Электрическое сопротивление. Электрическое сопротивление — Гипермаркет знаний

Самые часто задаваемые вопросы

Возможно ли, изготовить печать на документе по предоставленному образцу? Ответ Да, возможно. Отправьте на наш электронный адрес скан-копию или фото хорошего качества, и мы изготовим необходимый дубликат.

Какие виды оплаты вы принимаете? Ответ Вы можете оплатить документ во время получения на руки у курьера, после того, как проверите правильность заполнения и качество исполнения диплома. Также это можно сделать в офисе почтовых компаний, предлагающих услуги наложенного платежа.
Все условия доставки и оплаты документов расписаны в разделе «Оплата и доставка». Также готовы выслушать Ваши предложения по условиям доставки и оплаты за документ.

Могу ли я быть уверена, что после оформления заказа вы не исчезнете с моими деньгами? Ответ В сфере изготовления дипломов у нас достаточно длительный опыт работы. У нас есть несколько сайтов, который постоянно обновляются. Наши специалисты работают в разных уголках страны, изготавливая свыше 10 документов день. За годы работы наши документы помогли многим людям решить проблемы трудоустройства или перейти на более высокооплачиваемую работу. Мы заработали доверие и признание среди клиентов, поэтому у нас совершенно нет причин поступать подобным образом. Тем более, что это просто невозможно сделать физически: Вы оплачиваете свой заказ в момент получения его на руки, предоплаты нет.

Могу я заказать диплом любого ВУЗа? Ответ В целом, да. Мы работаем в этой сфере почти 12 лет. За это время сформировалась практически полная база выдаваемых документов почти всех ВУЗов страны и за разные года выдачи. Все, что Вам нужно – выбрать ВУЗ, специальность, документ, и заполнить форму заказа.

Что делать при обнаружении в документе опечаток и ошибок? Ответ Получая документ у нашего курьера или в почтовой компании, мы рекомендуем тщательно проверить все детали. Если будет обнаружена опечатка, ошибка или неточность, Вы имеете право не забирать диплом, при этом нужно указать обнаруженные недочеты лично курьеру или в письменном виде, отправив письмо на электронную почту.
В кратчайшие сроки мы исправим документ и повторно отправим на указанный адрес. Разумеется, пересылка будет оплачена нашей компанией.
Чтобы избежать подобных недоразумений, перед тем, как заполнять оригинальный бланк, мы отправляем на почту заказчику макет будущего документа, для проверки и утверждения окончательного варианта. Перед отправкой документа курьером или почтой мы также делаем дополнительное фото и видео (в т. ч. в ультрафиолетовом свечении), чтобы Вы имели наглядное представление о том, что получите в итоге.

Что нужно сделать, чтобы заказать диплом в вашей компании? Ответ Для заказа документа (аттестата, диплома, академической справки и др.) необходимо заполнить онлайн-форму заказа на нашем сайте или сообщить свою электронную почту, чтобы мы выслали вам бланк анкеты, который нужно заполнить и отправить обратно нам.
Если вы не знаете, что указать в каком-либо поле формы заказа/анкеты, оставьте их незаполненными. Всю недостающую информацию мы потому уточним в телефонном режиме.

Последние отзывы

Валентина:

Вы спасли нашего сына от увольнения! Дело в том что недоучившись в институте, сын пошел в армию. А вернувшись, восстанавливаться не захотел. Работал без диплома. Но недавно начали увольнять всех, кто не имеет «корочки. Поэтому решили обратиться к вам и не пожалели! Теперь спокойно работает и ничего не боится! Спасибо!

Электри́ческое сопротивле́ние - физическая величина , характеризующая свойства проводника препятствовать прохождению электрического тока и равная отношению напряжения на концах проводника к силе тока , протекающего по нему .

Сопротивление для цепей переменного тока и для переменных электромагнитных полей описывается понятиями импеданса и волнового сопротивления . Сопротивлением (резистором) также называют радиодеталь, предназначенную для введения в электрические цепи активного сопротивления.

Сопротивление (часто обозначается буквой R или r ) считается, в определённых пределах, постоянной величиной для данного проводника; её можно рассчитать как

R = U I , {\displaystyle R={\frac {U}{I}},} R - сопротивление, Ом; U - разность электрических потенциалов (напряжение) на концах проводника, В; I - сила тока , протекающего между концами проводника под действием разности потенциалов, А.

