде, жизни или здоровью животных и растений с учетом тяжести этого вреда».

По отношению к АС причинение вреда связано с радиационным воздействием. Поэтому приведенные в ОПБ-88/97 и «Федеральном Законе о Техническом Регулировании » определения понятия безопасности можно считать эквивалентными.

На большинстве эксплуатируемых в настоящее время АС используются реакторы водоводяного типа (ВВЭР, РУ\!И). Как показывает мировой опыт, АС с такими реакторами представляют собой источники энергии, удовлетворяющие самым жестким экологическим требованиям в условиях их нормальной эксплуатации. Потенциальная опасность возникает при авариях, в процессе которых накопленные в тепловыделяющих элементах (ТВЭЛ ) и теплоносителе 1-го контура радиоактивные продукты могут выходить за предусмотренные границы в количествах, превышающих установленные для нормальной эксплуатации пределы.

Аварии относятся к категории случайных событий, которые характеризуются размерами последствий и величинами вероятностей их реализации. Понятие аварии составляет фундаментальную основу безопасности, как внутреннего свойства АС, и определяет вероятностную природу этого свойства.

Следует отметить, что вероятностная природа безопасности заключена уже в приведенных выше определениях этого свойства.

Актуальность работы состоит в том, что оценка и обоснование достигаемого при проектировании и эксплуатации АС уровня безопасности должно проводиться на основе применения методов системного анализа, что может быть реализовано за счет разработки и применения методологии вероятностных анализов безопасности (ВАБ ). ВАБ признаны как сторонниками, так и противниками использования атомной энергетики единственным практическим средством для комплексной качественной и количественной оценки безопасности АС.

Вероятностный анализ безопасности АС представляет собой комплексный, всесторонний системный анализ безопасности, в процессе которого разрабатываются вероятностные модели для определения конечных состояний с повреждением источников радиоактивности и конечных состояний АС с превышением установленных пределов по выбросам радиоактивных продуктов и радиационному воздействию-на население и окружающую среду и определяются значения вероятностных показателей безопасности. Результаты ВАБ используются для качественных и количественных оценок достигнутого уровня безопасности, а также для выработки и принятия решений при проектировании и эксплуатации АС.

ВАБ могут выполняться на различных стадиях жизненного цикла АС, включая проектирование, сооружение, ввод в эксплуатацию, эксплуатацию и снятие с эксплуатации. Наиболее эффективно и со сравнительно небольшими затратами ВАБ могут использоваться на этапе проектирования АС, где их результаты могут служить основой для выработки технических решений, направленных на повышение безопасности и внедряемых непосредственно в проект АС. Применение ВАБ на этапе проектирования позволяет создать АС с заданным уровнем безопасности.

ВАБ могут быть эффективно использованы также для разработки мероприятий по повышению безопасности действующих АС.

ВАБ представляет собой итеративный процесс, который может включать несколько стадий, различающихся между собой по целям, объему, содержанию и глубине выполняемых анализов. Объем и содержание ВАБ определяют его полноту и, в конечном счете, уровень остаточного риска (т.е. риска, который не подвергся анализу), а глубина ВАБ определяет уровень реалистичности разработанных вероятностных моделей безопасности АС. Все это, в свою очередь, оказывает определяющее влияние на достоверность получаемых результатов и эффективность их использования в качестве основы для разработки проектных решений по управлению безопасностью.

Полнота ВАБ определяется перечнем рассмотренных исходных событий (ИС). Разработка полномасштабных ВАБ должна производиться для полных перечней внутренних (вызванных отказами систем, элементов или ошибочными действиями персонала АС), внутриплощадочных (вызванных воздействиями пожаров, затоплений, пароводяных струй, биений трубопроводов, летящих предметов, изменений температур, влажности в помещениях АС) и внешних (вызванных характерными для площадки АС воздействиями природного или техногенного характера) исходных событий.

В зависимости от объема, целей и возможного использования результатов различают несколько уровней вероятностных анализов безопасности /25,116/.

ВАБ АС уровня 1 - ВАБ, в процессе которого разрабатываются вероятностные модели для определения конечных состояний с повреждением источников радиоактивности и оцениваются значения частот или вероятностей их реализации. В качестве основных источников радиоактивности для АС с ВВЭР рассматриваются ядерное топливо в активной зоне реактора и отработавшее ядерное топливо в бассейне выдержки.

ВАБ АС уровня 2 - ВАБ, в процессе которого разрабатываются вероятностные модели для определения различных категорий выбросов радиоактивных продуктов в окружающую среду или различных значений экспозиционных доз в зоне планирования защитных мероприятий и оцениваются значения частот или вероятностей их реализации.

ВАБ АС уровня 3 - ВАБ, в процессе которого разрабатываются вероятностные модели для определения видов и размеров ущербов, вызванных радиационным воздействием на население и окружающую среду.

Основываясь на приведенном в ОПБ-88/97 определении безопасности и целевых значениях вероятностей превышения предельных аварийных выбросов (п.1.2.17) и вероятностей запроектных аварий с тяжелым повреждением активной зоны реактора (п.4.2.2), можно сделать вывод о том, что для анализа, оценки и обоснования достигнутого при проектировании и эксплуатации АС уровня этого свойства необходимо и достаточно выполнение полномасштабных ВАБ уровней 1 и 2. Этот вывод подкрепляется также тем обстоятельством, что уже определение вероятностных показателей для радиационных последствий по результатам ВАБ уровня 2 связано с большой степенью неопределенностей вследствие недостаточных значений о процессах при тяжелых запро-ектных авариях.

Выполнение ВАБ уровня 3 с оценкой показателей риска нанесения ущерба здоровью или жизни людей на окружающей АС территории требует определения условных вероятностей получения человеком соответствующих доз. Это связано с еще большими неопределенностями в оценках показателей риска, что приводит к практической бесполезности проведения таких оценок. Поэтому основные решения по безопасности принимаются по результатам ВАБ уровней 1 и 2.

Основные цели работы

Основные цели диссертационной работы заключаются в разработке методологии ВАБ и ее применении в качестве инструмента для анализа, оценки, выработки и обоснования решений по безопасности при проектировании и эксплуатации АС с реакторами ВВЭР.

Применение ВАБ при проектировании обеспечивает реализацию комплексного системного подхода к анализу и обоснованию безопасности и позволяет создавать АС с заданным уровнем этого свойства для достижения приемлемо низкого уровня радиационного риска от использования АС.

Научная новизна работы

1. Впервые в отечественной практике с использованием методов теории вероятностей и теории надежности разработана методология выполнения вероятностных анализов безопасности и анализов надежности систем безопасности атомных станций, которая используется в качестве инструмента для выработки и обоснования решений по безопасности при проектировании и эксплуатации АС с реакторами ВВЭР.

В процессе разработки методологии ВАБ решены следующие научные проблемы:

Предложена общая вероятностная модель безопасности АС, с использованием которой определен комплекс вероятностных показателей безопасности (ВПБ) и систематизированы задачи, решение которых необходимо для выполнения ВАБ;

Разработан комплекс инженерных методик и подходов для выполнения отдельных задач ВАБ, включая составление перечней инициирующих событий (ИС), построение вероятностных моделей для определения полного множества возможных состояний АС, построение моделей надежности систем, выполняющих функции безопасности, моделирование зависимых отказов и отказов по общей причине или отказов общего вида, моделирование ошибочных действий персонала, формирование баз данных по значениям частот ИС и показателей надежно-" сти элементов и оборудования, построение интегральной вероятностной модели АС, выполнение количественных расчетов, анализов неопреде--" ленностей, значимости и чувствительности значений ВПБ.

2. Разработан подход комплексной оценки безопасности АС на основе результатов ВАБ.

3. Впервые в отечественной практике ВАБ применены для решения следующих вопросов безопасности при проектировании и эксплуатации АС:

3.1. Разработана концепция безопасности АС с ВВЭР третьего поколения, которая обеспечивает переход на качественно новый уровень безопасности по сравнению с действующими АС;

3.2. Разработана стратегия проведения периодического технического обслуживания и ремонтов систем безопасности;

3.3. Разработан подход по обоснованию внесения изменений в действующие технологические регламенты безопасной эксплуатации АС с реакторами В-320.

3.4. Выполнена оптимизация структуры управляющих систем безопасности для действующих АЭС с реакторами В-320.

3.5. Обоснована возможность продления на 10 лет назначенного (проектного) срока эксплуатации энергоблоков 3, 4 Нововоронежской АЭС с реакторами В-179.

Практическая ценность работы

Методология ВАБ используется в качестве инструмента по решению вопросов безопасности для действующих и проектируемых АС.

С ее применением были выполнены ВАБ уровня 1 для энергоблоков действующих и вновь проектируемых АЭС с реакторами ВВЭР, включая:

ВАБ уровня 1 для энергоблоков с реактором В-320 Балаков-ской АЭС (1991-2001 гг.). Отчеты по ВАБ были включены в состав проектных материалов, представляемых концерном «Росэнергоатом » (РЭА ) в Госатомнадзор РФ (ГАН РФ) для получения лицензии на ввод энергоблока 4 в эксплуатацию и для получения лицензий на продолжение эксплуатации блоков 1-4 Балаковской АЭС;

ВАБ уровня 1 для энергоблоков 3 и 4 с реакторами ВВЭР-440 Нововоронежской АЭС, разработанные по проектам 1.4 и Р.01/96 Программ ТАС18-91, ТАС1Э-96 и по проекту НОВИСА (по контракту, который финансировался Департаментом энергетики США ). Результаты ВАБ использованы для разработки мер по модернизации с целью повышения уровня безопасности этих энергоблоков и для получения лицензии ГАН РФ на продление срока службы этих энергоблоков еще на 10 лет;

ВАБ уровней 1 и 2 для внутренних исходных событий, ВАБ для пожаров в помещениях АЭС и ВАБ для сейсмических воздействий в составе проекта достройки АЭС «Бушер » в Исламской Республике Иран с реактором ВВЭР-1000 (РУ В-446). ВАБ уровня 1 был подвергнут экспертизе миссии МАГАТЭ и Иранского надзорного органа и использован Иранской эксплуатирующей организацией для получения лицензии на строительство АЭС «Бушер ». В процессе проектирования энергоблока на основе результатов ВАБ были разработаны рекомендации по дополнительным проектным решениям по повышению безопасности, которые позволили снизить значения частоты ПАЗ более чем на порядок по сравнению с первоначальным вариантом проекта;

На основе результатов ВАБ для АЭС с РУ В-320 были определены слабые места этого проекта и сформулированы основные принципиальные решения по повышению безопасности, которые вошли в концепцию безопасности проектов энергоблоков АЭС с реакторами ВВЭР третьего поколения (проект АС-92). Применение этой концепции позволило создать энергоблок с качественно новым уровнем безопасности с одновременным снижением затрат на его сооружение и эксплуатацию. Основные решения по проекту АС-92 реализованы в проектах второй очереди Нововоронежской АЭС (НВАЭС -2) и в проекте АЭС «Куданку-лам» в Республике Индии. ВАБ для этих проектов использованы Индийской эксплуатирующей организацией и Росэнергоатомом для получения лицензий на сооружение. Строительство этих АЭС проводится в настоящее время;

Разработанная стратегия проведения технического обслуживания систем безопасности включена в технологические регламенты безопасной эксплуатации действующих АЭС с реакторной установкой В-320;

Методика анализа надежности систем безопасности включена в отраслевые руководящие материалы РТМ 95490-78 «» и РТМ 95823-81 «Надежность оборудования реакторных установок АЭС. Методика расчета»;

Выполненное на основе ВАБ обоснование возможности проведения плановых ремонтов каналов систем безопасности при останове энергоблоков АЭС с В-320 для производства замены фильтров в бакеприямке ГА-201 позволило сократить на 40 суток длительность останова энергоблока 2 Балаковской АЭС для проведения КПР в 2003 году.

Достоверность результатов работы

Достоверность научных положений, методологии и практических результатов работы подтверждается сравнением с современной методологией, широко применяемой в мировой практике, долговременным (на протяжении более 25 лет) использованием в отечественной практике, результатами экспертиз Госатомнадзора России, надзорных органов и эксплуатирующих АС организаций Индии, Ирана, Финляндии, миссии МАГАТЭ результатами экспертиз многих ведущих в области ВАБ организаций США (SAIC, ArgoneNL), Англии (NNC Limited), Германии (GRS, Westinghouse Reactor), Франции (EDF, IPSN). Практически все разработанные на основе ВАБ рекомендации по безопасности внедрены на действующих и в проекты новых и достраиваемых АС с ВВЭР.

Непосредственно автором в составе целостной методологии выполнения вероятностных анализов безопасности и анализов надежности систем безопасности АС разработаны общая вероятностная модель безопасности АС, комплекс вероятностных показателей безопасности, основы и общие подходы построения детальных вероятностных моделей для определения полного множества аварийных состояний, построения моделей надежности СБ, включая определение перечней исходных событий, систематизацию особенностей структуры, режимов использования, регламентов технического обслуживания и ремонтов, многообразия видов отказов, определение функций вероятностей отказов элементов, подход к анализу ошибочных действий персонала и подход к комплексной качественной и количественной оценке и обоснованию безопасности на основе результатов ВАБ.

Детальная разработка отдельных составных частей методологии ВАБ и анализов надежности систем производилась под руководством и при участии автора сотрудниками возглавляемых им подразделений.

Разработка ВАБ для действующих и проектируемых АС в России и за рубежом, включая работы по ВАБ по проектам Программ TACIS, финансируемых Комиссией Европейского Сообщества, и по контрактам с EDF, GRS, USDOE, была выполнена под руководством и при непосредственном участии автора сотрудниками БКП -5 совместно с сотрудниками других подразделений ФГУП «Атомэнергопроект » и сотрудниками ФГУП ОКБ «Гидропресс », РНЦ «Курчатовский институт », ВНИИАЭС . Автор, в частности, лично разрабатывал разделы по моделированию аварийных последовательностей, анализам результатов, выводам и рекомендациям.

Положения, выносимые на защиту

1. Методология выполнения вероятностных анализов безопасности АС, включающая общую вероятностную модель безопасности и комплекс ВПБ, комплекс методик, подходов и принципов для построения детальных вероятностных моделей для определения полных множеств аварийных состояний АС, моделей надежности систем, подходы для моделирования зависимых отказов, ошибочных действий персонала, формирования баз данных, разработки интегральной вероятностной модели АС в целом и выполнения количественных расчетов ВПБ.

2. Подход для проведения комплексной качественной и количественной оценки безопасности на основе результатов ВАБ.

3. Результаты применения методологии ВАБ в качестве инструмента для выработки и обоснования решений по безопасности при проектировании и эксплуатации АС с реакторами ВВЭР.

Апробация работы

Основные положения и результаты диссертации докладывались и получили положительную оценку на внутренних и международных конференциях и семинарах: 17-й Всесоюзный семинар «Методологические вопросы исследования надежности больших систем энергетики », Паланга, 1982; Всесоюзный научный семинар «Методы комплексной автоматизации установок по преобразованию тепловой и атомной энергии в электрическую», Москва, 1984; 17-й отраслевой семинар «Надежность ядерных энергетических установок. Теория и практика», НИКИЭТ , 1984; Научно-практическая конференция ГПАН, Москва, 1991; Конференция «Практика разработки ВАБ и использование их результатов для действующих и вновь проектируемых АЭС с ВВЭР», Москва, «Атомэнергопро-ект», 2002; Советско-западногерманский семинар по вопросам безопасности, Москва, 1988; Советско-американские семинары в Москве (1989) и Вашингтоне (1990); Технический комитет МАГАТЭ «Применение ВАБ для новых проектов и систем снижения аварийных последствий », Вена, Австрия, 1989; Технический комитет МАГАТЭ «Достижения в анализах надежности и вероятностных анализах безопасности », Будапешт, Венгрия, 1992; Конференция МАГАТЭ, Вена, Австрия, 2001; Советско-английский семинар по «Проектированию АЭС с ВВЭР/PWR и применению ВАБ» в Москве (1991) и Натсфорде (1991).

Материалы по ВАБ уровня 1 для АЭС «Бушер » в Исламской Республике Иран докладывались на совещании с миссией МАГАТЭ, Москва, 2002. Материалы по проектам TACIS рассматривались на многочисленных рабочих совещаниях с консультантами западных фирм в процессе их выполнения и на итоговых совещаниях в Комиссии Европейского Сообщества.

