Теория струн. Коротко о теории струн

Теория относительности представляет Вселенную «плоской», но квантовая механика утверждает, что на микроуровне происходит бесконечное движение, искривляющее пространство. Теория струн объединяет эти идеи и представляет микрочастицы как следствие объединения тончайших одномерных струн, которые будут иметь вид точечных микрочастиц, следовательно, не могут наблюдаться экспериментально.

Данная гипотеза позволяет представить элементарные частицы, составляющие атом из ультрамикроскопических волокон, называемых струнами.

Все свойства элементарных частиц объясняются резонансным колебанием волокон, их образующих. Эти волокна могут совершать бесконечное множество вариантов вибраций. Данная теория предполагает объединение идей квантовой механики и теории относительности. Но из-за наличия множества проблем в подтверждении мыслей заложенных в ее основе большая часть современных ученых считают, что предложенные идеи не более чем самая обыкновенная профанация или другими словами — теория струн для чайников, то есть для людей, которые совершенно не разбираются в науке и строении окружающего мира.

Свойства ультрамикроскопических волокон

Чтобы понять их суть, можно представить струны музыкальных инструментов – они могут вибрировать, изгибаться, сворачиваться. Тоже происходит и с этими нитями, которые издавая определенные вибрации, взаимодействуют друг с другом, сворачиваются в петли и образуют более крупные частицы (электроны, кварки), масса которых зависит от частоты вибрации волокон и их натянутости – эти показатели определяют энергию струн. Чем больше излучаемая энергия, тем выше масса элементарной частицы.

Инфляционная теория и струны

Согласно инфляционной гипотезе, Вселенная была создана благодаря расширению микро пространства, размером в струну (длина Планка). По мере увеличения этой области растягивались и так называемые ультрамикроскопические волокна, теперь их длина соизмерима с размерами Вселенной. Они точно так же взаимодействуют между собой и производят те же вибрации и колебания. Выглядит это как производимый ими эффект гравитационных линз, искажающих лучи света дальних галактик. А продольные колебания порождают гравитационное излучение.

Математическая несостоятельность и другие проблемы

Одной из проблем считается математическая несостоятельность теории — физикам, изучающим ее, не хватает формул для приведения ее в завершенный вид. А вторая заключается в том, что данная теория полагает, о существовании 10 измерений, но мы ощущаем всего 4 – высота, ширина, длина и время. Ученые предполагают, что остальные 6 — в скрученном состоянии, наличие которых не ощущается в реальном времени. Также проблемой является не возможность экспериментального подтверждения этой теории, но и опровергнуть ее никто не может.

Приходила ли вам в голову мысль, что Вселенная похожа на виолончель? Правильно – не приходила. Потому что Вселенная не похожа на виолончель. Но это не означает, что у нее нет струн. Поговорим сегодня про Теорию струн.

Конечно, струны мироздания едва ли похожи на те, которые мы себе представляем. В теории струн ими называются невероятно малые вибрирующие нити энергии. Эти нити похожи, скорее, на крошечные «резинки», способные извиваться, растягиваться и сжиматься на все лады. Все это, однако, не означает, что на них нельзя «сыграть» симфонию Вселенной, ведь из этих «нитей», по мнению струнных теоретиков, состоит все сущее.

Противоречие физики

Во второй половине XIX века физикам казалось, что ничего серьезного в их науке открыть больше нельзя. Классическая физика считала, что серьезных проблем в ней не осталось, а все устройство мира выглядело идеально отлаженной и предсказуемой машиной. Беда, как и водится, случилась из-за ерунды – одного из мелких «облачков», еще остававшихся на чистом, понятном небе науки. А именно – при расчете энергии излучения абсолютно черного тела (гипотетическое тело, которое при любой температуре полностью поглощает падающее на него излучение, независимо от длины волны – NS).

Расчеты показывали, что общая энергия излучения любого абсолютно черного тела должна быть бесконечно большой. Чтобы уйти от столь явного абсурда, немецкий ученый Макс Планк в 1900 году предположил, что видимый свет, рентгеновские лучи и другие электромагнитные волны могут испускаться только некоторыми дискретными порциями энергии, которые он назвал квантами. С их помощью удалось решить частную проблему абсолютно черного тела. Однако последствия квантовой гипотезы для детерминизма тогда еще не осознавались. Пока в 1926 году другой немецкий ученый, Вернер Гейзенберг, не сформулировал знаменитый принцип неопределенности.

