Методы уменьшения количества выбросов вредных веществ теплогенерирующими установками. Сзфо: улучшение атмосферы. Выбросы в атмосферу: источники

Выброс ядовитых веществ особенно силен в крупных городах и центрах промышленности. Человек в среднем за сутки человек вдыхает до 20 тысяч литров воздуха. Однако вместе с необходимым организму чистым кислородом мы проносим через легкие ядовитые пары, частицы копоти и пепла. Они оседают в наших легких, отравляя человека. Долгое воздействие смога приводит к общему плохому самочувствию, позже – к головным болям и тошноте, раздражаются слизистые оболочки, развиваются болезни легких и сердечно-сосудистой системы. Если не принять никаких мер, оседающие в организме вещества приведут к летальному исходу.

Разрушение озонового слоя приводит к сильному облучению всей планеты. Ультрафиолетовые лучи сильнее начинают действовать на организм животных и человека. Пагубное влияние радиации вызывает общее ослабление иммунитета, развитие страшных болезней: рака кожи и слизистых оболочек, катаракты.

Парниковый эффект

Возникает вследствие вырубки лесов и истощение озонового слоя атмосферы Земли. Дыры в верхних слоях атмосферы пропускают все больше солнечной радиации, затем тепло подогревает , а те – поверхность планеты. Уже от земли тепло вновь подогревает планету. Причина того, что излучение не возвращается в космос, кроется в скоплении парниковых газов в нижнем слое воздушной оболочки, дела ее слишком плотной.

Парниковый эффект может привести к другой проблеме – «глобальному потеплению». Из-за задержки теплового излучения на планете начинает повышаться средняя температура Земли. Это приводит к таянию ледников на полюсах, затем к повышению уровня мирового океана. Ученые уже наблюдают постоянные затопления некоторых прибрежных зон. Если парниковый эффект не остановить, произойдет затопление многих участков суши, погибнут животные, люди и растения.

Кислотные дожди

Из-за выброса в атмосферу Земли в больших объемах вредных веществ промышленными предприятиями случается такое явление, как кислотные дожди. при взаимодействии с парами воды в воздухе образуют кислоту.

Выпадающие кислотные осадки, дожди и снег становятся кислыми. Они приводят к страшным последствиям для всей природы:

  • При взаимодействии с бетонными и кирпичными строениями наносят им непоправимый вред. Повреждаются отделка, трубы, крыши;
  • За несколько десятков лет кислотные осадки испортили множество памятников культуры;
  • Автомобили, попавшие под кислотный дождь, становятся непригодными для использования, ломаются двигатели, разъедается металл, шины и стекло;
  • Отравляется почва. Она становится кислой, что приводит к понижению ее плодородия;
  • Кислотные дожди губят растения, опустошая целые зеленые участки;
  • Кислотный дождь и снег несет огромные убытки всему сельскому хозяйству. Гибнет отборный урожай, гниют деревья, отравленной травой питаются сельскохозяйственные животные, которые либо тяжело заболевают, либо умирают;
  • Такие осадки отравляют водоемы, что приводит к гибели этой экосистемы.

Пути решения проблемы загрязнения атмосферы

Проблема загрязнения воздушной оболочки нашей планеты – дело каждого человека без исключения. Для уменьшения пагубного влияния промышленной деятельности человека привлекаются ученые.

Для того, чтобы промышленные предприятия выбрасывали в атмосферу меньше ядовитых веществ, предлагается несколько способов:

  • Абсорбционный (поглотительный): предполагает установку фильтров из активированного угля, известняка и его щелочных растворов, аммиака. Эти вещества отлично впитывают в себя вредные газы. К плюсам этого способа относят хорошее качество очистки и простоту. Однако устройства с фильтрами занимают достаточно много места, а также периодически менять очистительную жидкость;
  • Окислительный способ хорош тем, что выжигает в воздух горючие вредные примеси. К минусу такого метода относят выделение углекислого газа;
  • Каталитический: ядовитые пары и газы пропускают через твердые катализаторы, ускоряющие процесс отделения вредных веществ и примесей. Способ хоть и действенный, но требует огромных средств и тратит много энергии;
  • Механический способ применяют уже достаточно редко. Газ загоняют в специальные турбины, где винтами, создающих вихри, собираются ядовитые частицы. Кроме высоких затрат энергии и необходимости постоянного обслуживания аппарата (удаление с винтов собранных частиц) этот способ малоэффективен, слабо очищает воздух;
  • Электроогневой способ – самый новый и самый эффективный из всех существующих способов очистки газов. Необходимое для очистки загоняется в сосуды, а после – пропускается сквозь наэлектризованное пламя. К сожалению этот метод очень трудно осуществить и поэтому применяется редко.

Иногда лучше сочетать сразу несколько способов очистки воздуха от ядовитых веществ.
Чтобы обезопасить атмосферу от выбросов в нее выхлопных газов из промышленных и выхлопных труб, в них устанавливаются фильтры, специальные добавки, в которые не входит свинец, каталитические нейтрализаторы. Очень важно следить за качеством заливаемого топлива: дешевое масло и бензин выделяют слишком много вредных веществ. Стали выпускаться новые модели автомобилей, выбрасывающие в атмосферу значительно меньше ядовитых газов. Во многих странах общественный транспорт стал полностью работать от электричества или на биотопливе. В некоторые транспортные средства устанавливают газобаллонное оборудование. Ведутся разработки двигателей, которые не нуждаются в переключении на другие режимы.