Материалы диссертации обсуждались на заседаниях Научно-технического Совета ФГУП «Атомэнергопроект » и кафедры АСУ Обнинского технического университета атомной энергетики.

1. Швыряев Ю.В. и др. «Вероятностный анализ безопасности атомных станций. Методика выполнения». Ядерное общество. Москва, 1992, 266 стр.

2. ¡Кпёмин А.И[., Поляков Е.Ф. Швыряев Ю.В. и др. «Методика расчета структурной надежности АЭС и ее систем на этапе проектирования ». Руководящий Технический материал, РТМ 95490-78, НИКИЭТ, 1978, 128 стр.

3. [Клёмин А.И|., Поляков Е.Ф. Швыряев Ю.В. и др. «Надежность оборудования реакторных установок АЭС. Методика расчета». РТМ-95823-81 НИКИЭТ, 1981, 231 стр.

4. Букринский A.M., Швыряев Ю.В. «Требования к надежности систем безопасности АЭС ». Электрические станции, № 3, 1981, стр. 1216.

5. Швыряев Ю.В., Барсуков А.Ф., Деревянкин A.A. «Обеспечение надежности наиболее ответственных систем АЭС ». Электрические станции, № 1, 1982, стр. 4-8.

6. Швыряев Ю.В., Барсуков А.Ф., Деревянкин A.A. «Влияние технического обслуживания на надежность систем безопасности АЭС ». Электрические станции, № 6, 1984, стр. 12-13.

7. Швыряев Ю.В., Трахтенберг М.Д. и др. «Расчет показателей надежности подсистемы управления блока ВВЭР-1000 ЗаАЭС». Отчет АТЭП. Книги 1 и 2. 1985, 300 стр.

8. [Клёмин А.И|., Швыряев Ю.В., Морозов В.Б., Барсуков А.Ф. «Количественный анализ надежности систем безопасности атомных станций при проектировании». Известия Академии Наук СССР . Энергетика и транспорт, №1, 1986, стр 28-36.

9. Швыряев Ю.В., ¡Клемин А.И.| «», Сборник «», Воронеж, 1987, 6 стр.

10. Швыряев Ю.В., Федотов Д.К., Деревянкин A.A. «Оценка влияния надежности действий оперативного персонала на безопасность работы АЭС». Электрические станции, № 4, 1988, стр. 6-8.

11. Швыряев Ю.В., Барсуков А.Ф., Токмачев Г.В. и др. «Оценка вероятностных показателей безопасности АС-У87 и АС-88». Проект АЭС с реакторами ВВЭР-1000 повышенной безопасности, АЭП , инв. № 11/089, 1988, 370 стр.

12. Швыряев Ю.В., Барсуков А.Ф., Деревянкин A.A., Морозов В.Б., Токмачев Г.В. «Применение вероятностных анализов безопасности для принятия решений при проектировании атомных станций». Безопасность атомных станций. Сборник трудов, ч.2. Москва, НТЦ БАЭ 1990, с.38-47.

13. Швыряев Ю.В., Деревянкин A.A., Токмачев Г.В. «Вероятностное моделирование аварийных последовательностей для АЭС с ВВЭР-440», «Атомная энергия », том 73, вып. 1, июль 1992, стр. 54-59.

14. Швыряев Ю.В. и др. Атомная электростанция Нововоронежская - 2. Проект, раздел 7. «Вероятностный анализ безопасности » (Том 1. Вероятностный анализ безопасности первого уровня, книги 1,2; Том 2. Вероятностный анализ безопасности второго уровня, книга 1; Том 3. Вероятностный анализ безопасности для пожаров в помещениях АЭС, книги 1-4; Том 4. Вероятностный анализ безопасности для сейсмических воздействий, книги 1-3), Москва, «Атомэнергопроект », 1998, 1243 стр.

15. Швыряев Ю.В. и др. Нововоронежская АЭС, блок 3. Отчет по углубленной оценке безопасности. Приложение 3. Вероятностный анализ безопасности 1-го уровня. Москва, 2000, 681 стр.

16. Швыряев Ю.В., Барсуков А.Ф. и др. Проект TACIS R2.01/96. Вероятностный анализ безопасности 1-го уровня для проекта АЭС с

ВВЭР-230 Нововоронежская АЭС, блок 3: Стояночный режим: 21 отчет, 1999-2001, 928 стр.; Режим работы на мощности: 23 отчета, 2000-2001, 1421 стр.

17. Беркович В.М., Швыряев Ю.В. «Применение ВАБ для выработки и принятия решений по обеспечению безопасности АЭС "Куданку-лам" в Республике Индия». Сборник трудов 2-ой всероссийской научно-технической конференции «», г. Подольск, Московская область, 19-23 ноября 2001, том 3, стр. 208-213.

18. Швыряев Ю.В. и др. Нововоронежская АЭС, блок 4. Отчет по углубленной оценке безопасности. Приложение 1. Вероятностный анализ безопасности (уровень 1). Москва, 2002, 647 стр.

19. Швыряев Ю.В. и др. АЭС «Бушер ». Вероятностный анализ безопасности. 18.Ви. 10.0.00.\ZAB.PR. «Атомэнергопроект », Москва 2003.

20. Швыряев Ю.В. и др. АЭС «Куданкулам », блок 1. Предварительный отчет по обоснованию безопасности. Отчет по вероятностному анализу безопасности. Пакет 51-2.18 К.К.О.О.О.Х/АВ.РР* 003, книги 1-6. «Атомэнергопроект », Москва, 2002.

21. Швыряев Ю.В., Барсуков А.Ф., Краснорядцева О.О. «Обоснование возможности вывода в ремонт каналов СБ при выполнении капитального ремонта с реконструкцией бака ГА-201 энергоблоков АЭС с реактором В-320». «Атомэнергопроект », Москва, 2003, 147 стр.

22. Беркович В.М., Малышев А.Б., Швыряев Ю.В. «». Теплоэнергетика, № 11, 2003, стр. 2-10.

Структура и объем работы.

Диссертация состоит из введения, пяти глав, заключения, списка литературы из 187 наименований и четырех приложений. Общий объем работы составляет 341 страниц, основной текст изложен на 310 страницах, содержит 34 рисунка и 37 таблиц.

Список литературы диссертационного исследования доктор технических наук Швыряев, Юрий Васильевич, 2004 год

3. Общие положения обеспечения безопасности атомных станций, ОПБ - 88/97, НП-001-97 , Госатомнадзор России. -1997.

4. Нормы радиационной безопасности, НРБ -99, СП 2.6.1.758-99, Главный государственный санитарный врач Российской Федерации. -1999.

5. Правила радиационной безопасности при эксплуатации атомных станций, ПРБ АС-99, Минздрав России. -1999.

6. Требования к содержанию отчета по обоснованию безопасности атомной станции с реакторами типа ВВЭР , НП-006-98 (с изменением № 1, внесенным постановлением Госатомнадзора России от 15.01.96 № 1), Госатомнадзор России. -1995.

7. Рекомендации по углубленной оценке безопасности действующих энергоблоков атомных станций с реакторами типа ВВЭР и РБМК (ОУОБ АЭС), РБ-001-97, (РБ Г-12-42-97), Госатомнадзор России. -1997.

8. Требования к составу комплекта и содержанию документов, обосновывающих безопасность в период дополнительного срока эксплуатации блока атомной станции, РД-04-31-2001, Госатомнадзор России. -2001.

9. Заявление Госатомнадзора России «Применение вероятностного анализа безопасности действующих энергоблоков атомных станций». -1999.

10. Руководство по проведению экспертизы вероятностного анализа безопасности атомных электростанций. Часть 1. ВАБ уровня 1. Раздел 1.1 «Внутренние инициирующие события », ДНП-1-25-2002-/090, Москва, НТЦ ЯРБ Госатомнадзора России. -2002.

11. Рекомендации по выполнению вероятностного анализа безопасности блока атомных станций уровня 1 для внутренних инициирующих событий (при работе блока в режиме выработки электроэнергии во внешнюю сеть), РБ-024-02, Госатомнадзор России. -2002.

12. NUCLEAR REGULATORY COMMISSION, An Assessment of Accident Risks in US Commercial Nuclear Power Plant (Reactor Safety Study), Rep.WASH-1400, Washington, DC.-1975.

13. Биркхофер А. Исследования риска при эксплуатации атомных электростанций в ФРГ . Бюллетень МАГАТЭ. -1980. -книга 22. -№ 5/6.

14. Токмачев Г. В. Вероятностные анализы безопасности первого уровня АЭС с реакторами PWR. Атомная техника за рубежом. -1988. -N 12. -С. 18-22.

15. Токмачев Г.В. Состояние и тенденции развития вероятностных анализов безопасности атомных станций. Новости науки и техники. Атомная энергетика. -1990. -вып. 7. -С.17-22.

16. Гнеденко Б.В., Беляев Ю.К., Соловьев А.Д. Математические методы в теории надежности. Москва, Наука. -1965.

17. Гнеденко Б.В., Козлов Б.А., Ушаков И.А. О роли и месте теории надежности в процессе создания сложных систем. В книге «Теория надежности и массового обслуживания ». Москва, Наука. -1969.

18. Farmer F.R. Siting criteria - А new approach. Vienna, IAEA. -1967.

19. Vesely W.A. Time - dependent methodology for fault tree evaluation. Nuclear Engeneering and Design, vol. 13. -1970. -№ 2.

20. Рябинин И.А., Черкесов Г.Н. Логико-вероятностные методы исследования надежности структурно-сложных систем. М.: Радио и связь. -1981.

21. Владимиров Д.А. Булевы алгебры. М.: Наука. -1969. -320 с.

22. I Клёмин А.И. Инженерные вероятностные расчеты при проектировании ядерных реакторов. Москва, Атомиздат. -1974.

23. Procedures for Conducting Probabilistic Safety Assessments of Nuclear Power Plants (Level 1), IAEA Safety Series No. 50-P-4// IAEA,Vienna, Austria. -1992.

24. NUREG/CR-2300, "PRA Procedures Guide," January 1983.

25. NUREG/CR-2815, "Probabilistic Safety Analysis Procedures Guide", US NRC, August 1985.

26. NUREG/CR-4550. Analysis of Core Damage Frequency from Internal Events: Methodology Guidelines. Volume 1. NRC, USA, September 1987.

27. NUREG/CR-1150 „Severe Accident Risk: An assessment of for Five US Nuclear Power Plants", US NRS, Washington DC. -1990.

28. Working Materials of the Workshop conducted under IAEA Technical Cooperation Project RER/9/068 "Harmonization of Probabilistic Safety Assessment Practices", IAEA, Vienna, Austria. -2002.

29. Applications of Probabilistic Safety Assessment (PSA) for Nuclear Power Plants", lAEATECDOC Series No. 1200. -2001.

30. Regulatory Guide 1.174, "An approach for using Probabilistic Risk Assessment in Risk-Informed Decisions on Plant-Specific Changes to the Licensing Basis", USNRC.-1998.

31. Regulatory Guide 1.175-1.178, "An approach for Plant-Specific Risk-Informed Decision Making", US NRC. -1998.

32. Swain, A.D., Guttman, H.E., Handbook of Human Reliability Analysis with Emphasis on Nuclear Power Plant Applications, NUREG/CR-1278, Sandia Nalt. 1.abs, Albuquerque, NM. -1983.

33. HALL, R.E., FRAGOLA, I.R., WREATHALL, J., Post Event Human Decision Errors: Operator Action Tree/Time Reliability Correlation, Rep. NUREG/CR-3010, USNRC, Washington, DC.-1982.

34. Hannaman, G.W., Spurgin, A.J., and Fragola, J.R., Systematic Human Action Reliability Procedure (SHARP), NP-3583, Electric Power Research Institute. -1984.

35. Embrey at al., "SLIM-MAUD": An Approach to Assessing Human Error Probabilities Using Structured Expert Judgement", NUREG/CR-6350. -1996.

36. IAEA Safety Series 50-P-10, "Human Reliability Analysis in Probabilistic Safety Assessment for Nuclear Power Plants". -1995.

37. Проект NOVISA. Детальный анализ ошибок персонала и восстанавливающих действий. 6hw020xr. Нововоронежская АЭС. -2000.

38. COMMISSION OF THE EUROPEAN COMMUNITIES ISPRA RESEARCH CENTRE, Common Cause Failures Reliability Benchmark Exercise, Rep. EUR-11054-EN, CEC, Ispra. -1987.

39. NUCLEAR REGULATORY COMMISSION, Procedures for Treating Common Cause Failures in Safety and Reliability Studies, Vol. 1, Rep. NUREG/CR-4780, Washington, DC.-1988.

40. HIRSCHBERG, S., Retrospective Analysis of Dependencies in the Swedish Probabilistic Safety Studies, Phase I: Qualitative Overview, Rep. ASEA-ATOM-87-36, ASEA-ATOM (now ABB ATOM), Vaesteraas. -1987.

41. HIRSCHBERG, S. (Ed.), Summary Report on Common Cause Failure Data Benchmark Exercise, Rep. RAS-470 (86) 14, Nordic Liaison Committee for Atomic Energy (NKA), Risoe. -1987.

42. EDWARDS, G.T., WATSON, I.A., A Study of Common Mode Failures, Rep. SRDR-146, United Kingdom Atomic Energy Authority Safety and Reliability Di rectorate, Culcheth, Warrington. -1979.

43. FLEMING, K.N., et al., Classification and Analysis of Reactor Operating Experi ence Involving Dependent Failures, Rep. EPRI-NP-3967, Palo Alto, CA. -1985.

44. Mankamo T. and Pulkkinen Dependent Failutures of Diesel Generators. Nuclear Safety, Vol.23, N01.-1982.

45. Atwood, C.L., 1980a. Common Cause and Individual Failure and Fault Rates for 1.icensee Event Reports of Pumps at U.S. Commercial Nuclear Power Plants, draft, EGG-EA-5289, EG&G Idaho, Inc., Idaho Falls, Idaho.

46. Atwood. C.L., 1980b. Estimators for the Biomlal Failure Rate Common Cause Model, USNRC Report NUREG/CR-1401.

47. Atwood C.L., 1982a. Common Cause Fault Rates for Pumps: Tstimates Based on Licensee Event Reports at U.S. Commercial Nuclear Power Plants, January 1972-September 1980, USNRC Report NUREG-CR-2098.

48. Atwood, C.L., 1982b. Common Cause Fault Rates for Instrumentation and Con trol Assemblies: Estimates Based on Licensee Event Reports at U.S. Commer cial Nuclear Power Plants, 1976-1978, USNRC Report NUREG/CR-2771.

49. Atwood, C.L., and J.A. Steverson, 1982a. Common Cause Fault Rates for Die sel Generators: Estimates Based on Licensee Event Reports at U.S. Nuclear Power Plants, 1976-1978, USNRC Report NUREG/CR-2G99.

50. Atwood C.L., and J.A. Steverson, 1982b. Common Cause Fault Retes for Valves: Estimates Based on Lisensee Event Reports at U.S. Commercial Nu clear Power Plants, 1976-1980, USNRC Report NUREG/CR-2770.

51. Atwood, C.L, and W.J. Suitt, 1982. User"s Guide to BFR, A Computer Code Based on the Binomial Failure Rate Common Cause Model, USNRC Report NUREG/CR-2729.

52. NUREG/CR-5497, F. Marshall, D. Rasmuson and A. Mosleh, "Common-Cause Failure Parameters Estimations"// NEEL/EXT-97-01328. -1998.

53. Сиряпин B.H., Спассков В.П. Критерий отбраковки негерметичных кассет ВВЭР и надежность активной зоны. Сборник "Вопросы атом, науки и техники", вып.1(4). -1980.

54. Сиряпин В.Н..|Клемин А.И.| Математическая модель надежности активной зоны ВВЭР. Сборник "Вопросы атом, науки и техники", серия "Физика и техника ядерных реакторов", вып. 2. -1981.

55. Сиряпин В.Н. Поляков Е.Ф. Влияние периодического контроля оборудования АЭС при эксплуатации на его надежность. Сборник "Вопросы атом, науки и техники", серия "Физика и техника ядерных реакторов", вып. 2. -1981.