Энциклопедичный YouTube

    1 / 5

    Электрическое сопротивление. Удельное сопротивление проводника ➽ Физика 8 класс

    Физика. Постоянный ток: Электрическое сопротивление проводника. Центр онлайн-обучения «Фоксфорд»

    Сопротивление. Закон Ома

    Сопротивление металла – охлаждение

    Электрическое сопротивление

    Субтитры

Единицы и размерности

  • статом (в СГСЭ и гауссовой системе, 1 statΩ = (10 9 −2) /см = 898 755 178 736,818 Ом (точно) ≈ 8,98755·10 11 Ом, равен сопротивлению проводника, через который под напряжением 1 статвольт течёт ток 1 статампер );
  • абом (в СГСМ, 1 abΩ = 1·10 −9 Ом = 1 наноом, равен сопротивлению проводника, через который под напряжением 1 абвольт течёт ток 1 абампер ).

Размерность сопротивления в СГСЭ и гауссовой системе равна TL −1 (то есть совпадает с размерностью обратной скорости , с/см), в СГСМ - LT −1 (то есть совпадает с размерностью скорости, см/с) .

Обратной величиной по отношению к сопротивлению является электропроводность , единицей измерения которой в системе СИ служит сименс (1 См = 1 Ом −1), в системе СГСЭ (и гауссовой) статсименс и в СГСМ - абсименс .

Физика явления

Высокая электропроводность металлов связана с тем, что в них имеется большое количество носителей тока - электронов проводимости , образующихся из валентных электронов атомов металла, которые не принадлежат определённому атому . Электрический ток в металле возникает под действием внешнего электрического поля , которое вызывает упорядоченное движение электронов. Движущиеся под действием поля электроны рассеиваются на неоднородностях ионной решётки (на примесях, дефектах решётки, а также нарушениях периодической структуры, связанной с тепловыми колебаниями ионов). При этом электроны теряют импульс , а энергия их движения преобразуются во внутреннюю энергию кристаллической решётки, что и приводит к нагреванию проводника при прохождении по нему электрического тока .

В других средах (полупроводниках , диэлектриках , электролитах , неполярных жидкостях, газах и т. д.) в зависимости от природы носителей заряда физическая причина сопротивления может быть иной. Линейная зависимость, выраженная законом Ома , соблюдается не во всех случаях.

Сопротивление проводника при прочих равных условиях зависит от его геометрии и от удельного электрического сопротивления материала, из которого он состоит.

Сопротивление однородного проводника постоянного сечения зависит от свойств вещества проводника, его длины, сечения и вычисляется по формуле:

где ρ - сверхпроводимости). Напротив, сопротивление полупроводников и изоляторов при снижении температуры (в некотором диапазоне) растёт. Сопротивление также меняется по мере увеличения тока/напряжения, протекающего через проводник/полупроводник.

Зависимость сопротивления от материала, длины и площади поперечного сечения проводника

В металле подвижными носителями зарядов являются свободные электроны. Можно считать, что при своем хаотическом движении они ведут себя подобно молекулам газа. Поэтому в классической физике свободные электроны в металлах называют электронным газом и в первом приближении считают, что к нему применимы законы, установленные для идеального газа.

Плотность электронного газа и строение кристаллической решетки зависят от рода металла. Поэтому сопротивление проводника должно зависеть от рода его вещества. Кроме того, оно должно еще зависеть от длины проводника, площади его поперечного сечения и от температуры.

Влияние сечения проводника на его сопротивление объясняется тем, что при уменьшении сечения поток электронов в проводнике при одной и той же силе тока становится более плотным, поэтому и взаимодействие электронов с частицами вещества в проводнике становится сильнее.

Из формулы

R = ρ ⋅ l S , {\displaystyle R={\frac {\rho \cdot l}{S}},}

видно, что сопротивление проводника прямо пропорционально его длине и обратно пропорционально площади его поперечного сечения. Величину ρ, характеризующую зависимость сопротивления проводника от материала, из которого он сделан, и от внешних условий, называют удельным сопротивлением вещества. Удельное сопротивление различных веществ при расчетах берут из таблиц.