Организация крупных городов также требует изменений. Заводы, предприятия, автотрассы и аэропорты необходимо отделять от жилых районов плотной зеленой стеной из деревьев и кустарников, выступающих в роли естественного фильтра и генератора кислорода. Желательно, строить промышленные организации за чертой города.

Необходимо реформировать обработку мусора, которая уменьшит размеры свалок, испускающих при разложении метан и другие вещества, разрушающие озоновый слой. Можно ввести повторное использование материалов, использовать другие способы избавления от мусора, кроме сжигания.

В сельском хозяйстве рекомендуется предложить постепенный отказ от химикатов, отравляющих как почву, так и воздушную оболочку. Навоз и другие органические остатки можно использовать в качестве натуральных удобрений, безопасных для природы.

Сохранение лесов – одна из важнейших задач современности. Именно деревья постепенно снижают действие парникового эффекта, фильтруют воздух и выделяют кислород.

Со стороны государства необходимо издать ряд законов, предусматривающих введение ответственности за загрязнение воздуха. Создание специальной службы, которая в составе комиссии будет осматривать промышленные предприятия, следить за организацией городов.

Болота по праву считаются лучшими фильтрами нашей планеты. Вредные вещества оседая в них перерабатываются в безобидные. Благодаря сохранению болот в России наша страна может похвастаться одним из лучших состоянием атмосферы.

Необходимо распространить знания о загрязнении атмосферы среди всего населения. Тогда люди начнут соблюдать ряд мер, чтобы уменьшить количество выбросов ядовитых веществ в воздушное пространство.

Уже существует завод, перерабатывающий радиоактивные отходы с атомных электростанций и предприятий, производящих реактивное топливо. Если развить это направление, то тяжелых металлов в атмосфере будет гораздо меньше.

Проблема загрязнения атмосферы на сегодняшний день наиболее актуальна. Необходимо скорее решать ее, иначе бездействие приведет к ужасным последствиям.

Принципиально существует несколько подходов к решению проблемы ограничения вредных выбросов в атмосферу с дымовыми газами ТЭС:

Рассеивание вредных выбросов с помощью высотных дымовых труб на большой площади;

Непосредственное воздействие на механизм образований вредных примесей при горении топлив;

Очистка продуктов сгорания топлив от вредных примесей;

Удаление вредных компонентов из топлива до его сжигания. Специалисты в области теплоэнергетики должны уметь правильно выбирать оборудование и оптимальные режимы эксплуатации котлов, обеспечивающие снижение до минимума вредных выбросов в окружающую среду, в зависимости от вида сжигаемого топлива, рельефа местности и других факторов.

1.1. Высотные дымовые трубы

Хотя тепловые электростанции являются одним из наиболее крупных источников вредных выбросов в атмосферу, их участие в формировании общего фона загазованности в приземном слое воздуха отнюдь не находится в прямой зависимости от массы этих выбросов. Связано это с тем, что в отличие от других источников вредных выбросов (автотранспорта, промышленных предприятий) на ТЭС дымовые газы рассеиваются в атмосфере на высоте несколько сотен метров, благодаря чему достигают поверхности земли, разбавленные воздухом в сотни и тысячи раз. Основной задачей рассевания вредных веществ в атмосфере являются снижение их концентраций до такого уровня, когда они становятся безопасными для живой природы. Для этого на ТЭС используются дымовые трубы, высота которых (по мере укрупнения электростанций и ухудшения качества топлив) постоянно увеличивалась. В настоящее время используются трубы высотой 180, 250, 320 – 360 и 420 м.

Современные высотные дымовые трубы выполняются в виде моно­литных железобетонных стволов, выдерживающих высокие ветровые и весовые нагрузки. С целью предохранения железобетона от воздействия сернистых соединений, влаги и повышенной температуры дымовых газов в трубах выполняется защитная внутренняя оболочка из кислотоупорного кирпича. Высотные дымовые трубы являются дорогостоящим элементом ТЭС.

Концентрация токсичных веществ при увеличении высоты дымовых труб значительно падает в непосредственной близости от электростанции, с увеличением же расстояния относительное снижение концентрации уменьшатся. Для упрощенного определения распределения концентраций вредных примесей на уровне земли при их рассеивании с помощью дымовых труб используется следующая формула :

где М – количество выбросов; и – скорость ветра; Н – эффектив­ная высота трубы; k – коэффициент турбулентной диффузии; х – расстояние от трубы. Наибольшая величина приземной концентрации токсичных веществ С м устанавливается на расстоянии

(1.2)

и составляет

(1.3)

Однако в реальных условиях задача расчета концентрации токсичных примесей существенно осложняется в связи с необходимостью учиты­вать реальные гидрометеоусловия, неоднородность турбулентной структуры атмосферы, разность температур выбрасываемых газов и окружающего воздуха, условия выходя газов из устья трубы и их оседания на поверхности земли.

Высота дымовых труб ТЭС должна рассчитываться с учетом рас­сеяния токсичных примесей до норм ПДК. В табл.1.1 приведены рас­четные значения максимальной концентрации NО Х в приземном слое вблизи газомазутных ТЭС мощностью 3600 и 4800 МВт с дымовыми трубами 250 и 320 м при различных скоростях ветра. Данные расче­та показывают, что даже для трубы высотой 320 м в штиль содержа­ние NO Х в приземном слое может превышать ПДК. Еще большее пре­вышение ПДК будет наблюдаться при содержании в уходящих газах ТЭС, кроме NO Х, других вредных веществ, обладающих эффектом суммации.

Таблица 1.1

Расчетные концентрации NO X в приземном слое.