56. Спассков В.П., Сиряпин В.Н., Шеин В.П. Некоторые вопросы создания безопасного оборудования ядерных энергетических установок с реакторами типа ВВЭР. Сборник "Вопросы атом, науки и техники", серия "Физика и техника ядерных реакторов", вып. 6. -1982.

57. Сиряпин В.Н., Спассков В.П., Филь И.С. Вероятностный анализ температурного режима активной зоны ВВЭР в условиях максимально-проектной аварии. "Сборник "Вопросы атом, науки и техники". -1983. -№7(36).

58. Швыряев Ю.В., Сиряпин В.Н., | Цыганков Е.А. Отраслевая научно- техническая программа «Полномасштабный ВАБ действующих АС с реакторами ВВЭР » Москва, концерн «Росэнергоатом ». -1993. -21с.

59. Швыряев Ю.В., Барсуков А.Ф. «Методика определения регламента технического обслуживания СБ АЭС. Расчет периодичности проверок элементов СБ». Проект методики / Отчет ВТИ . -1986. -20 с.

60. Швыряев Ю.В., Барсуков А.Ф. «Методика оценки вероятностных показателей безопасности атомных станций » / Отчет ВТИ, арх.№ 13215. -1987. -47 с.

61. Швыряев Ю.В., Барсуков А.Ф. «Оценка показателей надежности и определение периодичности технического обслуживания систем безопасности АЭС «Козлодуй-Ш» / Отчет ВТИ, арх.№ 13238. -1987. -124 с.

62. Швыряев Ю.В.,| Клемин А.И| «Вероятностные показатели и критерии безопасности » // Сборник «Вопросы обеспечения безопасности современных систем энергетики », Воронеж. -1987. -С.6 -12.

63. Швыряев Ю.В., Федотов Д.К., Деревянкин А.А. «Оценка влияния надежности действий оперативного персонала на безопасность работы АЭС» // Электрические станции, № 4. -1988. -С.6-8.

64. Швыряев Ю.В., Морозов В.В., Барсуков А.Ф., Токмачев Г.В. и др. «Анализ надежности и обоснование регламента технического обслуживания систем безопасности блоков №1, 2 Калининской АЭС» / Отчет АЭП , инв. № 3/1-89. -1988.-107 с.

65. Швыряев Ю.В., Морозов В.Б., Барсуков А.Ф., Токмачев Г.В., Деревянкин А.А. «Оценка вероятностей повреждения активной зоны для АЭС с В-1000» / Доклад на советско-западногерманском семинаре по вопросам безопасности АЭС, Москва. -1988. -40 с.

66. Швыряев Ю.В., Шендерович В.Я., Володин А.В., Токмачев Г.В. и др. «Техническое обоснование безопасности сооружения и эксплуатации АЭС » // Проект АЭС с реакторами ВВЭР-1000 повышенной безопасности, АЭП. -1988.-1800 с.

67. Швыряев Ю.В., Барсуков А.Ф., Токмачев Г.В. и др. «Оценка вероятностных показателей безопасности АС-У87 и АС-88» // Проект АЭС с реакторами ВВЭР-1000 повышенной безопасности, АЭП, инв. № 11/0-89. -1988. -370 с.

68. Швыряев Ю.В. и др. «Применение вероятностных оценок безопасности при проектировании АЭС с реакторами ВВЭР» / Технический комитет МАГАТЭ Применение ВАБ новых проектов и систем снижения аварийных последствий», Вена, май 1989.-12 с.

69. Швыряев Ю.В., Барсуков А.Ф., Морозов В.Б., Токмачев Г.В. и др. «Оценка вероятностей повреждения активной зоны реактора В-1000 при авариях с малой течью» / Доклад на советско-западногерманском семинаре, Москва. -1989.-25 с.

70. Швыряев Ю.В., Барсуков А.Ф., Морозов В.Б., Токмачев Г.В. и др. «Руководство по выполнению вероятностных анализов безопасности АС при проектировании» // НТД , АЭП, инв. № Р.210.002-90. -291 с.

71. Швыряев Ю.В., Токмачев Г.В. «Оценка вероятности повреждения активной зоны реактора В-1000 при обесточивании энергоблока» /Доклад на советско-американском семинаре, июнь 1990, Вашингтон. -20 с.

72. Швыряев Ю.В., Барсуков А.Ф., Морозов В.Б., Токмачев Г.В. и др. «Вероятностный анализ запроектных аварий для Ростовской АЭС » // Проект Ростовской АЭС, АЭП, инв. № п/м-88. -1990. -350 с.

73. Швыряев Ю.В., Морозов В.Б., Байкова Е.В., Токмачев Г.В. и др. «Комплекс программ для ПЭВМ по оценке вероятностных показателей безопасности АЭС» / Отчет АЭП, инв. № 0-XIII1/3/90. -57 с.

74. Швыряев Ю.В., Барсуков А.Ф., Токмачев Г.В., Краснорядцева 0 .0 . «Анализ надежности для обоснования регламента технического обслуживания систем безопасности 3 - 4 блоков Кольской АЭС» /АЭП, инв. № 0-1.125/90. -1990. -91 с.

75. Швыряев Ю.В., Барсуков А.Ф. и др. «Вероятностный анализ безопасности АЭС «Темелин » в ЧСФР» // Москва, АЭП. -1990. -321 с.

76. Швыряев Ю.В., Барсуков А.Ф., Морозов В.Б., Токмачев Г.В. и др. «Вероятностный анализ запроектных аварий для Балаковской АЭС (энергоблоки № 5, 6)» // Проект Балаковской АЭС, АЭП, инв. № п/м-134. -1990. -507 с.

77. Швыряев Ю.В., Антропов Г.А., Барсуков А.Ф. и др. «Mini - PSA АЭС-91 для условий Финляндии» // Проект энергоблока 3 «Ловиса » в Финляндии. ЛиАЭП. -1991.-450 с.

78. Швыряев Ю.В., Майнич В.П., Свердлов А.А., Токмачев Г.В. и др. «Результаты расчетов частоты повреждения активной зоны АЭС «Хурагуа » при авариях «большая » и «средняя » течь» / Отчет П.АЭП, инв.№ 69713. -1991.-254 с.

79. Швыряев Ю.В., Барсуков А.Ф. «Вероятностный анализ безопасности 1-го уровня АС-92» // Проект АЭС-92, Москва, АЭП. -1991. -150 с.

80. Швыряев Ю.В., Барсуков А.Ф., Морозов В.Б., Токмачев Г.В. «Внедрение методов вероятностного анализа в практику проектирования АЭС » /Доклад на научно-практической конференции ГПАН, Москва. -1991. -10 с.

81. Швыряев Ю.В., Морозов В.Б., Токмачев Г.В. «Анализ зависимых отказов при проведении вероятностных анализов безопасности » /Доклад на советско-английском семинаре, Москва, апрель 1991. -17,5 с.

82. Швыряев Ю.В., Барсуков А.Ф. и др. «Вероятностный анализ безопасности блока №4 Балаковской АЭС» //АЭП. -1992. -273 с.

83. Швыряев Ю.В., Барсуков А.Ф. и др. «Вероятностный анализ безопасности 1-го уровня АС-91ПР»//АЭП, Москва. -1992.-117 с.

84. Швыряев Ю.В., Барсуков А.Ф. и др. «Вероятностный анализ безопасности 1-го уровня для технических предложений АЭС НП-1000» / /АЭП, Москва. -1992.-79 с.

85. Швыряев Ю.В. и др. «Вероятностный анализ безопасности атомных станций. Методика выполнения». Ядерное общество. Москва. -1992. -264 с.

86. Швыряев Ю.В., Деревянкин А.А., Токмачев Г.В. «Вероятностное моделирование аварийных последовательностей для АЭС с ВВЭР-440», «Атомная энергия », том 73, вып. 1, июль 1992. -С.54-59.

87. Швыряев Ю.В., Морозов В.Б., Барсуков А.Ф., Деревянкин А.А., Токмачев Г.В. Состояние и проблемы вероятностного анализа безопасности для АЭС с ВВЭР //Атомная энергия, Москва, том 74, вып. 6. -1993. -С.459-466.

88. Швыряев Ю.В. и др. Нововоронежская АЭС. 3 энергоблок . Вероятностный анализ безопасности первого уровня. Том 1. Количественная оценка частоты повреждения активной зоны для внутренних исходных событий // АЭП, Москва. -1996.

89. Shvyryaev Y.V., Barsukov A.F., Krasnorjadtseva 0 .0 . et al. Project: PSA for W E R 1000/\/320. Summary Report. First Level Probabilistic Safety Analysis for Zaporozh"e NPP. Unit 5. 95-KL-REP-MOHT-EDF-055n01 // AEP, Moscow. -1998.-926 p.

90. Букринский A.M., Антропов B.H., Швыряев Ю.В. Методика разработки перечней запроектных аварий (1-ая редакция) / Отчет НТЦ ЯРБ, инв. № 120-19/361, Москва. -1998. -121 с.

91. Yu. Shvyryaev., Antropov V.N., Buckrinsky A.M. «Development of Methodology and List of BDBA for WWER-1000 for Quantitative Analysis». // SAM-99 -Information Exchange Forum on "Severe Accident Management", Obninsk, 18-

93. Yu. Shvyryaev. «Novisa Project PSA of NVNPP3» // Fifth International Information Exchange Forum Safety Analysis for NPP"s of WER and RBMK Types, 16 - 20 October 2000, Obninsl

94. Швыряев Ю.В. Атомная станция Нововоронежская АЭС-2, Перечень ЗПА для энергоблоков НВАЭС -2 // «Атомэнергопроект », Москва. -2000. -89 с.

95. Швыряев Ю.В. Перечень ЗПА АЭС с В-320 / «Атомэнергопроект », Москва. - 2000. -87 с.

96. Швыряев Ю.В. и др. «Нововоронежская АЭС, блок 3. Отчет по углубленной оценке безопасности. Приложение 3. Вероятностный анализ безопасности 1-го уровня» / /АЭП, Москва. -2000. -681 с.

97. Малышев А.Б., Морозов В. Б, Швыряев Ю.В. "Особенности разработки отчетов по анализу безопасности и ВАБ для эксплуатирующихся энергоблоков АЭС с ВВЭР в России". Сборник трудов АЭП, № 2, -2001. -С.43-53.

98. Швыряев Ю.В. «Применение ВАБ для выработки и принятия решений по повышению безопасности действующих и проектируемых АЭС с реакторами ВВЭР» / Конференция МАГАТЭ, Австрия (Вена), сентябрь 2001. (на русск. и англ. яз.). -33 с.

99. Швыряев Ю.В. и др. Нововоронежская АЭС, блок 4. Отчет по углубленной оценке безопасности. Приложение 1. Вероятностный анализ безопасности (уровень 1) //АЭП, Москва. -2002. -647 с.

100. Швыряев Ю.В., Морозов В.Б., Токмачев Г.В. и др. Проект NOVISA (WBS 3.1.11). Окончательный отчет по ВАБ первого уровня. 16JW011XR / /АЭП, Москва. -2002.

101. Морозов В.Б., Швыряев Ю.В. "ВАБ для АЭС с ВВЭР в рамках программы TACIS. Основные результаты" // Международная конференция. Десятилетие Программ ТАСИС в странах СНГ, г. Киев, 10-12 июля 2002. Сборник докладов. -С. 167-173.

102. Швыряев Ю.В., Барсуков А.Ф., Краснорядцева 0 .0 . «Анализ и расчет снижения частоты повреждения активной зоны энергоблоков 1-4 Балаковской АЭС при реализации компенсирующих мероприятий для запроектных ава-рий» / /АЭП, Москва. -2002. -232 с.

103. Правила и нормы ядерной и радиационной безопасности. Требования к содержанию отчета по обоснованию безопасности АС с реакторами типа ВВЭР (ПНАЭ Г-01-036-95), Госатомнадзор России, Москва. -1995.

104. Швыряев Ю.В., Барсуков А.Ф., Краснорядцева 0 .0 . и др. Проект АЭС «Бу- шер». Вероятностный анализ безопасности. 18.BU.1 O.O.00.VAB.PR // «Атомэнергопроект », Москва. -2003.

105. Швыряев Ю.В., Барсуков А.Ф., Краснорядцева О.О. «Обоснование возможности вывода в ремонт каналов СБ при выполнении капитального ремонта с реконструкцией бака ГА-201 энергоблоков АЭС с реактором В-320» // «Атомэнергопроект », Москва. -2003. -148 с.

106. Беркович В.М., Малышев А.Б., Швыряев Ю.В. «Создание энергоблоков АЭС с реакторами ВВЭР нового поколения » // Теплоэнергетика, № 11. -2003. -С.2-10.

107. Швыряев Ю.В., Токмачев Г.В., Байкова Е.В. ст. "Вероятностный анализ безопасности 4-го энергоблока Нововоронежской АЭС" / Сборник трудов АЭП.-2003.-№4.-С.9-15.

108. Швыряев Ю.В. «Современный подход к методологии вероятностного анализа безопасности атомных станций» // Известия ВУЗов. Ядерная энергетика.-2004.-№1.-С. 17-24.

109. Банюк Г.Ф., Драгунов Ю.Г., Сиряпина Л.А., Таранков Г.А. Анализ причин коррозионной повреждаемости труб парогенераторов АЭС с ВВЭР. "20-ый отраслевой семинар "Инженерные и экономические аспекты ядерной энергетики",. -1986.

110. Стекольников В.В., Ермаков Н.И., Денисов В.П., Сиряпин В.Н. Опыт создания и эксплуатации реакторных установок ВВЭР-1000. Журнал "Ядер-ж ная Европа". -1984.

111. Вихорев Ю.В, Вознесенский В.А., Гончаров В.В., Дубровин К.Н., Проселков В.Н., Сидоренко В.А., Сиряпин В.Н., Фатиева Н.Л., Филь Н.С. Опыт эксплуатации ТВС реактора ВВЭР-1000 пятого блока Нововоронежской АЭС. Журнал "Атомная энергия", том 54. -1983.

112. Предварительный отчет по обоснованию безопасности. Отчет по анализам надежности. Анализ надежности системы аварийной защиты реактора, АЭС «Куданкулам » Блок 1,2; 412-Пр-227, ФГУП ОКБ «Гидропресс ». -2000.

113. Установка реакторная В-446. Анализ надежности. Часть 10. Система аварийной защиты реактора АЭС «Бушер » Блок 1. ФГУП ОКБ «Гидропресс ». -2000.

114. В.А. Григорьев «Концепция применения вероятностных методов механики разрушения для анализа надежности оборудования и трубопроводов РУ с ВВЭР», Сборник трудов конференции «Обеспечение безопасности АЭС с ВВЭР ».-2001.

115. Бахметьев A.M., Самойлов О.Б., Усынин Г.Б. Методы оценки и обеспечения безопасности ЯЭУ : (Б-ка эксплуатационника АЭС; Вып. 23). - М.: Энерго-атомиздат. -1988. -136 с.

116. Авербах Б.А., Бахметьев A.M., Егоров В.В. и др. Анализ защищенности реакторной установки АСТ -500 от отказов по общей причине и ошибок персонала. - Тезисы докладов Всесоюзного научно-технического совещания. - ВНИИАЭС , М.-1987.

117. Бахметьев A.M. Статус ВАБ при проектировании и лицензировании АЭС. Международная встреча по безопасности и лицензированию ГТ-МГР, 9-13 октября 2000, Сан-Диего (США ).

118. A.M. Бахметьев , С П. Линьков, СВ. Гуреев и др.Вероятностный анализ Воронежской ACT; Отчет/ ОКБМ, НИ АЭП, РНЦ "Курчатовский институт"; инв.№А63513, Н. Новгород. -2001.

119. A.M. Бахметьев , С П. Линьков, СВ. Гуреев и др.; Вероятностный анализ безопасности АСТ-500М Сибирского химкомбината: Отчет/ ОКБМ, НИ АЭП, РНЦ "Курчатовский институт"; инв.№А63585, Н. Новгород. -2001.

120. A.M. Бахметьев , С П. Линьков, Ю.А. Макеев и др.; Проект ГТ-МГР. Оценка вероятностного риска, книги 1-2: Отчет о НИР / ОКБМ; инв. №0103110.- Н. Новгород. -2002.

121. Клёмин A.H.I, Песков Р.А., Фролов Э.В. Структурная математическая модель надежности АЭС. Методика расчета. Атомная энергия, Т.51. -1981.