Величину, обратную удельному сопротивлению, называют удельной проводимостью вещества и обозначают σ.

Маринчук М. Об электрическом сопротивлении проводников //Квант. - 1990. - № 5. - С. 53-55.

По специальной договоренности с редколлегией и редакцией журнала "Квант"

Как вам, безусловно, известно, электрическое сопротивление проводника зависит от материала, из которого он изготовлен, от размеров и формы проводника. Так, например, для однородного проводника постоянного сечения S и длиной l сопротивление

\(~R = \rho \frac lS\) , (1)

где ρ - удельное электрическое сопротивление. Иногда бывает удобнее говорить не о сопротивлении проводника, а об обратной ему величине - электрической проводимости.

Первым физиком, попытавшимся выяснить количественные закономерности прохождения постоянного электрического тока через проводники, был скромный школьный учитель из Кельна Георг Симон Ом (1789-1854). Результаты своих первых опытов Ом опубликовал в 1826 году.

Разумеется, в распоряжении Ома не было современных нам высокоточных электроизмерительных приборов и надежных источников тока, поэтому Ому по ходу дела пришлось решить целый ряд сложных практических задач.

Так, в качестве источников тока в своих первых опытах Ом использовал вольтовы столбы - чередующиеся слои двух разнородных металлов (например, серебра и цинка), разделенных бумагой, пропитанной раствором соли. При этом он заметил, что сила тока в гальванической цепи со временем заметно убывает. Ясно, что в таких условиях было почти бессмысленно заниматься установлением каких-либо количественных закономерностей. Когда же Ом познакомился с работами Зеебека (Томас Иоганн Зеебек (1770-1831) - немецкий физик), открывшего в 1821 году термоэлектрический эффект, то стал использовать в своих опытах термоэлемент, дающий достаточно стабильный ток. В установке Ома, схема которой изображена на рисунке 1, использовался термоэлемент, состоящий из висмутого стержня, спаянного с двумя медными проводами. Спай 1 поддерживался при температуре таяния льда, а спай 2 - при температуре кипения воды. Свободные концы 3 и 4 проводов были погружены в чашечки со ртутью. Сюда же погружались и предварительно зачищенные для лучшего контакта концы исследуемых проволок 5 .

Узнав об опытах Эрстеда (Ханс Кристиан Эрстед (1777-1851) - датский физик), обнаружившего в 1820 году действие электрического тока на магнитную стрелку, Ом решил характеризовать силу тока величиной угла отклонения магнитной стрелки, находящейся около проводника с током. Для этого проводник помещался в плоскости магнитного меридиана (см. рис. 1), в отсутствие тока в проводнике магнитная стрелка 6 располагалась над ним и была параллельной ему, а слегка сплющенная проволока 7 , к которой подвешивалась стрелка, деформирована не была. При протекании тока через проводник магнитная стрелка выходила из плоскости магнитного меридиана и закручивала подвес. Ом поворачивал головку 8 , где был закреплен верхний конец подвеса, так, чтобы стрелка снова оказывалась параллельной проводнику с током, и измерял угол поворота. Этот угол и принимался в качестве характеристики магнитного действия электрического тока.

Для исследования проводимости различных металлов Ом брал проволоки одинакового поперечного сечения, но изготовленные из различных материалов, и поочередно включал их в цепь. В качестве эталона он выбрал медную проволоку определенной длины, приняв ее проводимость за 1000 условных единиц, и измерил угол поворота головки, при котором магнитная стрелка становилась параллельной проводнику с током. Затем включал в цепь проволоки из других металлов и укорачивал их до тех пор, пока угол поворота головки не становился таким же, как и в случае эталонной проволоки. По полученной при этом длине можно было судить о проводимости соответствующего материала. Таким образом Ом нашел, что проводимость золота составляет 574 условных единицы, серебра - 356, цинка - 333 и т. д.