Высота труб, м

Скорость ветра, м/с

Концентрация NO X , мг/м 3

Поэтому высотные дымовые трубы не следует противопоставлять другим способам защиты окружающей среды. Пока будут существовать вредные выбросы (как следствие несовершенной технологии сжигания топлива), дымовые газы необходимо выбрасывать в верхние слои атмосферы, где их вредные компоненты будут обезвреживаться в ходе процессов естественного самоочищения воздушного океана. Высоту дымовых труб ТЭС следует выбирать после того, как использованы все возможности, связанные с уменьшением количества вредных выбросов ТЭС в атмосферу. Для этого существует специальная методика, учитывающая суммарное воздействие вредных веществ фоновую загазованность атмосферы городов и т.д. . С учетом этих факторов определяется предельная мощность тепловой электростанции по условиям защиты биосферы от воздействия вредных газообразных выбросов.

  • Административные методы управления: возможности и ограничения использования
  • Административные методы управления: возможности и ограничения использования.
  • Проблему уменьшения поступления ЗВ в атмосферу из стационарных источников решают двумя основными способами: путем использования технологических методов снижения и установкой пылегазоочистного оборудования. Применение того или иного метода подавления зависит от вида ЗВ, выброс которого необходимо уменьшить, технологического процесса и технических характеристик ИЗА.

    Методы снижения выбросов SО2:

    Технологическими методами уменьшения выбросов SО2 являются переход на сырье и топливо с более низким содержанием серы и использование на предприятиях теплоэнергетики промышленного и бытового назначения котельного оборудования с кипящим слоем.

    Из-за ухудшающейся в последнее время структуры потребления топлива и использования его высокосернистых видов основным методом подавления выбросов SO2 считают применение установок по десульфуризации отходящих газов.

    Известны аммиачный, аммиачно-циклический доломитовый методы очистки и метод, основанный на окислении SО2 на ванадиевом катализаторе. За рубежом широко используют метод подавления SО2, при котором дымовые газы орошаются известковым молоком в скрубберах. Однако в СССР, кроме отдельных опытно-промышленных установок, серийного оборудования по очистке отходящих газов от SO2 не выпускают. В этих условиях наиболее реальна замена высокосернистого топлива на низкосернистое.

    Снижение выбросов NОх:

    Основнымистационарными источниками поступления NOх в атмосферу являются процессы сжигания органического топлива и производство HNO3.

    В источниках, сжигающих органическое топливо, наиболее эффективны технологические методы уменьшения выбросов NOх. К ним относятся рециркуляция дымовых газов, применение специальных режимов горения и горелочных устройств и др. При правильной организации рециркуляции дымовых газов степень подавления NOх может достигать 30 - 40 %. Однако эффективность такого метода резко уменьшается с уменьшением номинальной мощности котельного оборудования.

    К технологическим методам относятся стадийное или нестехиометрическое сжигание топлива. Данный метод наиболее предпочтителен для котлов малой и средней производительности пара до 200 т/ч, при работе котлоагрегата с минимально допустимыми избытками воздуха.

    Эффективное подавление NOх наблюдается и при использовании специальных горелочных устройств с низким образованием NOх, таких, как низкотемпературные вихревые горелки и др.



    При производстве НNО3 в химической промышленности NOх подавляют за счет улучшения конструкции и правильной эксплуатации технологического оборудования.

    В настоящее время стали активно разрабатывать методы денитрификации дымовых газов.

    В первую очередь к ним относится введение NН3 в дымовые газы, содержащие NO. Этот метод наиболее эффективен при температуре дымовых газов 970 ± 50 °С.

    Недостатком данного метода является наличие в выбросах NН3. При использовании сернистых видов топлива газоходы могут забиваться бисульфатом аммония.

    Другой метод очистки основан на селективном каталитическом восстановлении NO до N2 аммиаком в присутствии катализатора (обычно TiO2 или V2O5).

    К перспективным методам очистки в настоящее время относят метод облучения аммиачно-газовой среды электронным пучком.

    Снижение выбросов СО:

    Наибольшее количество СО выбрасывается в атмосферу в литейном и химическом производстве, при производстве сажи и малеинового ангидрида. Основным методом подавления выбросов СО является организация его дожигания.



    Снижение выбросов углеводородов:

    Основными загрязнителями атмосферы углеводородами являются металлургическая, нефтехимическая и химическая промышленности.

    Организованные источники выбросов углеводородов в основном оснащаются системами мокрой очистки в скрубберах или системах дожигания, неорганизованные - системами герметизации и другими технологическими методами уменьшения выбросов.

    Основные «Парниковые газы» - газы, которые предположительно вызывают глобальный парниковый эффект

    Основными парниковыми газами, в порядке их оцениваемого воздействия на тепловой баланс Земли, являются: водяной пар, углекислый газ, метан, озон, галоуглероды и оксид азота.

    Основные парниковые газы:

    Водяной пар - основной естественный парниковый газ, ответственный более, чем за 60 % эффекта. Прямое антропогенное воздействие на этот источник незначительно. В то же время, увеличение температуры Земли, вызванное другими факторами, увеличивает испарение и общую концентрацию водяного пара в атмосфере при практически постоянной относительной влажности, что, в свою очередь, повышает парниковый эффект. Таким образом, возникает некоторая положительная обратная связь. С другой стороны, облака в атмосфере отражают прямой солнечный свет, тем самым, увеличивая альбедо Земли, что несколько уменьшает эффект.