122. Антонов А.В., Острейковский В.А. Оценивание характеристик надежности элементов и систем ЯЭУ комбинированными методами. Москва, Энергоиз-дат. -1993.

123. Lioubarski А, Kouzmina I., Gordon В., Rozin V. Insiglnts from Level-1 PSA for Novovoronezh NPP (Unit 5) and PSA-based Modifications// Proceedings of the PSA"99 International Topical Meeting (USA, Washington D.C., 22-26 August 1999). P.21-28.

124. A.Liobarski, I. Kuzmina, «Comparison of some Results and Modeling Issues of PSAs For WER-1000», Transactions of Fourth International Information Exchange Forum, Obninsk, Russia, 11-15 October 1999. ^

125. INTERNATIONAL NUCLEAR SAFETY ADVISORY GROUP. Basic Safety Principles for Nuclear Power Plants, Safety Series No. 75-INSAG-3. IAEA, Vienna. -1999.

126. RISK SPECTRUM, User"s Manual, Version 2.1, Relkon Teknik AB, Box 1288, S- 172 25 Sundbyberg, Sweden, April 1994.

127. CEC TACIS 91 Programme TACIS 3.1 Final Level 1 PSA Report C9225/AEP/REP/063 Issue V3, ATOMENERGOPROEKT, Moscow. -1996.

Обратите внимание, представленные выше научные тексты размещены для ознакомления и получены посредством распознавания оригинальных текстов диссертаций (OCR). В связи с чем, в них могут содержаться ошибки, связанные с несовершенством алгоритмов распознавания.
В PDF файлах диссертаций и авторефератов, которые мы доставляем, подобных ошибок нет.


Специалисты в области ядерной энергетики различают понятия надежности и безопасности ЯЭУ.

Надежность ЯЭУ – это ее свойство вырабатывать полезную энергию (тепловую, электрическую, механическую) требуемых параметров по заданному графику нагрузки в допустимых для нормальной эксплуатации радиационных условиях при заданной системе технического обслуживания и ремонтов оборудования.

Безопасность ЯЭУ – это ее свойство обеспечивать с помощью технических средств и организационных мер непревышение установленных доз по внутреннему и внешнему облучению персонала и населения, а также нормативов по содержанию радиоактивных продуктов в окружающей среде при нормальной эксплуатации и проектных авариях, т.е. таких авариях, против которых в проекте предусмотрена специальная защита.

Как видно из приведенных определений, надежность и безопасность, являясь свойствами, должны обеспечивать определенные потребительские качества ЯЭУ. Если безопасность обеспечивает только недопущение ущербов (в том числе и для населения),то надежность ЯЭУ обеспечивает также и экономичность эксплуатации ЯЭУ. Поскольку обеспечение безопасности ЯЭУ требует затрат (имеет определенную цену), то оно неизбежно приходит в противоречие с экономическими показателями ЯЭУ. Двойственность целей при обеспечении надежности ЯЭУ – с одной стороны, обеспечить экономичность, а с другой – безопасность ЯЭУ, делает свойство надежности ЯЭУ определяющим.

Обеспечению НиБ ЯЭУ с самого начала развития ядерной энергетики уделялось значительное внимание. Ответственные и квалифицированные специалисты всегда понимали важность этих свойств ЯЭУ и старались его обеспечить с запасом (иногда в ущерб экономичности). Достаточно привести пример с Первой в мире АЭС в г. Обнинске, пятидесятилетие которой было отмечено в июне 2004г. Основные ее системы за все время эксплуатации не выработали свой ресурс.

За время существования ядерной энергетики выработались определенные система и культура обеспечения НиБ ЯЭУ как сложных и потенциально опасных технических систем. Все важные для безопасности элементы и устройства дублируются (элементное резервирование), контроль состояния и режимов работы ЯЭУ осуществляется по многим параметрам приборами, использующими разные физические явления и принципы действия (функциональное резервирование). Все важные системы обслуживаются и ремонтируются по строго определенным графикам с последующим контролем качества. Такому важному фактору как квалификация и дисциплина обслуживающего персонала, уделяется самое серьезное внимание.

Заметим, однако, что абсолютно надежных технических систем в природе не существует. Если бы можно было создать такую систему, то можно смело утверждать, что она была бы и абсолютно бесполезной, т.к. весь положительный эффект от нее ушел бы на обеспечение ее собственной надежности. Это утверждение справедливо и для ЯЭУ. Поэтому на случай отказов оборудования предусматриваются системы, обеспечивающие их безопасность. Эти системы также могут отказывать. Поэтому они резервируются по тем же принципам, что и основное оборудование ЯЭУ.



Комплексное решение задачи по обеспечению НиБ ЯЭУ невозможно без их количественной оценки. Всегда нужен количественный критерий, определяющий достаточность принятых мер. Разработкой и применением специфических количественных методов оценки показателей НиБ ЯЭУ занимается большое число квалифицированных специалистов, основные усилия которых направлены на обеспечение необходимых точности и достоверностиоценок. Поскольку по своей природе отказы оборудования являются случайными событиями, то разработана и используется специальная технология оценок показателей НиБ ЯЭУ, имеющая специальное название – вероятностный анализ безопасности (ВАБ) . ВАБ представляет собой системный анализ причин возникновения, всевозможных путей развития и последствий аварий на ЯЭУ с использованием широкого спектра физических, теплотехнических методов, механики разрушения и ряда других, дополненных анализом надежности средств обеспечения безопаснос, а также новейших достижений теории вероятности, математической статистики, теории случайных процессов, алгебры логики и других.

В процессе проведения ВАБ обычно выделяют несколько основных этапов. ВАБ уровня 0 – оценка интенсивности исходных событий аварий и анализ надежности систем безопасности. ВАБ уровня 1 анализ аварийных процессов, которые могут привести к разрушению активной зоны, основных причин разрушения и частоты их возникновения. ВАБ уровня 2 предусматривает анализ теплофизических и химических процессов плавления активной зоны. Определяются возможные виды отказов защитной оболочки. Рассматриваются процессы выделения р/а продуктов из топлива, распространения их в пределах защитной оболочки и выхода за предусмотренные границы локализации. Результатом анализа является верочтностное распределение выбросов с различным количеством радиоактивных продуктов в окружающую среду. ВАБ уровня 3 посвящен анализу распространения радионуклидов в окружающей среде и воздействие их на население. При этом также учитываются экономические последствия аварий.

Основным понятием, которым оперируют при проведении ВАБ ЯЭУ, является риск . Это понятие является синтетическим и учитывает как неопределенности во времени появления и масштабах проявления нежелательных событий, так и ущерб от них. Интуитивное понимание риска всегда связывается с вероятностной природой событий. Если наступление или ненаступление неблагоприятного события в данных конкретных условиях предопределенно, то о риске говорить бессмысленно. В первом случае необходимо принимать меры по предотвращению события, которое обязательно наступит, если не изменить условия, приводящие к его появлению. Если событие определенно не наступает, то нет необходимости включать его в рассмотрение. Если случайное событие не приводит к ущербу, то интуитивно ясно, что его тоже можно не принимать во внимание при оценке риска, т.к. в этом случае просто нечем рисковать.

Количественной мерой риска R принято считать следующую математическую конструкцию:

где N – число рассматриваемых событий;

0 < Р i < 1 – вероятность наступления i-го события;

С i – ущерб от i-го события, если оно наступит.

Входящие в правую часть записанного равенства величины должны удовлетворять следующим условиям:

1) ущербы С i должны измеряться в одних и тех же единицах;

2) рассматриваемые события должны быть несовместны, т.е. наступление одного из них должно означать, что остальные (или любые сочетания из них) не наступили;

3) система рассматриваемых событий должна быть полной, т.е. должна включать в себя всю совокупность ситуаций, которые в принципе могут произойти на ЯЭУ (в том числе и ситуацию нормальной эксплуатации).

Последнее условие означает, что в рассмотрение должны быть включены и ущербы (облучение персонала в пределах норм, материальные затраты на противоаварийные мероприятия и др.), которые неизбежно возникают также и при нормальной эксплуатации ЯЭУ. Формально условие 3) записывается так:

.

Тогда риск R есть ни что иное, как среднее значение ущерба от работы ЯЭУ в данных конкретных условиях.

Часто рассматривают условный риск , т.е. риск только от неприятных событий на ЯЭУ, при условии, что какое-либо из них произошло. Условный риск R ус может быть вычислен по формуле

,

где считается, что событию нормальной эксплуатации присвоенномер N итогда .

Построение системы событий, по которой оценивается риск от ЯЭУ – сложный итерационный процесс. В него на разных стадиях проведения ВАБ включаются многие специалисты, в том числе экологи, радиобиологи, экономисты, сотрудники регулирующих органов, а также общественность. В странах, где ВАБ для ядерных технологий получил достаточное развитие, участие общественности в построении наиболее полной системы событий для оценки риска считается естественным и только приветствуется. Это гарантирует, что при проведении ВАБ ЯЭУ какие-либо важные детали при оценке риска не будут упущены, а также повышает уверенность правительственных учреждений в том, чтоих решении по развитию и/или модернизации ядерных технологий будут поняты общественностью правильно. Успех ВАБ ЯЭУ может быть достигнут только в случае, когда система событий, для которой должен оцениваться риск от ЯЭУ, принята всеми заинтересованными сторонами. Достоверная оценка вероятностей неблагоприятных событий при анализе риска является основной задачей при расчёте количественных показателей надежности ЯЭУ.

Следует отметить, что важнейшим в обеспечении НиБ ЯЭУ является человеческий фактор. Как уже отмечено выше, по оценкам специалистов примерно 70% крупных инцидентов на ЯЭУ или произошли из-за ошибок персонала, или сопровождались ими. Однако как раз учет вероятностей ошибок человека наиболее труден при проведении ВАБ . Второй трудностью является получение достоверных исходных данных по показателям надежности отдельных элементов и узлов ЯЭУ. У этой трудности есть причины как объективного, так и субъективного характера. Так как обеспечению надежности элементов и узлов ЯЭУ уделяется серьезное внимание и они, как правило, выпускаются малыми сериями или в единичных экземплярах, то статистика по их отказам крайне мала или отсутствует вовсе. Поэтому достоверная оценка показателей надежности таких элементов и узлов, в принципе, нетривиальная задача. Это – объективная причина . К субъективным причинам следует отнести трудности в организации сбора достоверной информации по отказам важных для безопасности элементов и узлов ЯЭУ.

Оценки второй компоненты риска – ущерба – также должны проводиться по определенным правилам. Здесь также есть некоторые проблемы, в том числе и морально-этического характера. Например, требование измерять ущербы от различных неблагоприятных событий в одних и тех же единицах приводит к необходимости введения единой шкалы для экономических и человеческих потерь при анализе последствий возможных тяжелых аварий. Моральные ущербы и неполученные в результате аварии выгоды также требуется измерять в одних и тех же единицах.

В силу изложенного, при проведении ВАБ приходится иметь дело, с одной стороны, с очень малыми величинами (10 -5 -10 -12), характеризующими вероятности отказов ЯЭУ и его элементов и систем, и/или очень большими (10 5 -10 12), характеризующими ущербы от аварий, а с другой – оценки этих величин часто весьма приблизительны.

ОБЩИЕ ПОЛОЖЕНИЯ

Важнейшим звеном анализа безопасности наряду с анализом мер по предотвращению нарушений в работе ЯЭУ является исследование потенциально возможных аварий ситуаций. Аварийная ситуация (авария) характеризуется исходным событием, путями развития и последствиями. В настоящем разделе будут рассмотрены главным образом подходы к анализу

путей развития аварий. В процессе такого анализа для различных исходных событ

достаточность или необходимость принятия дополнительных организационно-технических мер для приведения установки в конечное безопасное состояние.

значения для ключевых параметров и приводящие в результате к единой величине(критерию оценки). Такой анализ безопасности выполняется в соответствии с заранее установленными допущениями по эксплуатационным состояниям и исходным, событиямсогласно специфическому набору требований и критериев приемлемости . Детерминистический анализ может быть как консервативным, так и улучшенной оценки. В рамках детерминистического метода анализа безопасности идентифицируются и анализируютсяпроектные события , охватывающие целый спектр возможныхисходных событий аварий (ИСА), которые могли бы угрожать безопасности энергоблока.Под ИСА понимается событие, приводящее к нарушению нормальной эксплуатации энергоблока и требующее защитных действий для предотвращения (или ограничения) нежелательных последствий.

Основная цель ДАБ - показать, что отклик систем безопасности на проектные события соответствует заранее определенным требованиям как в части характеристик собствен энергоблока, так и в части решения задач безопасности. В детерминистском методе используется инженерно-технический анализ для предсказания хода событий и их последствий.

В сложившейся практике проектирования важнейшим элементом детерминистического подхода является принцип единичного отказа, в соответствии с которым составляется перечень проектных аварий.

Рассмотрим некоторые особенности применения принципа единичного отказа согласно требованиям нормативов.

Анализ системы на соответствие принципу единичного отказа начинается с определения полного перечня исходных событий, рассматриваемых при обосновании безопасности ЯЭУ. При этом в качестве исходного события должно рассматриваться любое, но только единичное нарушение: отказ в системах, внешнее воздействие, ошибочное действие персонала. Возникновение дополнительного исходного события во время протекания аварийной ситуации

окончательного

выполнения

системами

безопасности

учитываться.

Так, в качестве исходного события не должен рассматриваться одновременный разрыв

двух трубопроводов независимых петель первого контура установки ВВЭР:

Исходное событие - единичное

нарушение (не

рассматриваются независимые разрывы одновременно двух

трубопроводов)

В то же время, все зависимые от исходного события нарушения на АЭС являются составной частью рассматриваемого исходного события(см. рис.). Так, исходное событие - падение самолета на AЭС - включает разрушение петли второго контура, потерю внешнего электропитания станции, разрушение всех несейсмостойких систем и сооружений.

Исходное событие и зависимый от него отказ канала системы безопасности.

Наряду с исходным событием при анализе аварийной ситуации должен рассматриваться независимый от исходного события дополнительный отказ активного устройства безопасности или пассивного устройства, имеющего механические движущиеся части:

При анализе аварии с разрывом трубопровода первого контура ВВЭР прим дополнительного отказа активного устройства является отказ насоса системы активн впрыска, а пассивного устройства - отказ обратного клапана на трубопроводе подачи воды от гидроаккумуляторов.

Системный детерминистический анализ

Принцип единичного отказа представляет собой один из возможных способов выделения в рамках детерминистического подхода классов вероятных и маловероятных авари исключением последних из числа рассматриваемых. Ограниченность этого принципа при всей

его технической целесообразности состоит в директивно устанавливаемой глубине анализа аварийных ситуаций. В общем случае детерминистический подход предпола последовательное исследование всевозможных путей развития аварий с учетом отказо элементов и систем безопасности, ошибок персонала без ограничения числа рассматриваемых совместных отказов.

В качестве критерия ограничения круга анализируемых аварий выступает их техническая возможность или, другими словами, техническая целесообразность рассмотрения. В рамках такого анализа не рассматриваются последовательности событий, противоречащие известным физическим законам или практически невероятные с позиции этих законов. Последнее должно подтверждаться также многолетним мировым опытом эксплуатации изделий в различны

областях техники. Данный подход обеспечивает полноту учета возможных ситуации и снижает долю субъективизма в решениях по обеспечению безопасности.

В рамках системного анализа для каждой аварийной ситуации рассматрив технически возможные цепочки от исходного события до конечного состояния, отражаются функционирование систем безопасности, действия персонала и оцениваются последствия.

Выявляются

развития

аварийной

ситуации

взаимодействия

закономерностей протекания физических процессов, а также отказов систем безопасности.

Для окончательного выявления возможных отказов по общей причине проводя специальные исследования. При этом тщательно изучаются критические пути развития аварии для выявления специфической зависимости, которая могла остаться незамеченной при первоначальных исследованиях.

уяснить и проанализировать взаимосвязь различных систем, участвующих в обеспечении безопасности, роль и значение персонала в осуществлении защитных мер, выявить возможные отказы по общей причине, «глубину» обеспечения безопасности АЭС.

Выделение важных систем и компонентов, наиболее значимых ошибок имеет большое значение для совершенствования проекта и для подготовки персонала.

Рассмотрим пример аварии с потерей электропитания собственных, нуждразвитие которой выходит за рамки принципа единичного отказа.

