Электричка двигается равномерно со скоростью. Задачи на движение протяженных тел

Функция, обратная косинусу

Областью значений функции y=cos x (см. рис. 2) является отрезок. На отрезке функция непрерывна и монотонно убывает.

Рис. 2

Значит, на отрезке определена функция, обратная функции y=cos x. Эту обратную функцию называют арккосинусом и обозначают y=arccos x .

Определение

Aрккосинусом числа а, если |а|1, называют угол, косинус которого принадлежит отрезку; его обозначают arccos а.

Таким образом, arccos а есть угол, удовлетворяющий следующим двум условиям: сos (arccos a)=a, |а|1; 0? arccos a ?р.

Например, arccos, так как cos и; arccos, так как cosи.

Функция y = arccos x (рис. 3) определена на отрезке, областью ее значений является отрезок. На отрезке функция y=arccos x непрерывна и монотонно убывает от р до 0 (поскольку y=cos х - непрерывная и монотонно убывающая функция на отрезке); на концах отрезка она достигает своих экстремальных значений: arccos(-1)= р, arccos 1= 0. Отметим, что arccos 0 = . График функции y = arccos x (см. рис. 3) симметричен графику функции y = cos x относительно прямой y=x .

Рис. 3

Покажем, что имеет место равенство arccos(-x) = р-arccos x.

В самом деле, по определению 0 ? arcсos х? р. Умножая на (-1) все части последнего двойного неравенства, получаем - р? arcсos х? 0. Прибавляя р ко всем частям последнего неравенства, находим, что 0? р-arccos х? р.

Таким образом, значения углов arccos(-х) и р - arccos х принадлежат одному и тому же отрезку. Поскольку на отрезке косинус монотонно убывает, то на нем не может быть двух различных углов, имеющих равные косинусы. Найдем косинусы углов arccos(-х) и р-arccos х. По определению cos (arccos x) = - x, по формулам приведения и по определению имеем: cos (р - - arccos х) = - cos (arccos х)= - х. Итак, косинусы углов равны, значит, равны и сами углы.

Функция, обратная синусу

Рассмотрим функцию y=sin х (рис. 6), которая на отрезке [-р/2;р/2] возрастающая, непрерывная и принимает значения из отрезка [-1; 1]. Значит, на отрезке [- р/2; р/2] определена функция, обратная функции y=sin x.

Рис. 6

Эту обратную функцию называют арксинусом и обозначают y=arcsin x. Введем определение арксинуса числа а .

Арксинусом числа а, если называют угол (или дугу), синус которого равен числу а и который принадлежит отрезку [-р/2; р/2]; его обозначают arcsin а.

Таким образом, arcsin а есть угол, удовлетворяющий следующим условиям: sin (arcsin a)=a, |a| ?1; -р/2 ? arcsin а? р/2. Например, так как sin и [- р/2; р/2]; arcsin , так как sin = и [- р/2; р/2].

Функция y=arcsin х (рис. 7) определена на отрезке [- 1; 1], областью ее значений является отрезок [-р/2;р/2]. На отрезке [- 1; 1] функция y=arcsin x непрерывна и монотонно возрастает от -р/2 до р/2 (это следует из того, что функция y=sin x на отрезке [-р/2; р/2] непрерывна и монотонно возрастает). Наибольшее значение она принимает при x =1: arcsin 1 = р/2, а наименьшее - при х = -1: arcsin (-1) = -р/2. При х = 0 функция равна нулю: arcsin 0 = 0 .

Покажем, что функция y = arcsin x является нечетной, т.е. arcsin (-х) = - arcsin х при любом х [- 1; 1].

Действительно, по определению, если |x| ?1, имеем: - р/2 ? arcsin x ? ? р/2. Таким образом, углы arcsin (-х) и - arcsin х принадлежат одному и тому же отрезку [- р/2; р/2].

Найдем синусы этих углов: sin (arcsin(-х)) = - х (по определению); поскольку функция y=sin x нечетная, то sin (-arcsin х)= - sin (arcsin x)= - х. Итак, синусы углов, принадлежащих одному и тому же промежутку [-р/2; р/2], равны, значит, равны и сами углы, т.е. arcsin (-х)= - arcsin х. Значит, функция y=arcsin x - нечетная. График функции y=arcsin x симметричен относительно начала координат.

Покажем, что arcsin (sin x) = х для любого х [-р/2; р/2].

Действительно, по определению -р/2 ? arcsin (sin x) ? р/2, а по условию -р/2 ? x ? р/2. Значит, углы х и arcsin (sin x) принадлежат одному и тому же промежутку монотонности функции y=sin x. Если синусы таких углов равны, то равны и сами углы. Найдем синусы этих углов: для угла х имеем sin x, для угла arcsin (sin x) имеем sin (arcsin(sin x)) = sin x. Получили, что синусы углов равны, следовательно, и углы равны, т.е. arcsin (sin x) = х. .

Рис. 7

Рис. 8

График функции arcsin (sin|x|) получается обычными преобразованиями, связанными с модулем, из графика y=arcsin (sin x) (изображен штриховой линией на рис. 8). Искомый график y=arcsin (sin |x-/4|) получается из него сдвигом на /4 вправо вдоль оси абсцисс (изображен сплошной линией на рис. 8)

Функция, обратная тангенсу

Функция y=tg x на промежутке принимает все числовые значения: E (tg x)=. На этом промежутке она непрерывна и монотонно возрастает. Значит, на промежуткеопределена функция, обратная функции y = tg x. Эту обратную функцию называют арктангенсом и обозначают y = arctg x .