    Углекислый газ: Источниками углекислого газа в атмосфере Земли являются вулканические выбросы, жизнедеятельность организмов, деятельность человека. Антропогенными источниками является сжигание ископаемого топлива, сжигание биомассы (в т. ч. сведение лесов), некоторые промышленные процессы (например, производство цемента). Основными потребителями углекислого газа являются растения. В норме биоценоз поглощает приблизительно столько же углекислого газа, сколько и производит (в т. ч. за счет гниения биомассы).

    Метан: Основными антропогенными источниками метана являются пищеварительная ферментация у скота, рисоводство, горение биомассы (в т. ч. сведение лесов). Как показали недавние исследования, быстрый рост концентрации метана в атмосфере происходил в первом тысячелетии нашей эры (предположительно в результате расширения сельхозпроизводства и скотоводства и выжигания лесов). В период с 1000 по 1700 годы концентрация метана упала на 40 %, но снова стала расти в последние столетия (предположительно в результате увеличения пахотных земель и пастбищ и выжигания лесов, использования древесины для отопления, увеличения поголовья домашнего скота, количества нечистот, выращивания риса). Некоторый вклад в поступление метана дают утечки при разработке месторождений каменного угля и природного газа, а также эмиссия метана в составе биогаза, образующегося на полигонах захоронения отходов.

    Озон : в земной атмосфере озон распределяется неравномерно. Большая часть озона естественного происхождения находится в нижних слоях стратосферы, где происходит множество фотохимических реакций с участием ультрафиолетового излучения. Однако, не это является главной причиной сравнительно высоких концентраций озона в этой области, так как энергии ультрафиолетового излучения в нижних слоях стратосферы не достаточно для образования больших количеств этого вещества. На концентрации озона большое влияние оказывают такие факторы, как разогрев и охлаждение (расширение и сжатие) и ветры, которые переносят озон из одного места в другое.

    Некоторые количества озона попадают в нижние слои атмосферы - тропосферу. Кроме того, озон попадает в тропосферу и в результате человеческой деятельности. Когда в атмосферу попадает угарный газ (СО), метан и другие углеводороды, вместе с выхлопами автомобилей и из других источников искусственного происхождения, то, вступая в реакцию с оксидами азота, под влиянием солнечного света, они образуют озоновый смог (фотохимический смог) тропосферы. Озоновый смог является причиной возникновения проблем со здоровьем у населения в наших городах, переполненных транспортом.

    Озон в верхней тропосфере и в нижней стратосфере является парниковым газом.

    Галоуглероды: Представляют собой класс химических соединений как антропогенного, так и природного происхождения. Они содержат углерод и один или более атомов, относящихся к галогенам (группа химических элементов) - фтору и хлору2. С точки зрения глобального потепления наибольшее значение имеют хлорофторуглероды (CFC, также известные под своей торговой маркой, фреоны), в особенности, CFC-11 и CFC-12. Несмотря на то, что они присутствуют в атмосфере в крайне незначительных количествах, эти химические соединения, помимо своего воздействия на истощение озонового слоя, являются сильными поглотителями тепла. На галоуглероды приходится около 10 процентов глобального потепления, но концентрация этих соединений в атмосфере начала сокращаться в результате международного запрета на их производство и потребление. Измерения концентрации сходных соединений, используемых в качестве замены фреонам, - гидрохлорофторуглеродов (HCFC) и гидрофторуглеродов (HFC) - показывают ее рост. Если их концентрация будет продолжать увеличиваться, эти альтернативные вещества могут оказать значительное влияние на глобальное потепление в будущем.

    Оксид азота (N2O): Как и СО2, оксид азота является естественным компонентом атмосферы. Однако интенсивное использование искусственных азотных удобрений и сжигание ископаемого топлива в двигателях внутреннего сгорания составляет большую часть антропогенных выбросов N2O. На него приходится около 6 процентов глобального потепления.

    Производственная деятельность железнодорожного транспорта оказывает воздействие на окружающую среду всех климатических зон нашей страны. Негативное воздействие железнодорожного транспорта на природную среду в настоящее время остается достаточно высоким в результате выброса вредных веществ, как от подвижного состава, так и от многочисленных производственных и подсобных предприятий, обслуживающих перевозочный процесс.

    Министерство путей сообщения Российской Федерации (МПС России) проводит экологическую работу в отрасли, руководствуясь Основными положениями государственной стратегии Российской Федерации по охране окружающей среды и обеспечению устойчивого развития, а также постановлениями Правительства Российской Федерации о планах действий Правительства Российской Федерации в области охраны окружающей среды и природопользования.

    Основой природоохранной работы является "Экологическая программа железнодорожного транспорта на 2006 – 2010 годы", главная цель которой – поэтапное приближение фактического загрязнения окружающей природной среды предприятиями железнодорожного транспорта к установленным предельно допустимым нормам за счет строительства очистных сооружений, совершенствования применяемых технологических процессов и перехода к экологически безопасным, ресурсосберегающим технологиям.

    Одной из важнейших задач, решаемых в рамках отраслевой экологической программы, является сокращение выбросов вредных веществ в атмосферный воздух предприятиями железнодорожного транспорта.

    В результате выполнения природоохранных мероприятий, направленных на более широкое применение на железнодорожном транспорте менее токсичных видов топлива, ликвидацию источников загрязнения, внедрение газопылеулавливающих устройств, удалось добиться снижения выбросов загрязняющих веществ на 22,9 тыс. т, или на 8,5% к уровню 2005 г. Тем не менее, анализ природоохранной деятельности показывает, что, наряду со снижением воздействия на окружающую среду, поступление загрязняющих веществ в атмосферу от промышленных предприятий остается на достаточно высоком уровне. В частности, на очистных сооружениях улавливается и обезвреживается всего 35,5% выбросов загрязняющих веществ в атмосферу.