На рис. 5.1 представлены некоторые пути развития рассматриваемой аварийной ситуации. По сигналу обесточивания срабатывает аварийная защита реактора, запускаются дизельгенераторы системы аварийного электроснабжения, включается система аварийного отвода тепла и установка переводится в режим расхолаживания.

РИС. 5.1. ПУТИ РАЗВИТИЯ АВАРИИ С ПОТЕРЕЙ ЭЛЕКТРОПИТАНИЯ СОБСТВЕННЫХ НУЖД

(ЕЦ – естественная циркуляция; ПЦ – принудительная циркуляция).

Путь 1

соответствует проектному

протеканию режима,

обеспечивается

при единичном

отказе устройства безопасности и

рассматривается

проектного обосно

безопасности.

Путь 2

характеризуется отказом

системы аварийного

отвода тепла

с принудительной

циркуляцией (ПЦ) охлаждающей воды. Отвод тепла от реактора в этом случае осуществляется (если такая возможность предусмотрена) выпариванием имеющихся запасов воды при естественной циркуляции теплоносителя.

В ядерных энергетических установках с ВВЭР, благодаря запасам воды в горизонтальных парогенераторах, реактор может поддерживаться в безопасном состоянии в течение нескольких часов. В указанное время персонал должен восстановить принудительную циркуляци охлаждающей воды или по меньшей мере восполнить запас воды на выпаривание.

Если в установке не предусмотрен отвод тепла на основе естественной циркуляции(путь 3 ), то возможна переопрессовка реактора или потеря теплоносителя через предохранительные клапаны с последующим расплавлением активной зоны.

Пути 4 и5 характеризуются отказом системы надежного электроснабжения и зависимым от него отказом системы отвода тепла с принудительной циркуляцией охлаждающей воды. В остальном пути4 и 5 близки к путям развития аварии2 и 3 соответственно.

Потенциально возможно развитие аварии без срабатыванияA3 реактора. При несрабатывании A3 и включении системы аварийного отвода тепла за счет разбалан генерируемой и отводимой мощностей происходят разогрев теплоносителя первого контура и рост давления в нем.

В реакторах с развитым свойством самоограничения мощность активной зоны снижается

до уровня мощности, отводимой от реактора. При этом разрушения элементов конструкции

не происходит. Если отказывает система аварийного отвода тепла

установка

обладает

развитым

свойством самоограничения, то авария

приводит

разрушению активной зоны.

Детерминистический подход способен охватить многие вопросы анализа и обоснования

безопасности ЯЭУ. В то же время остается ряд принципиальных затруднений.

Во-первых,

стремление

выделить

критические

развития

детерминистского системного анализа приводит к необходимости сопоставления, пут характеризующихся различным количеством отказов активных и пассивных устройств, ошибок персонала, т.е. к необходимости их количественного сравнения при отсутствии единой меры осуществимости (возможности) аварий.

К этому следует добавить, что даже два однотипных устройства, имеющих одинаковое назначение, могут существенно различаться по частоте отказов вследствие особенносте конструкции, технологии изготовления, условий эксплуатации. Неготовность системы может существенным образом зависеть от регламента проверок и ремонтопригодности элементов.

Кроме того, в рамках детерминистического анализа возможно рассмотрение только полностью зависимых систем (устройств), когда отказ одной системы неизбежно приводит к отказу другой. В то же время имеют место ситуации, когда несколько однотипных устройств

привлечения вероятностных методов, где вероятность выступает единой мерой возможности осуществления различных событий.

5.2 Вероятностная оценка безопасности

Общие положения

В рамках вероятностного анализа выполняется качественная и количественная оценка безопасности АЭС, состоящая в оценке вероятности возникновения и путей развития ИСА, а

также в определении частот возникновения нежелательных событий(повреждение активной зоны, предельный аварийный выброс радиоактивных веществ, радиационное воздействие на персонал, население и окружающую природную среду). Результаты вероятностного анализа сравниваются с установленными вероятностными критериями безопасности.

Вероятностная оценка безопасности представляет собой системный анализ прич возникновения, всевозможных путей развития и последствий аварий на АЭС с использованием широкого спектра физических, теплотехнических методов, методов анализа прочности конструкций, механики разрушения и ряда других, дополненных анализом надежности средств обеспечения безопасности и вероятностной оценкой развития событий. Последствия аварий для окружающей среды определяются выбросом радиоактивных продуктов за пределы АЭС.

Уровни ВАБ

ВАБ 1-го уровня. Это ВАБ по отношению к целостности второго физического барьера

на пути распространения ионизирующего излучения и радиоактивных веществ в окружающую

среду (оболочка

ВАБ1-го уровня

анализируются последствия

(внутренних исходных событий аварий, внутренних и внешних экстремальных воздействий)

для всех эксплуатационных состояний АЭС(работа реакторной установки на номинальном и

сниженном

мощности, планово-предупредительные

ремонты), которые

привести к повреждению активной зоны(или ядерного топлива в бассейнах выдержки и

перегрузки), оценивается

повреждения

активной

зоны(топлива), анализируется

эффективность

достаточность

систем, оборудования

действий

персонала

предотвращения повреждения активной зоны(топлива). Количественной характеристикой

результатов ВАБ1-го уровня является частота повреждения активной зоны(или частота

повреждения топлива) - ЧПАЗ.

ВАБ 2-го уровня. Это ВАБ по отношению к целостности четвертого

физического

барьера на пути распространения ионизирующего излучения и радиоактивных веществ

окружающую среду (герметичная оболочка реакторной установки). В рамках ВАБ 2-го уровня

идентифицируются

причины, источники,

возникновения

радиоактивных

выбросов и оцениваются их величины и частоты. Такой анализ дает дополнительные выводы об

относительной значимости аварии, о защитных мерах и барьерах безопасности, таких как

гермооболочка реактора. Количественная характеристика результатов ВАБ2-го уровня-

частота предельного аварийного выброса(ЧПАВ) радиоактивных веществ и долговременная

целостность герметичных ограждений реакторной установки.

уровня оценивает

последствия

пределами

площадки АЭС

отношению к

аварийным

последовательностям, выявленным

уровня. Целью

анализа является оценка риска радиационного воздействия на население и окружающу природную среду.

Вероятностный анализ применяется для оценки величины риска реализации какой-либо конкретной последовательности событий и ее последствий. Такая оценка может учитывать влияние мер по подавлению или ослаблению последствий аварий на энергоблоке АЭС или на площадке АЭС. Кроме того, вероятностный анализ применяется для оценки профиля риска, выявления любых возможных слабых меств проекте или в эксплуатации, которые могли бы внести чрезмерный вклад в риск. Вероятностный метод может использоваться в качестве дополнительного инструмента при выборе событий, для которых необходимо проведение детерминистического анализа.

требуется повышенное внимание, в то время как внимание к другим областям риска может быть ослаблено. Такая философия находит свое отражение в различных аспектах эксплуатации АЭС. Фактически можно говорить о,томчто применение методологии оценок риска автоматически способствует повышению культуры безопасности, так как соответствует ее определению: внимание распределяется в соответствии со значимостью для безопасности, которая определяется методами ВАБ.

Одним из основных отличий ВАБ от детерминистического анализа безопасности является систематизированный и реалистичный подход к полному анализу последовательностей для широкого спектра исходных событий аварий. Рис. 5.2 иллюстрирует область действия указанных двух инструментов. ВАБ подтверждает, что риск от аварий на АЭС возникает в результате событий вне проектной области, также вследствие множественных отказов, ошибочных действий персонала и внешних опасностей.

РИС. 5.2. ОБЛАСТЬ ПРИМЕНЕНИЯ АНАЛИЗОВ БЕЗОПАСНОСТИ

В целом, для принятия решения по безопасности АЭС с использованием оценок риска применяются следующие результаты ВАБ:

- количественная оценка мер риска (ЧПАЗ, ЧПАВ и др.);

- профиль риска - графическое или численное представление соотношения между значениями риска от отдельных составляющих;

- оценка изменения величин ЧПАЗ, ЧПАВ;

- идентификация и осмысление доминантных вкладчиков в результаты(значимые аварийные последовательности, системы, оборудование, физические процессы, функции безопасности и т.п.);

- идентификация и осмысление источников неопределенности ЧПАЗ, ЧПАВ и их влияния на результаты.

Автореферат диссертации по теме "Вероятностный анализ безопасности АЭС с учетом сейсмического фактора"

_ _ Ив npetex рукппш ы

ВУТОРИН CT.PI ЕП ЛЕОПИДОВИЧ

ВЕРОЯТНОСТНЫЙ ЛПАЛИ"1 ЬЕЮПАСНОСТИ А)СС

УЧЕТОМ СЕЙСМИЧЕСКОГО ФАКТОРА (ПРАКТИЧЕСКАЯ РЕА.Ш 1АЦИЯ СИСТЕМНОГО ПОДХОДА)

Специальность 95.14. К - Тпннчккм с|кшм к «ктоли нпшты

(анкт-Петервург IW7

Paóom »uiiu.imchu а АО Вссрасснйскнй научна - исследовательский HHCiHiyit ni i|iuirxHUKH ни. К.Е. Всдсиееаа и icccowiawM проектном и научио-нсслс.тоаакльскам uiii"iiii)ic коьшлексиой тмергегачаской технологии ЯШШМ")Т (Голоаиойинс1М1)1)

Официальные MuiuucMibi:

Дикюр технических наук, профессор Гвмжн Л.Ф.

Доктор тшпспи наук, лауреат иргииа ^аантальегаа РФ Судш.чш А. А

Доктор фшнко-матемагачеосих наук, ufificcnp IIIхин*», К Н.

■едуима upúmnaua: Рмса1»«А научный шеигр " Курчатовский HUClHiyi"

{»шик cucieuic« " ■1И1 г. час. на межданим

шнирпщмошюго coacta Д. МЗ.М.О* арм CI14 1Т> но адресу

1*3251, (аш.1-Петер6ур|, Полятехническаа ул., д. I*. пристройка к тдрокарлусу, ауд. 411.

Oiu.uu на aanptftpar ■ даух мпемнларах, маеренные ikhiiuq, просим напраалать на нма учен«* секретаре Соасга па укатанному ищи адресу.

Лиюрсфсраг ратосми "-Sí.

Ученый секре|арь

дисссрiauHouMoiв (sacia К.Т.Н., проф.

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность проблемы

Повышение безопасности эксплуатации атомных станций в последнее десятилетие приобрело первостепенное значение и решение этой важном народнохозяйственной задачи во многом определяет дальнейшие пути развития атомной энергетики.

В настоящее время общепризнанно, что атомные станции относятся к наиболее ответственным с экономической, экологической и социальной точек эриния объектам и обеспечению их надежности и безопасности должно быть уделено первостепенное внимание. Безопасность станции (в частности ядерная и радиационная) рассматривается как ее самостоятельное свойство, которой обеспечивается своими особыми средствами не только в условиях нормальной эксплуатации, а главное - в аварийных ситуациях и при чрезвычайных событиях природного типа или - технологического характера: землетрясениях, падениях самолета, пожарах и тому подобное.

Радиационная безопасность АЭС и, в конечном итоге, защита окружающей среды от распространения в ней радионуклидов, накопленных в процессе работы реактора, . обеспечивается соответствующими конструктивными решениями энергетической установки и станции, а так же комплексом технических и организационных мероприятий. Важнейшим, этапом этих мероприятий является оценка прочности и надежности конструкций АЭС, образующих инженерный комплекс средств защиты окружающей среды (барьеров безопасности и обслуживающих их систем) с учетом возможных землетрясений - задачи, методы решения которой во многом отличаются от традиционных способов, применяемы* для промышленных и гражданских объектов.

Актуальность и сложность учета сейсмических воздействий применительно к АЭС связана прежде всего со следующими основными обстоятельствами:

Особая ответственность объекта;

Особое значение оборудования для обеспечения условий безопасной эксплуатации и охраны окружающей среды;

Существенная роль случайных и неопределенных факторов;

Возможность возникновения отказов по общим причинам (комплексных последствий землетрясений), и как результат - неэффективность традиционных способов и средств защиты, ориентированных главным образом на внутренние

О необходимости детального изучения проблемы свидетельствуют также кйыстрофические последствия ряда сильных землетрясений за последнее десятилетие-как у нас, так и за рубежом

Все вышеперечисленное подтверждает важность разработки подобной комплексной методологии и для других сложных и ответственных инженерных обьектов.

Цель диссертационной работы - разработка системного подхода и методов его практической реализации для вероятностного анализа безопасности атомных станций с учетом сейсмического фактора.

Для достижения этой цели были поставлены и решены следующие задачи

Разработана методология вероятностного анализа безопасности АЭС с учетом сейсмических воздействий, основанная на анализе выполнения техническими средствами защиты окружающей среды во время и после прохождения землетрясений требуемых функций по обеспечению безопасности,

Выполнен анализ роли и места сейсмического фактора при выполнении ьеротностных оценок безопасности АЭС, предложены способы учета сшхастических зависимостей между элементами (системами) и выбора моделей сейсмических воздействий на сооружения АЭС;

Предложены прикладные методики оценки надежности грунтовых оснований, строительных конструкций и технологического оборудования сооружений в составе атомных станций с учетом эксплуатационных и сейсмических нагрузок,

Выполнен комплекс расчетно-теоретических исследований по получению количественных оценок надежности отдельных. систем и характерных сооружений (элементов барьеров безопасности и обслуживающих их систем) с учетом сейсмического "фактора,

; выполнен вероятностный анализ влияния землетрясений на безопасность двух типов АЭС с водным теплоносителем первого контура

Научная новизн» исследований заключается решении важной

народнохозяйственной задачи - разработке общей методологии и практических

методов. прогнозирования влияния землетрясений на безопасность аюмны» станций. Научный вклад автора заключается в следующем

1) разработаны методические основы для вероятностного анализа безопасности АЭС с учетом всех возможных за срок ее эксплуатации на конкретно^ площадке строительства землетрясений,

2) решен ряд задач, описывающих динамическое взаимодействие сооружения с грунтовым основанием при наличии случайных факторов с использованием апробированных моделей сейсмического процесса и системы сооружение - основание;

3) разработаны методики оценки надежности грунтовых оснований строительных конструкций и оборудования при сейсмических воздействиях, основанные на развитии линейно-спектрального (нормативного) подкола и предложена методика оценки степени повреждаемости конструкций в ряэулыято землетрясений с использованием метода предельного равновесия.

4) применительно к АЭС РБМК получены количественные оценки, надежности трубопроводов первого контура (второго барьера безопасности) с:

учетом сейсмических воздействий,

5) выполнена оценка надежности некоторых характерных систем технического водоснабжения атомных ст?нций при возможных землетрясениях,

6) для двух типов АЭС (с канальным реактором РБМК - 1500 и корпусным реактором ВВЭР - 1000) с использованием конкретной сейсмологической и геологической информации, разработанного подхода и методик оценен возможный вклад землетрясений в интегральные показатели безопасности

Практическая ценность диссертации заключается в следующем

На основе системного подхода разработана общая методология получения вероятностных оценок безопасности атомных станций с учетом сейсмического фактора,

полученные решения уравнений, описывающих динамическое взаимодействие сооружения с основанием с учетом случайных факторов позволяют получать сравнительные оценки надежности в условиях существенной неполноты исходной информации,

Разработаны методики оценки надежности основных подсистем сооружений с учетом сейсмических воздействий, (соторые могут быть использованы совместно с

распространенными вычислительными комплексами (МИРАЖ, ДРАКОН, COSMOS. ANSVS и др),

Разработана методика вероятностного анализа влияния как сейсмического, гак и иных возможных динамических факторов на множественное повреждение каналов уран-графитовых реакторов,

Оценено влияние землетрясений на надежность основных трубопроводов контура многократной принудительной циркуляции РБМК - 1500.