Арктангенсом числа а называют угол из промежутка, тангенс которого равен а. Таким образом, arctg a есть угол, удовлетворяющий следующим условиям: tg (arctg a) = a и 0 ? arctg a ? р.

Итак, любому числу х всегда соответствует единственное значение функции y = arctg x (рис. 9) .

Очевидно, что D (arctg x) = , E (arctg x) = .

Функция y = arctg x является возрастающей, поскольку функция y = tg x возрастает на промежутке. Нетрудно доказать, что arctg(-x) = - arctgx, т.е. что арктангенс - нечетная функция.

Рис. 9

График функции y = arctg x симметричен графику функции y = tg x относительно прямой y = x, график y = arctg x проходит через начало координат (ибо arctg 0 = 0) и симметричен относительно начала координат (как график нечетной функции).

Можно доказать, что arctg (tg x) = x, если x.

Функция, обратная котангенсу

Функция y = ctg x на промежутке принимает все числовые значения из промежутка. Область ее значений совпадает с множеством всех действительных чисел. В промежутке функция y = ctg x непрерывна и монотонно возрастает. Значит, на этом промежутке определена функция, обратная функции y = ctg x. Функцию, обратную котангенсу, называют арккотангенсом и обозначают y = arcctg x .

Арккотангенсом числа а называют угол, принадлежащий промежутку, котангенс которого равен а.

Таким образом, аrcctg a есть угол, удовлетворяющий следующим условиям: ctg (arcctg a)=a и 0 ? arcctg a ? р.

Из определения обратной функции и определения арктангенса следует, что D (arcctg x) = , E (arcctg x) = . Арккотангенс является убывающей функцией, поскольку функция y = ctg x убывает в промежутке.

График функции y = arcctg x не пересекает ось Ох, так как y > 0 R. При х = 0 y = arcctg 0 =.

График функции y = arcctg x изображен на рисунке 11.

Рис. 11

Отметим, что для всех действительных значений х верно тождество: arcctg(-x) = р-arcctg x.

Прототип Задания B14 (№99609 )

Поезд, двигаясь равномерно со скоростью 60 км/ч, проезжает мимо лесополосы, длина которой равна 400 метрам, за 1 минуту. Найдите длину поезда в метрах.

Решение

Пусть x (м)- длина поезда.

Поезд, проехав лесополосу, проходит расстояние, равное сумме длины лесополосы и длины поезда, т.е. (x+400) метров.

(x+400) метров = ((x/1000)+0,4) км,

1 минута = 1/60 часа,

так как поезд проезжает лосополосу за 1 минуту, то составим и решим уравнение:

1/60 * 60 = (x/1000)+0,4,

(x/1000)+0,4 = 1,

Т.е. длина поезда равна 600 метров.

Ответ: 600.

Прототип Задания B14 (№99608 )

Поезд, двигаясь равномерно со скоростью 80 км/ч, проезжает мимо придорожного столба за 36 секунд. Найдите длину поезда в метрах.

Решение

Пусть x (м) - длина поезда. Поезд проезжает расстояние, равне своей длине, т.е. x метров = x/1000 км. Так как по условию задачи он проезжает это расстояние за 36 секунд = 36/3600 часа = 0,01 часа, то составим и решим уравнение:

80*0,01 = x/1000,

Т.е. длина поезда равна 800 метров.

Ответ: 800.

Прототип Задания B14 (№99607 )

Первые 190 км автомобиль ехал со скоростью 50 км/ч, следующие 180 км — со скоростью 90 км/ч, а затем 170 км — со скоростью 100 км/ч. Найдите среднюю скорость автомобиля на протяжении всего пути. Ответ дайте в км/ч.

Решение

Т.е. средняя скорость на протяжении всего пути равна 72 км/ч.

Прототип Задания B14 (№99606 )

Первые два часа автомобиль ехал со скоростью 50 км/ч, следующий час — со скоростью 100 км/ч, а затем два часа — со скоростью 75 км/ч. Найдите среднюю скорость автомобиля на протяжении всего пути. Ответ дайте в км/ч.

Решение

Средняя скорость автомобиля на протяжении всего пути равна: весь путь разделить на все время, т.е.

Т.е. средняя скорость на протяжении всего пути равна 70 км/ч.

Прототип Задания B14 (№99605 )

Первую треть трассы автомобиль ехал со скоростью 60 км/ч, вторую треть — со скоростью 120 км/ч, а последнюю — со скоростью 110 км/ч. Найдите среднюю скорость автомобиля на протяжении всего пути. Ответ дайте в км/ч.

Решение

Средняя скорость автомобиля на протяжении всего пути равна: весь путь разделить на все время, т.е.

Т.е. средняя скорость на протяжении всего пути равна 88 км/ч.

Прототип Задания B14 (№99604 )

Путешественник переплыл море на яхте со средней скоростью 20 км/ч. Обратно он летел на спортивном самолете со скоростью 480 км/ч. Найдите среднюю скорость путешественника на протяжении всего пути. Ответ дайте в км/ч.

Решение

Средняя скорость на протяжении всего пути равна: весь путь разделить на все время, т.е

t1 = s/20 - время, за которое путешественник переплыл море на яхте,

t2 = s/480 - время, за которое путешественник летел обратно на самолете.

t = t1+t2 = s/20+s/480 = 5s/96,

средняя скорость будет равна:

v = (2S):(5s/96) = (2*96)/5 = 192/5 = 38,4 (км/ч).

Ответ: 38,4.

Прототип задания B14 (Лысенко, 2013, №386)

Имеется кусок сплава меди с оловом общей массой 24 кг, содержащий 45% меди. Сколько чистого олова надо прибавить к этому куску сплава, чтобы полученный новый сплав содержал 40% меди?



Просмотров