    Основная причина негативного воздействия железнодорожного транспорта на атмосферу заключается в недостаточно эффективной работе технологического оборудования, природоохранных сооружений и оборудования в хозяйствах железных дорог и на заводах, а именно:

    В хозяйстве гражданских сооружений и водоснабжения - недостаточная очистка выбросов загрязняющих веществ в атмосферный воздух котельными, работающими на твердом и жидком топливе;

    В локомотивном хозяйстве - значительные выбросы загрязняющих веществ в атмосферный воздух маневровыми тепловозами, котельными, работающими на твердом и жидком топливе;

    В путевом хозяйстве - на шпалопропиточных заводах выбросы токсичных загрязняющих веществ в атмосферу происходят при остывании шпал после пропитки их антисептиком; на рельсосварочных предприятиях в воздушную среду выбрасываются пыль, газообразные вещества при литейных процессах, сжигании газа или мазута в печах пескосушильных камер, сварочных работах;

    В вагонном хозяйстве - выбросы вредных веществ в атмосферу котельными, работающими на твердом и жидком топливе; выбросы вредных веществ в атмосферу на промывочно-пропарочных станциях;

    В грузовом хозяйстве - загрязнение окружающей среды сыпучими грузами вследствие их распыления при перевозке на открытом подвижном составе.

    Для всех хозяйств железных дорог и заводов характерным является: высокий износ основных фондов оборудования и сооружений природоохранного назначения, их недостаточная эффективность и производительность; отсутствие или неудовлетворительная работа пылегазоулавливающих установок; нарушение сроков разработки и согласования нормативных экологических документов.

    Из всего многообразия загрязняющих веществ, воздействующих на атмосферный воздух при работе предприятий железнодорожного транспорта, наиболее масштабными являются продукты сгорания различных топлив: оксиды азота, серы, углерода, газообразные углеводороды и твердые частицы(сажа, зола). Очистку от этих соединений, поступающих от стационарных источников(например, при работе котельных) производят с использованием методов и технических средств рассмотренных ранее.

    Одним из основных источников загрязнения атмосферы от подвижного состава являются отработавшие газы дизельных двигателей тепловозов. В них содержится окись углерода, окись и двуокись азота, различные углеводороды, сернистый ангидрид, сажа. Высокое содержание вредных примесей в отработавших газах дизелей при работе в режиме холостого хода обусловлено не только плохим смешиванием топлива с воздухом, но и сгоранием топлива при более низких температурах. Режим работы маневровых тепловозов менее стабилен, чем поездных, поэтому и выделение токсичных веществ у них в несколько раз больше. Уровень загрязнения воздушной среды станций и прилегающих к ним зон отработавшими газами маневровых тепловозов зависит от числа одновременно занятых локомотивов. При этом наиболее значительно выделение оксидов азота и сернистого ангидрида.

    Анализ методов оценки и путей снижения отрицательного экологического воздействия дизелей на окружающую среду показывает, что в настоящее время основными направлениями являются усовершенствование конструкции отдельных узлов дизеля, рециркуляция газов, применение нейтрализаторов и катализаторов, электрофизических методов очистки выхлопных газов, использование альтернативных топлив. Кроме того, представляет интерес применение различных присадок к топливу, а также использование различных методов обработки топлива перед впрыском в камеру сгорания.

    Уменьшением угла опережения впрыска топлива на 4-5° от штатного снижается максимальная температура цикла, что приводит к снижению концентрации оксидов азота (NOx) в среднем на 30-35%. Увеличение угла опережения повышает концентрацию NOx на 15-17%. Иное влияние изменение угла опережения впрыска топлива оказывает на содержание продуктов неполного сгорания топлива. Так, уменьшение угла приводит к снижению концентрации СО при работе дизеля в диапазоне малых нагрузок и, наоборот, к увеличению - при работе дизеля в области средних и максимальных нагрузок. При угле впрыска больше штатного концентрация СО увеличивается в области малых нагрузок и снижается в области нагрузок, превышающих среднюю. Результаты эксперимента показывают, что уменьшение угла опережения впрыска топлива вызывает рост содержания продуктов неполного сгорания топлива, но общая токсичность дизеля не увеличивается, так как выход наиболее токсичного и трудно обезвреживаемого оксида азота снижается. Применение такого способа требует разработки и установки на дизеле специальной муфты, позволяющей автоматически менять угол опережения впрыска топлива в зависимости от нагрузки.

    Положительные результаты дает и рециркуляция отработавших газов на линии всасывания. В этом случае в свежем заряде цилиндра снижается доля свободного кислорода, что, в свою очередь, приводит к снижению скорости и температуры сгорания топлива а, следовательно, к ухудшению условий образования оксида азота. При этом выброс оксидов азота снижается до 55%, однако, происходит некоторое увеличение продуктов неполного сгорания топлива (окиси углерода). Кроме того, уменьшается выбрасываемая масса газов на величину перепускаемых.