Получены количественные оценки надежности двух систем. TBC АЭС позволяющие проанализировать преимущества того или иного технического усовершенствования с точки зрения повышения безопасности станции,

Получены количественные вероятностные оценки безопасности с учетом сейсмических воздействий для двух блоков АЭС ралпичного типа, позволяющие научно обосновано выбрать пути, методы, инженерные и организационные мероприятия для снижения негативного влияния землетрясений на безопасность АЭС. риск для населения и окружающей среды

Основные результаты тучных исследований были использованы при разработке проектов, исследовании и планировании мероприятий по повышению безопасности таких станций как Ленинградская. Смоленская, Игналинская АЭС с реакторами РБМК, Запорожская АЭС с реактором ВВЭР-1000 и ряде других объектов атомной энергетики и промышленности Отдельные результаты теоретических и расчетных исследований были также использованы при выполнении ряда международных проектов по Внебюджетной программе МАГАТЭ." Безопасность проектных решений РБМК " Комиссии Европейского сообщества на третьей фазе проекта " БАРСЕЛИНА " по вероятностному анализу безопасности Игналинской АЭС и при расширенном анализе безопасности той же станции, выполненному в 1995-96 гг "

В коллективе соавторов - сотрудников ГИ ВНИПИЭТ опубликованы техническое пособив РД 8 14-84 " Обобщенные спектры ускорений реакторного отделения атомной станции с реактором РБМК-1500 " (Препринт ВНИПИЭТ, Л 1984) и Руководство по безопасности для термоядерного (омплекса ИТЭР Requirements for asseismemt of seismic impact for ITER complex (Safety guide)" (VNIPIET. S-Pb , 1995)

Апробация работы Основные результаты диссертационной работы неоднократно обсуждены и одобрены на ряде Всесоюзных, российских, отраслевых и международных конференциях и совещаниях "Динамика оснований фундаментов и подземных сооружений " (Нарва. 1985). " Повышение надежности энергетических сооружений при динамических воздействиях" (ДЭС-87, Москва. 1987 и ДЭС-95, С Петербург. 1995). " Сейсмостойкость энергетических сооружений " (Усть-Нарва 1988), " Химическая технология и вопросы надежности эксплуатации "(Ленинград, 1988) " Dynamik of structures -89 " (Карловы Bapp. Чехословакия 1989), SMiRT 11 (Токио Япония). советско - английском семинаре " Применение теории риска в оценке сейсмостойкости АЭС " (Балаковская АЭС. 1991). научно-технической конференции Ядерного общее iBa в 1993 г (H Новгород). Международных консультативных совещаниях по Внебюджетной программе МАГАТЭ (Десногорск Смоленская АЭС. 1992 Москва январь и октябрь 1994. Сосновый Бор Ленинградская АЭС, 1995) Совещании руководителей рабочих, групп МП " Безопасность проектных решений и эксплуатации АЭС с реакторами РБМК " (Москва. 1992) и совещаниях рабочих групп по этому проекту (Снечкус, Литва Игмалинская АЭС. 1993. Рим. Италия, 1993, Хельсинки. Финляндия, 1994, Мссква.1995. Сосновый Бор, Ленинградская АЭС, 1995),Международном семинаре " Уроки Чернобыля Технические аспекты "(Десногорск, Смоленская АЭС) и ряде других

Объем работы Диссертация состоит из введения, восьми глав. выводов 195 использованных источника Работа содержит страниц текста, включая таблицы и 21 рисунок

Во введении определены актуальность темы, цели и задачи исследования, а также дана краткая характеристика работы и основных полученных результатов Порвая глава посвящена анализу литературы по проблеме исследования

Анализ безопасности атомных станций и обеспечение охраны окружающей срнды населения и персонала АЭС от неконтролируемых недопустимых выбросов радиоактивных веществ" является одной из самых важных задач атомной.)Н1*рге1ики, решение которой во.многом определяет ее дальнейшее существование Мдпрмон и радиационная безопасность станции, рассматриваемая как ее самостоятельное свойство, обеспечивается заложенными " в ядерную зм(.-|)1 ыическую установку концепциями, конструктивными решениями сооружений в, остаае АЭС и комплексом соответствующих технических и организационных мероприятии

В настоящее время анализ надежности и безопасности АЭС молодой, с ложный и недостаточно разработанный раздел теории надежности, которому посвящена обширная быстро растущая литература Основы теории надежности AMC (оставляет синтез представлений и методов теории надежности конструкции и к;ории надежности сложных систем, т.е. объединение традиционных методов ци-чыа сооружении (статических, динамических, температурных и т д.) с методами теории вероятностей Различным аспектам проблемы анализа надежности -инструкций и сооружений посвящены работы Н.Ф Хоциалова, Н С Стрелецкого, и II Ьологима Б.И. Беляева. А Р.Ржаницына, Н.Н.Ермолаева. В В Михеева IIД Раизера. А.С.Пронникова, Г.Аугусти, А Баратта и других авторов Хорошо изучены системы, имеющие сетевую структуру. Этим вопросам посвящены работы К 1"аиншке И А Ушакова, А Д Епифанова, К.Капура, Л.Ламберсона. Э Хенли и др Различные подходы для учета стохастических связей между элементами при построении и реализации схем оценки надежности сложных конструкций предложены, например, А А.Кузнецовым, Л И. Волковым. А П.Кудзисом

Вероятностная методология прогнозирования безопасности АЭС предложенная в работах А И Клемина и Дж. Расмусена получила свое дальнейшее ра-шитие применительно к отечественным АЭС в исследованиях О Ь Самойлова В А Острейковското Л В Константинова, Р Т Исламова. Ю В Швырнева Эта методология включает в себя следующие основные этапы

Определение вероятностей исходных"событий (аварий), .

Анализ надежности систем безопасности,

Анализ состояния и степени повреждения источников радиоактивных

продуктов,

Анализ распространения продуктов деления по помещениям станции и оценку их выхода в окружающую среду;

Исследование распространения радионуклидов по биосферным каналам и. в конечном итоге, оценку индивидуального и коллективного риска для населения на основе концепции предельно допустимого облучения.

Подобного рода поход для получения вероятностных оценок безопасности АЭС сейчас широко применяется в той или иной мере практически для всех типов эксплуатируемых или проектируемых станций как в России, так и за рубежом, сложившись а определенную схему выполнения вероятностных анализов безопасности различных уровней. При этом считается, что процедура количественной оценки выхода радионуклидов за пределы АЭС- является достаточно хорошо отработанной, если известна степень повреждения барьеров безопасности. Основы теории миграции радионуклидов по биосферным каналам были предложены в работах С.Ф.Азерьянова, Ф.Н.Бочевера, . Я.Бера, В.А.Мироненко, И.И.Крышевз, А.Е.Шейдингера и др. В работах, например,. Н.С.Бабаева и Р.М.Алексахина описаны также модели анализа миграции радиоактивных рзществ по биологическим и пищевым цэпочкам, ведущим к человеку. "

Одним из ответственных этапов а мероприятиях по анализу и обеспечению безопасности АЭС является оценка прочности и надежности конструкций станции с учетом возможных землетрясений Результаты этой оценки, выполняемой главным образом расчетно-теоретическими методами, позволяют прогнозировать степень повреждения комплекса инженерных средств защиты окружающей среды АЭС и обслуживающих его систем при основных и особых сочетаниях нагрузок и воздействий. Они являются необходимой исходной информацией для анализа возможного распространения радионуклидов за пределы станции и получения достоверной оценки общего риска. .

Методы теории вероятностей широко используются в инженерной сейсмологии для описания параметров движения грунта, сейсмических режимов и т.п. Различные подходы для этого были предложены в работах М.Ф.Барштейна, В.В, Болотина, Ф.Ф.Аптикаева, Я.М.Айэенберга, Ш.Г.Напетваридзе, М.Хаузнерч, К.Канаи, Ц. Ломница, Н.Ньюмарка, Э.Розенблюта и других.

За последние два десятилетия сформировался достаточно традиционный подход к анализу и обеспечению сейсм зстойкости атомных станций, который нашел свое отражение как в ныне действующей в РФ системе нормативных документов, так и в рекомендациях МАГАТЭ. В нем присутствует ряд вероятностных элементов, например, при выборе сочетаний нагрузок и воздействий, но анализ прочности, устойчивости и т.п. конструкций с учетом сейсмических нагрузок как правило выполняется детерминистическими методами. В то же время ряд подходов к оценке надежности и безопасности АЭС и сооружений в ее составе и их компонент (грунтовых - оснований, свайных фундаментов, строитепьных конструкций, оборудования и т.д.) получил свое развитие в работах С.Г.Шульмана, А.Н.Бирбраера, Р.Кеннеди, К.Корнелла, Р.Батниза и других авторов. Известен также ряд исследований по количественной оценке вклада возможных землетрясений определенной интенсивности в частоту возникновения проектных аварий для некоторых конкретных эксплуатируемых станций. Однако, как показывает анализ литературы, учет сейсмического фактора при выполнении вероятностных анализов безопасности уникальных сложных природно-технических объектов типа АЭС недостаточен и носит весьма ограниченный характер. Решения этой проблемы Требует системного подхода и развития соответствующих методологических и методических аспектов.

Во второй глава рассмотрена предлагаемая методология вероятностной оценки безопасности АЭС с учетом сейсмических воздействий, основанная на концепции приемлемого риска

Интегральными показателями надежности и безопасности таких сложных объектов как АЭС является вероятность выполнения ряда требуемых функции за весь срок эксплуатации с учетом всех возможных за этот^ериод времени событий и воздействий. Вероятностный анапиз безопасности АЭС с учетом землетрясений необходимо проводить, исходя из реальных (прогнозируемых) сейсмических и инженерно-герлогических особенностей площадки строительства, принимая во внимание как характерные технологические особенности самой реакторной установки и обслуживающих ее систем, так и примтые конструктивные решения для различных сооружений в составе АЭС, т.е. рассматривая. все элементы, образующие систему многобарьерной защиты окружающей среды Для решения

этой задачи может быть предложена следующая единая последовательность исследований: . "

Построение деревьев событий для АЭС при сейсмических воздействиях;

Построение блок-схем надежности для станций в целом (или вероятностной модели безопасности) на основе предъявления требования выполнения в полном или частном объем«* ряда функций, { например, безопасности) с учетом возможных причинно-следственных связей между ними;

Определение на базе имеющейся информации вероятностных характеристик воздействия, материалов сооружений, оснований, оборудования и т.п.; "

Определение надежностей (или вероятностей отказов) все;, элементов входящих в блок-схему в целом;

Определение интегральных вероятностных показателей безопасности станции с учетом сейсмических воздействий (как вероятностей выполнения ряда требуемых функций); в зависимости от срока службы сооружений, оборудования и т.д., а также интенсивностей и периодов повторяемости землетрясений возможных на площадке строительства за этот срок.

Так как в выполнении требуемых функций участвует целый ряд систем, расположенных в различных сооружениях на фунтовых основаниях (или свайных фундаментах), связанных в свою очередь между собой инженерными коммуникациями (трубопроводы различного назначения, кабельные системы и т.п.), надежность каждого из сооружений в свою очередь определяется тг емя основными величинами:

Вероятностью выполнения условий прочности для фунтовых оснований (свайных фундаментов); »

Вероятностного выполнения условий прочности и герметичности,(в требуемом объеме) строительных конструкций;

вероятностного сохранения работоспособности, устойчивости, герметичности и т.д. расположенного в сооружениях оборудования, . обеспечивающего выполнение требуемых функций.

Отправной точкой для анализа сейсмостойкости станции служит предположение о возможной вероятности того или иного вида аварии- либо

отклонения в работе, например, оборудования вследствие сейсмического фактора. Надежность АЭС Н^з,. определятся как

HLc=1-¿P(A,)P(H¡uc/Aj) , (1) "

где Р(А,) - вероятность события А| (j=1,2,...,n); PtHijo/А() -вероятность отказа АЭС при событии А(; Н^ - надежность станции при событии А(;

Если все рассматриваемые события А| являются следствием действия. сейсмического фактора, то величина Н^ в (1) определяется надежности АЭС при землетрясениях интенсивностью I, баллов. Соответственно, для потока из к землетрясений интегральная вероятностная оценка сейсмостойкости определяется по формуле полной вероятности. Необходимо обра* чть внимание, что в- случае рассмотрения последствий сейсмических воздействий, события A¡ имеют более широкий физический.смысл, чем рассматриваемые при традиционных вероятностных оценках безопасности исходные события.

При воздействии на сооружение станции землетрясения изменяется напряженно-деформированное состояние всех его подсистем- грунтовых оснований, строительных конструкций, технологических- элементов, коммуникаций между зданиями и т.д. С одной стороны, расширяется спектр исходных событий-последствий землетрясений, которые необходимо учитывать при корректной вероятностной оценки их сейсмостойкости. С другой - возникает целый ряд новых источников зависимых отказов, обусловленных возможными отказами оснований, -падением частей строительных конструкций и оборудования, колебаниями сооружения. Наряду с этим нельзя исключать из рассмотрения возможность возникновения" дополнительных экстремальных исходных событий, таких как пожары или затопления в помещениях (или на площадке строительства), которые могут являться следствием отказов оборудования, строительных конструкций, гидротехнических сооружений. Дополнительным источником отказов может быть нарушения в инженерных коммуникациях. Характерно, что данный тип отказов может привести как к практически немедленной потере требуемых функций (ранний

отказ), так и к той же потере спустя какое-то определенно время после прохождения

землетрясения (отказ с запаздыванием). Приведенные выше рассуждения иллюстрирует укрупненное дерево отказов для сооружения на рис. 1.

Coo/)ywe/ir¿/9 £ со cm ¿7fe

//>yumo£¿/f oc/sofcA"c/p

C/v^oi/^e/fifi/e

Технологическое

Рис. /. Дере ¿o о/п*озо£ л/а землеггрвсеки&х â/jp caú/iy^reMi/j? fcoc/nofe ¿99C. о

При построении вероятностных моделей безопасности (ВМБ) АЭС все последствия сейсмических воздействий, которые могут повлиять на безопасность эксплуатации, можно разделить на следующие пять основных.классов:

1 класс последствий - запроектные (тяжелые) аварии, связанные с непосредственным повреждением активной зоны, приводящие к плавлению топлива, повреждению других источников радиоактивных продуктов, ведущие к выходу последних в биосферные каналы и т.д.;

2 класс последствий - запроектные (тяжелые) аварии вызванные отказами (повреждениями) систем важных для безопасности, (включая возможное сочетание с другими событиями) в размерах, не предусмотренных техническими проектом энергоустановки;

3 класс последствий* - проектные авариГ тые ситуации (вплоть до максимальной проектной), рассматриваемые при разработке технического обоснования безопасности энергоустановки; "

4 класс последствий - повреждение или отказ элементов систем безопасности, ведущие к потере одного или нескольких каналов безопасности или к потере какой либо функции безопасности (повреждение или отказы элементйв технических средств защиты);

5 класс последствий - нарушение нормальных условий эксплуатации АЭС.

Такая классификация исходных событий позволяет на этапе качественного

анализа учета возможного влияния сейсмического фактора на безопасность АЭС

выполнять анализ последствий землетрясений для каждого из сооружений в <

отдельности, определять характерные исходные события, а затем проводить группирование этих событий и их возможных сочетаний для всего энергоблока в целом.

Анализ роли и места учета сейсмического фактора при выполнении вероятностных оценок безопасности различных уровней показывает, что такой учет приводит к расширению границ подобных исследований и фактически неизменным по своему составу будет являться анализ внестанционного риска, основанный на исследовании распространения радионуклидов по биосферным каналам. В связи с этим для каждого этапа жизненного цикла АЭС был определен требуемый объем вероятностного анализа возможного влияния землетрясений. Выполнение подобных оценок в сочетании с проведением традиционных процедур

вероятностного " анализа безопасности различных уровней позволяет как исследовать относительную опасность сейсмического фактора для рассматриваемой площадки строительства и данного типа АЭС, так и, в конечном итоге - проанализировать влияние сейсмических воздействий на общий риск для природно-технической системы АЭС-окружающая среда.

Ввиду того что сейсмические воздействия могут являться одной из центральных причин множественных отказов, в рамках выполненной работы предложены возможные способы учета" статистической зависимости между элементами механических систем, обусловленной воздействием землетрясений на все сооружения на площадке строительства АЭС; проанализирована возможность применения некоторых наиболее распространенных параметрических моделей для количественной оценки вероятностей отказов по общей причине элементов и систем

Этап выбора моделей сейсмических воздействий на сооружения АЭС является одним из основных первых шагов в процессе анализа влияния землетрясений на безопасность атомных станций. Определение вероятностных моделей таких воздействий на сооружения предлагается проводить на основе набора (наборов) исходных акселерограмм для площадки строительства и полной по вероятности кривой сейсмического риска для описания на ней сейсмических режимов. При этом вероятностные характеристики кинематических параметров движения фунта во время землетрясений определяются в соответствии с имеющейся исходной сейсмологической информацией (территориальной, региональной или детальной).