Затем Ом исследовал проволоки из одного и того же металла, но различной толщины, и поступал с ними так же, как при определении проводимости различных металлов. Он нашел, что сопротивления проволок из одного и того же материала одинаковы, если отношения их длин равны отношениям площадей их поперечных сечений, т. е. если отношения \(~\frac lS\) у этих проволок одинаковы. Впоследствии было установлено, что сопротивление R прямо пропорционально этому отношению\[~R \sim \frac lS\]. Вводя коэффициент пропорциональности ρ , зависящий от природы материала, можно для сопротивления проволоки записать соотношение (1). Покажем теперь, как, исходя из этого соотношения, можно получить известные вам формулы для подсчета общего сопротивления системы проводников, соединенных последовательно или параллельно.

Рассмотрим проводник постоянного поперечного сечения площадью S , изготовленный из какого-либо однородного материала с удельным сопротивлением ρ . Обозначим его длину через l . Вообразим этот проводник состоящим из нескольких последовательно соединенных частей, например трех. Пусть их длины равны l 1 , l 2 и l 3 (рис. 2). Очевидно, что

\(~l = l_1 + l_2 + l_3\) .

Умножим обе части этого равенства на отношение \(~\frac{\rho}{S}\):

\(~\rho \frac{l}{S} = \rho \frac{l_1}{S} + \rho \frac{l_2}{S} + \rho \frac{l_3}{S}\) .

Ho \(~\rho \frac lS = R\) - сопротивление всего проводника, \(~\rho \frac{l_1}{S} = R_1\), \(~\rho \frac{l_2}{S} = R_2\) и \(~\rho \frac{l_3}{S} = R_3\) - сопротивления его первой, второй и третьей частей соответственно. Таким образом,

\(~R = R_1 + R_2 + R_3\) . (2)

Это и есть искомая формула для вычисления общего сопротивления при последовательном соединении проводников.

Теперь представим тот же проводник состоящим из нескольких, например опять же трех, параллельно соединенных частей с поперечными сечениями S 1 , S 2 и S 3 (рис. 3). Аналогично предыдущему случаю,

\(~S = S_1 + S_2 + S_3\) ,

или, после умножения на общий множитель \(~\frac{1}{\rho l}\)

\(~\frac{S}{\rho l} = \frac{S_1}{\rho l} + \frac{S_2}{\rho l} + \frac{S_3}{\rho l}\) .

В соответствии с формулой (1),

\(~\frac{S}{\rho l} = \frac 1R , \frac{S_1}{\rho l} = \frac 1R_1, \frac{S_2}{\rho l} = \frac 1R_2, \frac{S_3}{\rho l} = \frac 1R_3\) .

поэтому получаем

\(~\frac 1R = \frac 1R_1 + \frac 1R_2 + \frac 1R_3\) . (3)

По этой формуле и можно найти общее сопротивление при параллельном соединении проводников. Формулы (2) и (3) выведены здесь лишь для частного случая конкретного вида проводников - один и тот же материал, одинаковые поперечные сечения в первом случае и одинаковые длины во втором. Однако применимы они и для самых общих случаев.

Допустим, что в неоднородном проводнике с переменным сечением (рис. 111.28) 1 и 2 изображают эквипотенциальные поверхности с потенциалами При переносе заряда из первого сечения во второе электрические силы, действующие внутри проводника, совершают работу Эта работа при постоянном токе, как указывалось выше, идет не на увеличение кинетической энергий упорядоченного движения электронов, а выделяется в проводнике в виде тепла. Если сила тока с течением времени увеличивается, то часть работы электрических сил идет на увеличение скорости упорядоченного движения электронов, а остальная часть выделяется в виде тепла. При переменном токе работу электрических сил следует рассчитывать, разбивая время наблюдения на элементарные отрезки на протяжении которых силу тока и разность потенциалов можно полагать постоянными. Тогда за время через участок 1-2 пройдет электрический заряд выделится энергия Обозначив можем рассчитать/энергию, выделяющуюся на участке 1-2 за время по формуле

Сила тока выражается в амперах, разность потенциалов в вольтах, время - в секундах, а энергия - в джоулях

Энергию можно выразить в зависимости от размеров и вещества проводника на рассматриваемом участке 1-2. Допустим, на элементарном участке проводник однороден и имеет постоянное сечение (рис. III.28). Кроме того, в пределах объема электрическое поле будем счдедть однородным, имеющим везде одинаковую напряженность Сила тока через сечение 5, согласно формуле (2.6), равна откуда

Умножим обе части этого равенства на и проинтегрируем для интересующего нас участка проводника между эквипотенциальными сечениями 1 и 2:

(при постоянном токе сила тока одинакова для любого сечения проводника). Левый интеграл есть, по определению, разность потенциалов правый интеграл зависит от сврйств проводника (электропроводность а) и его конфигурации. Обозначим этот интеграл через

Это есть электрическое сопротивление проводника на участке 1-2. Тогда предыдущее выражение перепишется в виде

Эта формула выражает закон Ома для участка цепи.