    Однако, количественное изменение свежего заряда может негативно отразиться на технико-экономических показателях двигателя. В частности, при чрезмерном перепуске отработавших газов может увеличиться расход топлива с одновременным падением развиваемой дизелем мощности. Поэтому количество перепускаемых газов для каждого двигателя подбирается индивидуально, исходя из условий минимального ухудшения технико-экономических показателей дизелей и режимов его работы. Как правило, в этом случае за основу берется топливная характеристика. Следовательно, экономические показатели дизеля должны увязываться с указанными ограничениями. Так же при применении рециркуляции газов возникает дополнительная проблема - отложение сажи на внутренних поверхностях дизеля - воздухоподводящем канале, впускных окнах, форсунках. Эту проблему можно решить с помощью использования специальных сажевых фильтров. В настоящее время ряд отечественных и зарубежных исследователей ведут работы по созданию керамических фильтров (пористые сотовые структуры на основе кордиерита), фильтров на основе металлических сеток и войлока (волокна из нержавеющей стали), а также электрофильтров. Такие фильтры способны задерживать до 80 – 95 % твердых частиц, содержащихся в отработавших газах. Однако в процессе работы первые два из указанных типов фильтров вскоре забиваются сажей, что приводит к резкому росту противодавления в выхлопном трате. Поэтому требуется их регенерация - либо огневая (за счет выжигания сажи специальными горелками), либо за счет противотока, встряхивания. В целом рециркуляцию предпочтительно применять на тех тепловозах у которых, в общем времени эксплуатации преобладают режимы холостого хода и малых нагрузок.

    Одним из направлений в очистке отработавших газов от вредных выбросов (NOх, СО, СО2, SO2 и др.) является применение нейтрализаторов с катализаторами дожигания углеводородов. Из других методов очистки отработавших газов от оксида азота следует отметить каталитическое его восстановление с помощью платинованадиевого катализатора в присутствии аммиака. Использование аммиака наиболее приемлемо для применения в кислородосодержащей среде. Несмотря на сложность и относительно большую стоимость, этот метод может найти применение на железнодорожном транспорте, в первую очередь на станциях реостатных испытаний дизелей. Известны также случаи применения для восстановления оксида азота мочевины, метана, природного газа. Перечисленные способы снижения токсичности тепловозного дизеля могут быть мокрыми и сухими. Применение на тепловозах жидкостных нейтрализаторов нереально ввиду их громоздкости, сложности эксплуатации и обслуживания.

    В настоящее время во многих странах ведутся исследования по применению электрофизических методов очистки газов от экологически вредных составляющих. Одним из способов является использование импульсной стримерной короны для очистки отработавших газов. По сравнению с другими способами очистки, очистка с помощью стримерной короны не сопряжена с решением сложных инженерных задач обеспечения высокого ресурса источника энергии - ускорителя электронов в агрессивной среде выхлопных газов. Выхлопные газы проходят через реакционную камеру, к которой прикладываются импульсы высокого напряжения столь малой длительности, что пробоя камеры не происходит. При этом в камере возникает интенсивный импульсный коронный разряд представляющий собой одновременное развитие большого числа тонких светящихся каналов разряда - стримеров. Во время прорастания стримеров в межэлектродном промежутке, за счет высокой напряженности электрического поля на головках стримеров нарабатывается большое количество электронов имеющих сравнительно высокую энергию. Взаимодействие этих электронов с молекулами газа приводит к образованию химически активных частиц таких как О , О3, ОН- , Н2O2 и прочих которые, взаимодействуя в свою очередь с молекулами примесей, окисляют и доокисляют их с образованием безвредных малоактивных соединений. При этом привлекательными являются как простота технологий очистки, позволяющая совмещать реакционную камеру с существующими технологическими схемами, так и относительно невысокие затраты энергии на процесс очистки. Наличие в газах только коронирующего электрода является несомненным преимуществом этого способа очистки по сравнению с другими способами, что не исключает их комплексного применения. Энергия, требуемая на очистку 1 м3 газа, меняется в зависимости от концентраций и вида загрязняющего компонента. Так по экспериментальным данным очистка воздуха от диоксида азота NO2 на 80% требует затрат энергии около 15 Вт ч/м3, от диоксида серы SO2 на 90% - 10 Вт ч/м3.

    Большое значение для снижения вредных выбросов дизелей имеет разработка и внедрение альтернативных низкотоксичных видов топлив. Так в качестве дизельного топлива можно использовать диметиловый эфир, это топливо может радикально решить проблему использования дизельных двигателей в городских условиях, только необходимо разработать дополнительную к обычной, топливную аппаратуру для серийных двигателей. Но топливо должно быть доступным. В ИНХС РАН разработали эффективный способ получения дешевого диметилового эфира из синтез-газа в одну стадию. Диметиловый эфир СН3ОСН3 (ДМЭ) при комнатной температуре газ, но при минус 25° С он сжижается и под небольшим давлением может быть помещен в топливные баки дизельных двигателей. Параметры сгорания ДМЭ такие же, как и у дизельного топлива и при сохранении мощности и экономичности полностью отсутствует в выхлопных газах сажа на всех режимах работы, а так же снижается содержание оксидов азота.

    В связи с тем, что дизельный ДВС не может работать на природном газе, поэтому одной из мер по снижению токсичности выхлопных газов и экономии дизельного топлива может стать применение газодизелей - ДВС с двухтопливной системой: дизельное топливо - газ. Принцип этой системы состоит в том, что количество подаваемого в цилиндры дизельного топлива уменьшается примерно на 35%, а во впускной коллектор вместе с воздухом подается 35% сухого газа, которые тщательно перемешиваются перед впуском в цилиндр. Это позволяет двигателю развивать такую же мощность, какую он развил бы при использовании 100% дизельного топлива. Сгорание топлива в цилиндрах происходит более активно, уменьшая дымность отработанных газов почти на 50%.

    Так же рекомендуется использование топливных присадок и водотопливных эмульсий, подача воды в воздушный ресивер. В качестве добавок к топливу возможно использование растительных масел (до 10 %) без потери мощности, после их предварительной переработки (прессование, извлечение эфиров, очистка, рафинирование и прочие операции).