В третьей главе рассмотрен ряд задач динамического взаимодействия сооружения с основанием с учетом случайного характера параметров как самого сейсмического воздействия, так и рассматриваемой системы.

Наиболее общие предлагаемые схемы оценки надежности сооружений при сейсмических воздействиях обычно основываются на представлении этих воздействий в виде случайного процесса, решении соответствующих задач статистической динамики и определении функции надежности как вероятности пребывания системы в допустимой области в" течении заданного интервала времени. Практическая реализация такого подхода связана с определенными трудностями из. - за неполноты информации о параметрах воздействия,

сооружения и основания, громоздкости вычислений и т п В тоже время, необходимость прогнозирования надежности сооружений АЭС с учетом сейсмического фактора возникает уже на начальных этапах проектирования станции, т.е в условиях, с одной стороны, существенной неполноты исходной информации о параметрах воздействия, с другой - при наличии достаточно общих критериев надежности (например, максимально допустимые крены реакторного отделения, максимально возможные ускорения передающиеся на оборудование, максимально допускаемые перемещения отдельных сооружений и т.п.). При определении сейсмически* нагрузок для массивных и жестких сооружений типа зданий ядерных энергетических установок необходимо учитывать взаимодействие сооружения с основанием. Численное решение частных динамических задач, позволяющих, честь сложную геометрию сооружений и основания на данном этапе ерчд ли целесообразно,- а зачастую и практически не возможно Одним из путей преодоления возникающих трудностей является применение, с одной стороны, простейших стохастических моделей сейсмического воздействия (белый шум. экспотенциально-коррелированный процесс, модели огибающей сейсмического процесса, предложенные В В Болотиным и М Ф Барштейном и др), с другой - применение а качестве расчетных достаточно простых моделей, которые описывают основные особенности динамического взаимодействия сооружения с основанием. (жесткий штамп, линейный неконсервативный осциллятор, многомассовая система на одномерной линейно-улругои однородной или двухслойной полуплоскости) случайные параметры которых можно считать, например, распределенными по нормальному закону

Характер стохастического взаимодействия сооружения с основанием может быть изучен, если известны моментные характеристики случайного процесса Х(1), описывающего движение системы основание - сооружение под действием случайного кинематического воздействия ц (I), моделирующего сейсмическое воздействие Для их определения необходим^) решить задачу об интегральном преобразовании ц (I) со случайной весовой функцией Ь зависящей от айда дифференциальных уравнений, описывающих движение системы.

С использованием аналитических решений о распространении аолн напряжений (продольных или поперечных) в одномерной полубесконечной

полуплоскости, было выполнено построение моментных характеристик процесса X (Ц для выбранных моделей сооружения и основания >и ряда известных моделей воздействия. На основе полученных решений и применения элементов теории выбросов была предложена общая схема оценки надежности системы сооружение - основание.

Подобный подход может быть использован при выполнении сравнительных вероятностных оценок (. выбор площадки строительства, выбор типа сооружения, варианты размещения на площадке и т.д.) в условиях существенной неполноты исходной информации как о воздействии, так и о системе сооружение - основание. В ряде случаев, полученные аналитические выражения позволяют получить и полезные вероятностные оценки сейсмостойкости технологического оборудования, позволяющие выполнить на качественно новом уровне сравнение вариантов компоновки внутри сооружения, предварительный выбор типа оборудования и так далее. Кроме того, применение подобного рода моделей сейсмического воздействия, сооружения и основания позволяет изучить основные особенности стохастического взаимодействия, например, массивных и жестких сооружений с основанием, оценить влияние разброса основных параметров на характер этого взаимодействия и уточнить нагрузки, передающиеся на основание от Сооружения при сейсмическом воздействии.

Четвертая гоаяа работы посвящена методикам оценки надежности фунтовых оснований и строительных конструкций сооружений- с учетом сейсмического фактора.

Для фунтовых оснований, свайных фундаментов, строительных конструкций и т.п. выводы об их сейсмостойкости делаются, как правило, на основе линейно-спектральных методик, положенных в основу ныне действующей системы Строительных- норм и правил. Поэтому определенный интерес представляет разработка методик вероятностной оценки сейсмостойкости подобных подсистем сооружений, основанных на развитии кваз1*статического подхода, т.е. рандомизации известных нормативных условий.

Задача оценки надежности, например, фунтовых оснований зданий й сооружений сводится к построению функций надежности Р и вычислению вероятности отказа как некоторой функции от параметров воздействия и

основания Проектирование грунтовых оснований с учетом сейсмического фактора выполняется на основе расчета по несущей способности, исходя из условия

" ВиШсФ-Кк = РгО, (2)

где М0 - вертикальная составляющая нагрузки, (?н д коэффициент запаса, шс - коэффициент условий работы, зависящий от грунтов основания и регламентируемый нормами, Р имеет смысл резерва прочности.

Решение задачи об определении вероятности выполнения условий по несущей способности для основания распадается на три части:

Определение нагрузок, действующих на основание и их вероятностных характеристик;

Определение несущей способности осн<эвания и ее характеристик как случайного параметра;

Определение вероятности выполнения условий прочности в зависимости от типа основания, характеристик грунтов и т.п.

При оценке несущей способности нескальных оснований сооружений, эпюра предельного давления на грунт принимается в виде трапеции, ординату которой Ро и р определяются согласно СНиП, а для эксцентриситета расчетной нагрузки и эксцентриситета эпюры предельного давления справедливы выражения:

М 1 р. - р. . „.

в„ = - -, х (3)

N. Ь р. + ро *

где М - изгибающий момент, (в дальнейшем индекс при N1, опускается), ер - эксцентриситет расчетной нагрузки, Ь и I - ширина и длина фундамента соответственно.

В зависимости от соотношения между величинами ер,и „ несущая способность основания принимается равной:

Ф, » 1 Ь М р. ♦ р.) , (в, < в„)

■ "7 . («„> „). (4)

Таким " образом, вероятность наступления лредель"ого состояния определяется как:

Р (ф) =. Р (ф,) Р (ер < е„) + Р (Ф,) Р (ер > в„). (5)

Аналогичным образом была рассмотрена задача о вероятностной оценке несущей способности скального основания, а также рассмотрены задачи определения вероятностей отказов грунтовых оснований по другим предельным состояниям.

Таким же образом было осуществлено построение функций надежности и для железобетонных и стальных элементов строительных конструкций

Для достаточно полной (в смысле рассмотрения всех последствий, их возможных сочетаний и вероятностей) оценки безопасности с учетом сейсмического фактора необходимо проведение статистического анализа степени разрушения или повреждения строительных конструкций, который может быть выполнен с использованием метода предельного равновесия

Особенно важным это представляется при рассмотрении задач оценки риска возможного выхода радиоактивных веществ в обслуживаемые помещения станции и биосферные каналы, т.е. при анализе, который включает в себя вероятностную оценку степени сохранения герметичности строительных конструкций, образующих третий барьер безопасности.

Общую схему оценки герметичности (или степени повреждения) железобетонных конструкций с применением, как правило, численных методов можно представить следующим образом, считая что вероятностные характеристики параметров прочности материалов известны:

Определейие вероятностных характеристик нагрузок на строительные

Конструкции при действии статических и сейсмических сил;

Формирование расчетных моделей строительных конструкции для проверки выполнения условий предельного равновесия (включая анализ возможных схем разрушения);

Определение условий достижения предельного равновесия, т.е. соответствующих критериев потери герметичности или разрушения;

Построение функций отказа для каждого перекрытия или стены сооружения и выполнение вероятностной оценки разгерметизации (или степени повреждения) сооружения.

В качестве примера в таблице 1 приведены результаты численного вероятностного анализа нарушения нормативных услрвий прочности и условий предельного равновесия для строительных конструкций обстройки реакторного отделения учифицированного блока АЭС ВВЭР-1000 при сейсмических воздействиях. различной интенсивности, полученные с применением разработанных методик.

Таблиц« 1 Вероятностная оценка степени ¡повреждения строительных конструкций обстройки РО ВВЭР-1МЮ при землетрясениях и возможных последствий, влияющих на безопасность эксплуатации.

Условная вероятность I

Интенсив- Наруше- Нарушен- Повреж- Отказ Повреж- Повреж-|

ность ние ие дение одного дение дение

воздейс- условий условий загрязн- канала БЩУ более

твия (в трещино- предель- енных безопас- чем

баллах) стойкости ного рав- помеще- ности одного

(СНиП) новесия ний БРУ-А

8 5.0-10" 7» 10"* ю-" 6*10"3 104 10"3

7 9-103 7*10° 7-10"" 6"10"5 10"" 10"5

В пятой главе описывается одна из возможных методик определения вероятностных характеристик сейсмических нагрузок на оборудование, расположенное в сооружениях атомных станций.

В практике проектирования сейсмостойких АЭС получил распространение прием определения сейсмических нагрузок на оборудование и трубопроводы, основанный на раздельном рассмотрении уравнений колебаний здания и оборудования(построение поэтажных акселерограмм (ПА) и поэтажных спёктров ответа (ПС)). В силу неизбежного разброса параметров воздействия, основания и сооружения сейсмические нагрузки также являются случайными и определение их

вероятностных характеристик (первых моментов, закона распределения и т.п.), является необходимым шагом при вероятностной оценке сейсмостойкости оборудования и трубопроводов.

Для реальных сооружений АЭС задача определения ПА и ПС осуществляется численными методами, как правило, с использованием линейно-упругих расчетных моделей сооружения. Для таких моделей величина, например, поэтажного спектра Щ^м), гдэ е| - собственные частота и затухание осциллятора, предстааима в виде

\«№,е,)= ДУГ (», .5,5],... б.), (6)

где УМ* - спектр при единичном сейсмическом воздействии; 5, - параметры

расчетной модели; А - пиковое ускорение грунта. Если величины А и (для каждой ^) распределены по нормальному закону, то в первом прибпижении, линеаризуя (6) в окрестностях точки { т(А), т(\АП), получим

УУ = А т(\Л/*) ♦ УУ* т(А> т(А) т(\ЛГ) (7)

Если принять, что по нормальному закону распределены параметры 5„ то функция \Л/* в "свою очередь может быть линеаризована по параметрам при фиксированном значении частот: I, и так же можно получить что величина распределена по нормальному закону. Гипотезу о нормальности параметров й,. и величины пикового ускорения грунта необходимо рассматривать, в качестве первого приближения, восполняющего недостаток эмпирических данных о реапьных распределениях.

Традиционным путем для решения подобных задач считается применение метода Монте-Карло. В настоящее время сущест;ует ряд модификаций этого метода (стратифицированные выборки, гиперкубическое моделирование и т.п.) о той или иной мере ускоряющих процедуры выполнения численных экспериментов и обработки их результатов. С точки зрения практических приложений вполне бывает достаточно определить первые моментные характеристики некоторой случайной величины, в свою очередь являющейся линейной комбинацией нескольких случайных величин, и на основе анализа этих характеристик принять гипотезу о законе ее распределения. Исходя из этих соображений, была разработана прикладная мртодика оценки вероятностных характеристик параметров

сейсмических поэтажных нагрузок, основанная на применении метода статистической линеаризации, суть которой сводится к следующему.

При фиксированном модуле деформации грунта Е величина поэтажного спектра, например, на частоте ft представима в виде

W, = AW,*(E) , (8)

где Wi* значение ПС при воздействии с единичной интенсивностью, являющееся функцией Е.

Если параметры А и Е случайны (например, нормальны), то разлагая (8) в ряд в окрестностях точки [т(А), т(Е)], получим в первом приближении, что Wi так же нормальная случайная величина с параметрами m(Wi) = m(A) Wi . Если исходить из требований обеспечения приемлемого риска по условиям радиационной безопасности (например, в соответствии с действующей российской нормативной документацией), то при принятии решения о проведении реконструкции и капитального ремонта должна быть разработала система технических и организационных мероприятий по обоснованию и повышению безопасности станции рассмотренного типа при землетрясениях.

Аналогичным образом были получены вероятностные оценки безопасности с учетом" сейсмических воздействий для пятого энергоблока Запорожской АЭС с реактором ВВЭР-1000 При этом вероятностная модель сейсмических воздействий выбиралась на основе сейсмологических и инженерно-геологических данных,.

полученных лосле окончания его проектирования Все вероятностные оценки

выполнялись, исходя из срока службы станции 30 лет

В соответствии с предложенной в работе методологией, на основе изучения

принятых проектных решений, был выполнен предваритепьный анализ возможных

последствий землетрясений применительно к рассматриваемому блоку,

классификация и группированние исходных событий по пяти основным категориям (

На данной стадии исследований рассматривался режим работы блока на

6е.)опасмости эксплуатации) сооружений были построены деревья отказов при

сейсмических воздействиях. Среди групп последствий, которые могут привести к

попреждению активной зоны были выделены для расчетного анализа аварии

непосредственно ведущие к таким повреждениям (например, падение крана на

реактор), нарушение отвода тепла по второму контуру более чем по одной петле, и

от>аз трех каналов безопасности совместно с обесточиванием собственных нужд, а

так же те события, которые обусловлены отказами грунтовых оснований

Суммирование полученных численных оценок по формуле полкой

вероятности показывает, что с учетом возможных на площади строительства

землетрясений среднегодовая частота повреждения" активной зоны вспедствие

действия сейсмического фактора оценивается величиной порядка 3 101 1"юд и

учет землетрясении вносит 30% поправку в известные из литературы интегральные

показатели безопасности блока Сейсмический фактор следует признать весьма

значимым и сравнимым с такими внутренними исходными событиями как

разгерметизация первого контура или нарушение отвода тепла по второму контуру

вследствие отказов оборудования

Полученные вероятностные оценки для отдельных систем и сооружении

позволяют выделить те из них. сейсмостойкость которых наиболее существенным

образом влияет на безопасность эксплуатации АЭС ВВЭР К ним прежде всего относятся: трубопроводные системы важные для безопасности, в т ч вне пределов гермообъема, каркасные строительные конструкции основных сооружений, транспортно-технологическое оборудование, брызгальные бассейны Обеспечение требуемой сейсмостойкости этих конструкций (в смысле малой вероятности их

отказа при землетрясениях) является одним из приоритетных путей повышения

безопасности и снижения общего риска для окружающей среды и населения ОСНОВНЫЕ ВЫВОДЫ

Полученные в исследовании научные и практические результаты можно сформулировать следующим образом

1. Разработана методология вероятностной оценки безопасности атомных станций с учетом возможных землетрясений, основанная на системном анализе обеспечения техническими средствами защиты окружающей среды (барьерами безопасности и обслуживающими их системами) АЭС за срок ее эксплуатации требуемых функций ядерной и радиационной безопасности

2. Для практической реализации системного подхода предложены способы построения вероятностных моделей безопасности АЭС с учетом землетрясений, классификация возможных последствий, способы учета зависимых отказов и отказов по общим причинам, модели сейсмического воздействия на сооружения^ ДОС, основанные на имеющейся исходной сейсмологической информации о площадке строительства

3. С ■ использованием апробированных практикой сейсмостойкого строительства моделей сооружения, основания и сейсмического процесса рассмотрен ряд задач моделирования динамики подобных систем с учетом случайного характера параметров воздействия, сооружения и основания. На основании применения элементоа теории выбросов предложена схема количественной оценки надежности таких систем, которая может быть использована при выполнении различного рода сравнительных вероятностных оценок в условиях существенной неполноты исходной информации.

4 В рамках развития нормативного линейно- спектрального подхода разработаны методики оценки надежности грунтовых оснований и строительных конструкций с учетом сейсмического фактора, а также предложена методика оценки степени повреждаемости и герметичности строитепьных конструкций при землетрясениях, основанная на применении метода предельного равновесия

5. Разработана методика определения вероятностных характеристик сейсмических нагрузок на оборудование АЭС. Предложены способы учета влияния сейсмического фактора на усталость Материалов и методика оценки надежности элементов, прошедших испытания на вибростендах, основанные на конкретной сейсмологической информации о площадке строительства и прогнозируемом отхлике того или иного сооружения на сейсмическое воздействие.