Пользуясь им, можно записать работу электрического тока в зависимости от сопротивления проводника:

или при переменном токе

Энергия выделяющаяся в проводнике в виде тепла,

Эта формула выражает закон Джоуля-Ленца в обычной форме.

Электрическое сопротивление однородного проводника с постоянным сечением зависит от его длины I и площади сечения

Если длина и сечение проводника равны единице, то Величина

есть удельное электрическое сопротивление вещества проводника. Для неоднородного проводника переменного сечения электрическое сопротивление необходимо рассчитывать по фмуле (2.11) или же по приближенной формуле

Сопротивление проводника, на концах которого при силе тока в один ампер существует разность потенциалов в один вольт, называется омом:

Удельное, а следовательно, и полное электрическое сопротивление проводников зависят от температуры. Эта зависимость имеет сложный вид. Для металлов можно пользоваться приближенными формулами:

где относятся к нулевой температуре по шкале Цельсия, температурный коэффициент сопротивления. Этот коэффйциент можно считать постоянным только для небольших интервалов температур. При точных расчетах необходимо учитывать зависимость а от температуры.

Закон Ома, т. е. прямая пропорциональность между напряжением и силой тока (см. формулу (2.12)), имеет место для различных значений только при условии Если же через проводник течет переменный ток и выделяющееся джоулево тепло не отводится так, чтобы обеспечить постоянство температуры проводника, то сопротивление проводника будет изменяться со временем в зависимости от того, как изменяется сила тока. Вследствие этого сопротивление проводника является функцией от силы тока: Для каждого момента времени можно рассчитать две величины:

которые могут отличаться друг от друга в зависимости от вида функции и от условий, в которых находится проводник. Если есть сопротивление какого-нибудь сложного прибора, то функции или характеризуют электрические свойства этого прибора. Однако более удобными являются кривые изображающие зависимость тока приложенного напряжения; эти кривые называются «вольт-амперными характеристиками» прибора.

При очень низких температурах, близких к абсолютному нулю (около сопротивление некоторых металлов скачком уменьшается практически до нуля. Например, алюминий при температуре 1,4 К теряет электрическое сопротивление. Состояние металла с нулевым электрическим сопротивлением называется сверхпроводящим, а само исчезновение сопротивления - сверхпроводимостью. Вследствие отсутствия сопротивления в сверхпроводниках можно вызвать очень большие токи (до 1200 А на 1 мм2) без выделения теплоты. Если в замкнутой цепи из сверхпроводников вызвать электрический ток (например, при помощи электромагнитной индукции), то этот ток ввиду отсутствия потерь может существовать очень долго.

>>Физика: Электрическое сопротивление

Скачать календарно-тематическое планирование по физике , ответы на тесты, задания и ответы школьнику, книги и учебники, курсы учителю по физике для 9 класса

Содержание урока конспект урока опорный каркас презентация урока акселеративные методы интерактивные технологии Практика задачи и упражнения самопроверка практикумы, тренинги, кейсы, квесты домашние задания дискуссионные вопросы риторические вопросы от учеников Иллюстрации аудио-, видеоклипы и мультимедиа фотографии, картинки графики, таблицы, схемы юмор, анекдоты, приколы, комиксы притчи, поговорки, кроссворды, цитаты Дополнения рефераты статьи фишки для любознательных шпаргалки учебники основные и дополнительные словарь терминов прочие Совершенствование учебников и уроков исправление ошибок в учебнике обновление фрагмента в учебнике элементы новаторства на уроке замена устаревших знаний новыми Только для учителей идеальные уроки календарный план на год методические рекомендации программы обсуждения Интегрированные уроки

Если у вас есть исправления или предложения к данному уроку,



Просмотров