    Одним из способов улучшение экологических и технико-экономических показателей тепловозных дизелей является электромагнитная обработка топлива перед непосредственной подачей его в камеру сгорания. При этом изменяется физическое состояние топлива на молекулярном уровне (ионизация топлива). Такие изменения ведут к улучшению распыления топлива по всему периметру камеры сгорания, что приводит к хорошему смесеобразованию и более качественному и полному сгоранию горючей смеси. Это ведет к уменьшению нагара в камере сгорания, снижению содержания в отработавших газах окиси углерода на 20-50%, углеводородов - на 20-60%, оксидов азота - на 15%, дымность - на 30-60%, снижение расхода топлива - до 15% (в зависимости от режима работы). Кроме этого облегчается пуск в зимнее время, повышается надежность и мощность двигателя; улучшается теплообмен; уменьшается уровень шума ДВС. При этом потребляемая мощность составляет 2,0 - 5,0 Вт, в зависимости от типа двигателя.

    Из вышеизложенного следует, что единого (универсального) технического решения, удовлетворяющего ужесточающиеся экологические требования, для дизелей нет. Поэтому при разработке комплекса антитоксичных устройств для транспортных средств с дизельным приводом необходимо учитывать тип дизеля, режим его работы, тип топлива и состав его примесей, назначение тяговой единицы. Каждый из используемых элементов такой комбинированной системы должен вносить свой вклад в повышение экологической чистоты без ущерба для экономичности двигателей.

    В 2006 году особое значение придавалось работе по снижению негативного воздействия передвижных источников железнодорожного транспорта на атмосферный воздух. Основное внимание уделялось совершенствованию технологических процессов работы тепловозов и разработке нейтрализаторов для обезвреживания выбросов загрязняющих веществ с отработавшими газами дизелей тепловозов. В течение года были проведены испытания макетных образцов нейтрализаторов вредных веществ отработавших газов тепловозов, разработана конструкторская документация на опытный образец нейтрализатора-глушителя для установки на тепловозе ТЭП-70. Разрабатываемые нейтрализаторы рассчитаны на 1–2 года работы без замены блоков, их применение позволит снизить выбросы вредных веществ по оксидам азота на 40%, оксидам углерода и углеводородам – на 60–70%, сажи – на 50–60%.

    В целях совершенствования качества рабочих и технологических процессов работы дизелей тепловозов выполнены исследования влияния девяти различных факторов на стендах, в том числе обеспечивающих повышенную топливную экономичность и, следовательно, в наибольшей степени улучшающих экологические характеристики тепловозов.

    Продолжены испытания маневрового тепловоза, работающего на сжатом газе. При работе такого тепловоза выбросы оксидов азота снижаются в 2 раза, углеводородов – в 3 раза, оксидов углерода – в 5–10 раз.

    С 1998 года на железных дорогах начаты и продолжаются работы по капитальному ремонту эксплуатируемых тепловозов 2М62М, 2ТЭ10М, 2ТЭ10У с продлением срока их службы до 15 лет: производится замена устаревших, малоэкономичных двухтактных дизелей 10Д100, 14Д40 на современные экономичные дизели типа Д49 производства АО "Коломенский завод". В результате повышается топливная экономичность отремонтированных тепловозов на 15%, улучшаются экологические показатели: токсичность отработавших газов снижается на 34%, дымность выпуска – на 12%, звуковое давление – на 8%. Одновременно сводится к минимуму возможность утечки нефтепродуктов на земляное полотно.

    В настоящее время наиболее актуальной является проблема обеспечения малых концентраций токсичных веществ и загрязнений в районе располо­жения источников вредных выбросов.

    Радикальным способом уменьшения выброса вредностей является пере­ход на газообразное топливо там, где это возможно.

    Проблему уменьшения вредных выбросов можно решить различными способами, главными из которых являются:

    1. Уменьшение содержания вредных веществ в топливе.

    2. Снижение количества вредных веществ, образующихся в ходе горения.

    3. Очистка продуктов сгорания от вредных примесей перед выбросом в атмосферу посредством установки различных уловителей и фильтров.

    4. Рассеивание вредных веществ в атмосфере на большие площади с тем, чтобы создать малые концентрации вредностей в районе расположения теплогенерирующего предприятия.

    Уменьшение содержания вредных веществ в топливе сопряжено со зна­чительными трудностями. Очистка твердых топлив практически неосуще­ствима, очистка жидких и газообразных топлив (очистка мазута от серы на нефтеперерабатывающих заводах и получение малосернистого природного газа) требует существенных затрат. Уменьшение содержания серы в мазуте на 0.5% увеличивает стоимость топлива, а снижение содержания серы в мазуте с 2.5 до 0.5% удваивает его стоимость. В связи с этим очистка топлив от вредных веществ в настоящее время ограничена.

    На практике применяют очистку продуктов сгорания перед их выбросом в атмосферу, а также принимают меры к уменьшению количества вредных веществ, возникающих в процессе горения.

    Основным методом борьбы с выбросом золовых частиц и сажи при сжигании твердых и жидких топлив является применение золоуловителей. Золоуловители бывают механические (сухие и мокрые) и электрические . В механических отделение частиц золы от дымовых газов происходит либо за счет изменения направления и скорости потока, либо за счет центробеж­ных сил, возникающих при закрутке потока в специальных устройствах (циклонах). Для повышения эффективности инерционные золоуловители объединяют в группы (батареи). Степень золоулавливания батарейных циклонов достигает 82… 90%.