6 Выполнен ряд исследований влияния сейсмического фактора на надежность технологических каналов I поколения реакторов РБМК. В результате отработана методика вероятностного анализа влияния как сейсмического, так и иных возможных динамических факторов на множественное повреждение ТК

7 Разработана общая схема" анапиза последствий аварий, обусловленных разгерметизацией трубопроводов первого контура АЭС с водным теплоносителем, в том числе, если эти исходные аварийные ситуации вызваны землетрясением Выполнена оценка надежности трубопроводов контура многократной принудительной циркуляции АЭС РБМК - 1§00. Полученные результаты показывают что учет сейсмического фактора вносит значимые поправки в вероятностные оценки частоты разгерметизации контура, но влиянием сейсмических нагрузок на прочность и герметичность аварийных помещений практически можно пренебречь" по сравнению с ударно-динамическими нагрузками и ростом давления

8. С применением изложенной методологии и разработанных методик для некоторых характерных схем технического водоснабжения АЭС получены оценки их

надежности Выявлено, что наиболее существенны" вклад сейсмические воздействия могут внести в редкие по вероятности при нормальных условиях эксплуатации комплексные события (отказ нескольких каналов безопасности, потеря искусственного конечного погпотителя тепла, полная или частичная потеря нескольких функций безопасности).

9 Выполнены вероятностные оценки безопасности АЭС РБМК-1500 (I блок " Игналинской АЭС) и АЭС ВВЭР-1000 (V блок Запорожской АЭС) с учетом сейсмических воздействий" на основе имеющейся исходной информации (сейсмологической, геологической и т.п.) по конкретной площадке строительства Полученные предварительные количественные результаты свидетельствуют, что относительный вклад возможных на площадках строительства землетрясений интегральные показатели безопасности станций достаточно значим и сравним,

например, с окладом таких внутренних исходных событию, как разгерметизация трубопроводов первого контура.

10 Выполненные исследования показывают, что применение системного подхода и вероятностных методов для анализа возможного влияния землетрясении на технические средства защиты окружающей ср еды атомных станций- является,-одним из приоритетных способов научно - обоснованного выбора путей повышения их безопасности и обеспечения приемлемого уровня общего риска для окружающей сроды, .

1 Курносое В А., Никольский М А; Михайличенко О А, Буторин С Л, Монэхенко Д В. Балахонова Л А Обобщенные спектры ускорений реакторного отделения атомной электростанции с реактором РБМК - 1500 (Техническое пособие) -Препринт ВНИПИЭТ, РД 8.14-84, Л.: 1984. - 34с

2 Буторин С.Л., Шульман С.Г. Исследования динамического взаимодействия сооружения с основанием в вероятностной постановке. 11В, сб. "Динамика оснований, фундаментов и подземных сооружений": Тезисы 6-й Всесоюзной конференции,- Л/. Изд. ВНИИГ, 1985,- С. 14-15.

3 Буторин С Л., Шульман С.Г. К оценке надежности фунтовых оснований " сооружений при сейсмических воздействиях в рамках нормативной методики II Известия ВНИИГ им. Б.Е.Веденеева: Сб. научн. трудов,-.1986 -Т. 193,-С. 5-7

4. Буторин С.Л., Шульман С.Г. Стохастическое моделирование динамики систем сооружение-основание. //Изв. ВНИИГ им. Б.Е. Веденеева: Сб. научн. трудов - 1987 -Т 202 -С. 13-17.

5 Буторин С Л. К определению количественной надежности грунтовых оснований сооружений АЭС при сейсмическом воздействии. // В сб. "Химическая технология и вопросом надежности эксплуатации".: Сб. научн. трудов,- Л.: иэд ВНИПИЭТ. 1988-С. 54-62.

6 Бирбраер А Н, Буторин С. Л. Шульман С.Г. Оценка надежности основании сооружений при сейсмических воздействиях в рамках нормативной методики. II

Бюллетень по инженерной сейсмологии Na12 / Ереван.: Изд. АН Армянской ССР,-1988 -С. 96-103.

7 Буторин С Л., Монахенко Д.В., Шульман С.Г. Оценка сейсмостойкости АЭС на основе теории риска II Иза. ВНИИГ им. Б.Е. Веденеева: Сб. научн. трудов,- 1989 - Т 214 - С.18-23.

8 Буторин С Л. Оценка надежности защитных железобетонных конструкций при сейсмических воздействиях в рамках линейно-спектральной теории. II Там - же - С 107-110.

9 Буторин С Л, Шульман С Г К оценке надежности системы сооружение -основание/ Мат конф ДЭС - 87 - Л: Энергоатомиздат, Лен отд 1989 ,-С 206-210

10 Буторин С Л, Монахенко Д В, Шульман С Г Вероятностные методы оценки сейсмостойкости АЭС / В сб "Сейсмостойкость энергетических сооружений" - Изд ВНИИГ.Л 1990 -С 203-205

11 Бирбраер А Н., Буторин С Л., Монахенко Д.В., Шульман С Г Вероятностная оценка безопасности АЭС при земпетрясениях.//Мат. конф "Dynamik of structures - "89 " - Карповы Вары, Чехословакия, 1989.

12 Буюрин С Л, Велитченко В.И, Шиверский Е.А, Шульман С Г Вероятностное прогнозирование разрывов технологических каналов РБМК при эксплуатационных и сейсмических воздействиях. //Изв. ВНИИГ им. Б Е. Веденеева Сб. научн трудов -1991 - Т. 225-С 84-92

13 Бирбраер А Н., Буторин С Л., Караковский M В Роледер А Ю. Оценка сейсмического риска для грунтовых оснований и свайных фундаментов (на русск и анг. яз). II Сб. док. сов.- англ: сем. "Применение теории риска в оценке сейсмостойкости АЭС"- Изд. ГАН РФ: Балаково, Россия, январь 1991 - 12с.

14 Бирбраер А H , Буторин С.Л., Шульман С Г. Системный подход к изучению сейсмостойкости атомных станций, основанный на теории риска (на руск. и англ. яз). //Там же.-9с.

15. Буторин С.Л., Попов А И., Фирсов В H . Количественная вероятностная оценка прочности конструкций АЭС при землетрясениях в рамках линейно- спектральной теории (на русск и анг. яз) // Там же - 6с

16. Буторин С.Л Комплексная вероятностная оценка сейсмостойкости ЯЭУ //Препринт ВО ВНИПИЭТ, Л.: 1991 - 19с

17. Буторин С Л. Внешние события. II В сб. докладов совещаний руководителей рабочих групп МП " Безопасность проектных решений и эксплуатации АЭС с реакторами РБМК".-М.:- 1992.-Ч. 1.-С 19-23. у

18. Буторин С.Л., Тананаев A.B., Шульман С,Г. Вероятностная оценка безопасности АЭС с учетом катострофических динамических воздействий. // В сб тезисов ежегодной научн,- техн. конф. Ядерного общества. Нижний Новгород, 1993,-С.

19. Буторин С.Л., Шульман С.Г. Вероятностная оценка сейсмостойкости систем техводоснабжения АЭС. //Изв. ВНИИГ им. Б.Е. Веденеева: Сб. научн. трудов" -1993 - Т. 227 - С 20-25.

20. Бугаенко С.Е., Аржаев А.И., Баранов И.М. Буторин С.Л, Малов M Ю Анализ обоснования целостности компонентов контура многократной принудительной циркуляции, важных для" безопасности реакторной установки РБМК. II Мат. конф. внебюджетной программы МАГАТЭ по безопасности АЭС с реакторами РБМК. " Оценка предлагаемых мероприятий по повышению безопасности Игналинской АЭС" - М.: октябрь 1994, SAPMI-19 - 19с.

21 Аржаев А И., Буторин С.Л, Головлев Ю В Анализ развития аварий, обусловленных разрывом трубопроводов ИАЭС (I блок) - M изд НИКИЭТ -

22. Буторин С.Л., Аржаев А.И, Бугаенко С.Е. Анализ сейсмостойкости барабан-сепараторов АЭС с реакторами РБМК- 1000. //Мат. межд. сем. "Уроки Чернобыля. Технические аспекты ".- Десногорск, Смоленская АЭС, Россия, ahpenb

ВЕРОЯТНОСТНЫЙ АНАЛИЗ БЕЗОПАСНОСТИ КАК ОСНОВА ДЛЯ ПРИНЯТИЯ РЕШЕНИЙ ПО УПРАВЛЕНИЮ РАДИАЦИОННЫМ РИСКОМ ОТ АЭС

ГНУ ОИЭЯИ-“СОСНЫ”, Минск, Беларусь

В Республике Беларусь основная цель развития топливно-энергетического комплекса определена как «надежное и бесперебойное удовлетворение потребностей всех сфер экономики и населения различными видами энергоресурсов при соблюдении экологических требований, повышение энергобезопасности и снижение энергозависимости страны». С этой целью, в том числе, прогнозируется введение в энергетический баланс страны первого энергоблока АЭС мощностью до 1000 мВт. Среди рассматриваемых к введению типов реакторов лидирующее место занимает ВВЭР-1000.

Основная привлекательность реакторов типа ВВЭР для Беларуси заключается, прежде всего, в распространенности и, следовательно, хорошо изученности, в дешевизне используемого в них теплоносителя-замедлителя (обычно вода) и характеризующиеся относительной безопасности в эксплуатации.

Для страны, существенно пострадавшей в результате аварии на ЧАЭС, вопросы ядерной и радиационной безопасности планируемого объекта атомной энергетики выступают на первый план.

Объективная реальность свидетельствует, что никакие промышленные объекты, использующие источники ионизирующего излучения, в принципе не могут быть абсолютно безопасными, тем более такие крупные как АЭС. Опасность – это внутреннее свойство источника, состоящее в потенциальной способности приносить вред здоровью людей и окружающей среде. Для того чтобы реагировать на ситуации, которые могут быть опасны или сами по себе, или в том случае, когда не предпринимаются никакие необходимые действия, разрабатываются системы безопасности . Такие системы должны генерировать правильные выходные сигналы, предотвращающие опасность или ограничивающие ее последствия и позволяющие лицу, принимающему решение по введению в действие тех или иных мер, четко ответить на вопрос, какая из контрмер должна быть использована. Международный опыт анализа инцидентов на ядерных объектах показывает, что большинство из них были вызваны не каким-нибудь трудноуловим отказом системы, а дефектами, которые можно было предвидеть, если бы на всем жизненном цикле применялся бы систематический подход, основанный на риске. Ясно также, что, несмотря на технологические различия типов реакторов, идеи обеспечения безопасности, необходимые для предотвращения отказов, остаются одними и теми же. Яркое свидетельство тому, анализ самой крупномасштабной аварии в истории атомной энергетики – аварии на ЧАЭС.

В состав Чернобыльской АЭС входили четыре реактора типа РБМК тепловой мощностью 3200 МВт каждый. В 1986 году на 5 АЭС эксплуатировалось 15 реакторов данного типа, именно на таких реакторах базировалась значительной ядерной энергетики СССР. После двух с небольшим лет нормальной эксплуатации 4-й блок нуждался в остановке на плановый ремонт. В процессе остановки ректора проводились экспериментальные испытания одного из турбогенераторов. Целью испытаний являлась проверка возможности использования механической энергии ротора для внутренних нужд энергоблока в условиях обесточивания.

Результаты проведения ВАБ на стадии эксплуатации объекта можно рассматривать в контексте непрерывного повышения безопасности, даже в случае, когда признано, что объект безопасен. В этом случае, организации, ответственные за проектирование и эксплуатацию должны стремиться с помощью непрерывного выполнения элементов ВАБ выявить потенциальные проблемы в области обеспечения безопасности. Схематично роль ВАБ на этапе эксплуатации представлена на рис. 2.

0 " style="border-collapse:collapse;border:none">

Непрерывный анализ может помочь обнаружить возросшую вероятность отказа прежде его реализации, что поможет в свою очередь предотвратить существенный ущерб. Следовательно, проведение ВАБ может рассматриваться как обязательный элемент в управлении безопасностью. Основой такого управления должно являться соответствие результатов ВАБ принятым критериям безопасности.

Согласно технической информации в проекте АЭС ВВЭР-1000 в основном применяются отработанные технологии, узлы и системы, и максимально используется опыт проектирования, изготовления и эксплуатации уже существующих АЭС этого типа. В этих реакторах реализованы самые современные подходы к обеспечению безопасности, основанные на принципе глубокоэшелонированной защиты и предполагающие несколько последовательно срабатывающих уровней безопасности: в случае непредвиденных ситуаций при отказе одного уровня защиты, безопасность гарантируется наличием последующих. Первый уровень защиты предотвращает выход продуктов деления под оболочку тепловыделяющего элемента. На втором гарантируется предотвращение выхода продуктов деления в теплоноситель главного циркулярного контура. Третий контролирует предотвращение выхода продуктов деления под защитную герметичную оболочку, и созданная система защитных герметичных ограждений предотвращает выход продуктов деления в окружающую среду.

На случай отказа всех физических барьеров безопасности существует еще один дополнительный защитный уровень, на котором определенные защитные системы включаются автоматически, когда даже самые незначительные показатели работы АЭС (температура, давление, мощность и другие) начинают превышать определенные показатели. Это так называемая пассивная, т. е. не требующая вмешательства операторов и подвода энергии от внешних источников система безопасности и гарантирующая, в случае необходимости, надежный останов реактора.

Безопасность АЭС обеспечивается при нормальной эксплуатации в течение всего проектного срока службы, принятого равным 50 лет, при возникновении заданного проектом количества аварийных ситуаций, а также при проектных и запроектных авариях. Вероятность значительного повреждения топлива – плавления не превышает 10-6 в год на реактор, а вероятность превышения предельного аварийного выброса, приводящего к необходимости эвакуации населения за пределы расстояний, устанавливаемых нормативными требованиями к размещению АЭС, не превышает 10-7 в год на реактор. Уровни воздействия на населения при работе АЭС данного типа составляют не более 0,1 % от существующего облучения, что соответствует международным рекомендациям.

Собственных исследований безопасности проектов АЭС типа ВВЭР-1000 в Республике Беларусь не проводилось. Однако результаты работы (), выполненной еще в 1997 году по оценке возможного радиационного загрязнения воздуха, почвы и прогноз оценок доз для населения при нормальной эксплуатации и в случае аварийных ситуаций на примере реактора типа ВВЭР-640 свидетельствуют о соответствии уровней безопасности реакторов данного типа существующим национальным критериям .

На сегодняшний день в Республике Беларусь в качестве закрепленного в нормативно-правовых документах вероятностного показателя безопасности можно рассматривать только предел индивидуального пожизненного риска в условиях нормальной эксплуатации для техногенного облучения в течение года, равный для населения - 5×10-5 . Приведенное значение допустимо интерпретировать как вероятностный критерий безопасности для ВАБ третьего уровня. Однако самой распространенной мерой риска для большинства АЭС в международной практике определена вероятность в единицу времени (частота) повреждений активной зоны реактора .

Следовательно, в свете планируемого развития ядерной энергетики в Беларуси для возможности реализации эффективного управления в области приятия решений по вопросам ядерной безопасности нужно совершенствовать существующую нормативную базу. При этом при разработке нормативно-технической и методической документации необходимо регламентировать вероятностные критерии безопасности, позволяющие осуществлять поддержку принятия решений по таким существенным вопросам как ядерная и радиационная безопасность.

Список литературы

1. 20 лет после чернобыльской катастрофы: последствия в Республике Беларусь и их преодоление. Национальный доклад/ Под редакцией, . – Комчернобыль, Минск, 2006.

2. Safety Analysis for Research Reactors/ Safety reports series no. 55 IAEA, Vienna, 2008.

3. Basic Safety Principles for Nuclear Power Plants, Safety Series No. 75-INSAG-3, IAEA, Vienna, 1988.

4. Combining Risk Analysis and Operating Experience (Report of a Technical Committee Meeting, Vienna, 25-29 November 1985), IAEA, Vienna, 1986.

5. Техническая информация о вновь разрабатываемых проектах АЭС с реакторами ВВЭР, Атомэнергопроект, Санкт-Петербург, 1996.

6. Оценка возможного радиационного загрязнения воздуха, почвы и прогноз дозовых нагрузок на население при нормальной эксплуатации и в случае аварийных ситуаций. Отчет о научно-исследовательской работе / руководитель работ, ответственный исполнитель. – Институт проблем энергетики НАН Беларуси, Минск, 1997.

7. Нормы радиационной безопасности (НРБ-2000), Минск, 2000.



Просмотров