    В электрических золоуловителях частицы золы и пыли приобретают заряд в электрическом поле и улавливаются электродами. Степень очистки газов в электрических фильтрах может достигать 99… 99.5%.

    Очистка продуктов сгорания топлив от сернистых соединений выполня­ется с учетом того, что при полном сжигании топлива практически вся сера сгорает и в продуктах сгорания находится, в основном, малореакционный диоксид серы (99%) и лишь 1% триоксида серы. Вода может улавливать существенную часть триоксида серы, а диоксид серы поглощается водой в очень малой степени. Для увеличения доли улавливания необходимо применять поглотители. Приемлемыми являются простейшие с точки зре­ния технологии и применяемой аппаратуры методы, предусматривающие использование наиболее доступных и дешевых реагентов. Одним из таких методов является метод известкования, основанный на нейтрализации сернистой кислоты, полученной в результате растворения диоксида серы дымовых газов щелочными реагентами. Применяя известковое молоко для орошения потока дымовых газов, можно добиться улавливания до 90% диоксида серы.

    Основными недостатками метода является образование в газоочистной аппаратуре трудно смываемых карбонатных отложений, а также то, что применение известковых суспензий затрудняет работу распылителей и жидкостных трактов системы газоочистки. С целью устранения этих недо­статков применяется известково-щелочной способ улавливания диоксида серы, при котором улавливание оксидов серы осуществляют с помощью щелочного раствора, а известь используют для подщелачивания жидкости. Описание способа очистки, технологических схем и оборудования приво­дится в специальной литературе.

    При сжигании газообразных топлив основная составляющая вредных выбросов -это оксиды азота. Очистка продуктов сгорания от оксидов азота технически сложна и в большинстве случаев экономически нерента­бельна. Необходимо принимать все меры к снижению образования оксидов азота в топках за счет внедрения наиболее рациональных режимов горения, а также применения различных мероприятий конструктивного характера. Для осуществления этих мер необходимо знать наиболее существенные факторы, влияющие на образование оксидов азота.

    Решающее влияние на образование оксидов азота при горении оказывает температура. Чем выше значение температуры, тем больше образуется оксидов азота.

    Большая часть оксидов азота возникает за счет реакций с азотом воздуха. По длине факела концентрация оксидов азота почти не изменяется и остается близкой к равновесной, соответствующей температуре газов на выходе из топки. За топочным объемом оксиды азота почти не образовы­ваются. В газоходах котлов только 1… 5% общего количества оксида азота доокисляется до диоксида.

    Кроме температуры в ядре факела, концентрация оксидов азота зависит от величины избытка воздуха, теплового напряжения топочного объема и эквивалентного диаметра топки.

    Для уменьшения выхода оксидов азота следует стремиться к умень­шению значений всех этих величин в ходе эксплуатации котельного аг­регата. Однако это требование находится в противоречии с основными тенденциями проектирования котлов. Уменьшение теплового напряжения приводит к увеличению габаритов топки и удорожанию котельного аг­регата, уменьшение эквивалентного диаметра топочного объема снижает теплопроизводительность.

    Избыток воздуха в топке, при котором получается наибольший выход оксидов азота, зависит от максимальной температуры горения данного топлива. В среднем значение этих температур тем выше, чем большей теплотой сгорания обладает топливо. В соответствии с этим максимальное количество оксидов азота образуется при значении коэффициента избытка воздуха для газа, мазута и высококалорийных углей -1.16, для бурых углей-1.13. При наличии подогрева воздуха выход оксидов азота уве­личивается, так как повышается температура в ядре факела. Так, нагрев воздуха до 300° С повышает выход оксидов азота в 2 раза.

    Существенное влияние на выход оксидов азота оказывают условия смешивания топлива с воздухом и условия подачи смеси в топку, т. е. тип и устройство горелки. Выход оксидов азота всегда повышается при увеличении размеров горелки и турбулентности факела пламени. При наличии турбулентного факела выход оксидов азота менее зависит от коэффициента избытка воздуха, чем в ламинарном факеле. В вихревых горелках с повышенной интенсивностью закрутки развиваются более вы­сокие температуры, и получается больший выход оксидов азота, чем в прямоточных горелках.

    Как правило, мероприятия по уменьшению выбросов оксидов азота приводят к усложнению и удорожанию всей установки. Среди основных мероприятий можно указать организацию рециркуляции в топку продуктов сгорания топлива, а также подачу в топку некоторого количества пара. Существуют и другие мероприятия, описанные в специальной литературе.

    Кроме газообразных вредных выбросов теплогенерирующие и техно­логические установки являются источниками сбрасывания загрязненных солями, остатками топлива и различными органическими соединениями вод. Для очистки сточных вод необходимо применять специальные меро­приятия, описание которых выходит за рамки данного пособия.

    В XX веке появился новый и опасный источник загрязнения окружа­ющей среды - тепловой двигатель. Начиная с 1970 года, годовой прирост автомобильного парка составляет в среднем 4.7% по легковым автомобилям и 5.1% по автобусам и грузовым автомобилям. Если эта тенденция сохраг нится, то в 2030 году по дорогам земного шара будет бегать 1 миллиард автомобилей.

    Автомобильные выхлопы обостряют глобальные экологические пробле­мы. При выработке одного бензобака образуется до 180 кг диоксида углеро­да-основного парникового газа, несущего угрозу глобального потепления. В целом в мире автомобильный транспорт выделяет примерно 14% (1990 г.) от всего диоксида углерода.



    Просмотров