Суть его сводится к тому, что вопреки всем господствующим до того утверждениям, природа ограничивает нашу способность предсказывать будущее на основе физических законов. Речь, конечно, идет о будущем и настоящем субатомных частиц. Выяснилось, что они ведут себя совершенно не так, как это делают любые вещи в окружающем нас макромире. На субатомном уровне ткань пространства становится неровной и хаотичной. Мир крошечных частиц настолько бурный и непонятный, что это противоречит здравому смыслу. Пространство и время в нем настолько искривлены и переплетены, что там нет обычных понятий левого и правого, верха и низа, и даже до и после.

Не существует способа сказать наверняка, в какой именно точке пространства находится в данный момент та или иная частица, и каков при этом момент ее импульса. Существует лишь некая вероятность нахождения частицы во множестве областей пространства-времени. Частицы на субатомном уровне словно «размазаны» по пространству. Мало этого, не определен и сам «статус» частиц: в одних случаях они ведут себя как волны, в других – проявляют свойства частиц. Это то, что физики называют корпускулярно-волновым дуализмом квантовой механики.

Уровни строения мира: 1. Макроскопический уровень – вещество 2. Молекулярный уровень 3. Атомный уровень – протоны, нейтроны и электроны 4. Субатомный уровень – электрон 5. Субатомный уровень – кварки 6. Струнный уровень

В Общей теории относительности, словно в государстве с противоположными законами, дело обстоит принципиально иначе. Пространство представляется похожим на батут – гладкую ткань, которую могут изгибать и растягивать объекты, обладающие массой. Они создают деформации пространства-времени – то, что мы ощущаем как гравитацию. Стоит ли говорить, что стройная, правильная и предсказуемая Общая теория относительности находится в неразрешимом конфликте с «взбалмошной хулиганкой» – квантовой механикой, и, как следствие, макромир не может «помириться» с микромиром. Вот тут на помощь и приходит теория струн.

2D-Вселенная. Граф полиэдра E8 Теория Всего

Теория струн воплощает мечту всех физиков по объединению двух, в корне противоречащих друг другу ОТО и квантовой механики, мечту, которая до конца дней не давала покоя величайшему «цыгану и бродяге» Альберту Эйнштейну.

Многие ученые уверены, что всё, от изысканного танца галактик до безумной пляски субатомных частиц, может в итоге объясняться всего одним фундаментальным физическим принципом. Может быть – даже единым законом, который объединяет все виды энергии, частиц и взаимодействий в какой-нибудь элегантной формуле.

ОТО описывает одну из самых известных сил Вселенной – гравитацию. Квантовая механика описывает три других силы: сильное ядерное взаимодействие, которое склеивает протоны и нейтроны в атомах, электромагнетизм и слабое взаимодействие, которое участвует в радиоактивном распаде. Любое событие в мироздании, от ионизации атома до рождения звезды, описывается взаимодействиями материи посредством этих четырех сил.

С помощью сложнейшей математики удалось показать, что электромагнитное и слабое взаимодействия имеют общую природу, объединив их в единое электрослабое. Впоследствии к ним добавилось и сильное ядерное взаимодействие – но вот гравитация к ним не присоединяется никак. Теория струн – одна из самых серьезных кандидаток на то, чтобы соединить все четыре силы, а, значит, объять все явления во Вселенной – недаром ее еще называют «Теорией Всего».

Вначале был миф

До сих пор далеко не все физики пребывают в восторге от теории струн. А на заре ее появления она и вовсе казалась бесконечно далекой от реальности. Само ее рождение – легенда.

График бета-функции Эйлера при вещественных аргументах

В конце 1960-х годов молодой итальянский физик-теоретик Габриэле Венециано искал уравнения, которые смогли бы объяснить сильные ядерные взаимодействия – чрезвычайно мощный «клей», который скрепляет ядра атомов, связывая воедино протоны и нейтроны. Согласно легенде, как-то он случайно наткнулся на пыльную книгу по истории математики, в которой нашел функцию двухсотлетней давности, впервые записанную швейцарским математиком Леонардом Эйлером. Каково же было удивление Венециано, когда он обнаружил, что функция Эйлера, которую долгое время считали ничем иным, как математической диковинкой, описывает это сильное взаимодействие.

Как же было на самом деле? Формула, вероятно, стала результатом долгих лет работы Венециано, а случай лишь помог сделать первый шаг к открытию теории струн. Функция Эйлера, чудесным образом объяснившая сильное взаимодействие, обрела новую жизнь.

В конце концов, она попалось на глаза молодому американскому физику-теоретику Леонарду Сасскинду, который увидел, что в первую очередь формула описывала час­тицы, которые не имели внутренней структуры и могли вибрировать. Эти частицы вели себя так, что не могли быть просто точечными частицами. Сасскинд понял – формула описывает нить, которая подобна упругой резинке. Она могла не только растягиваться и сжиматься, но и колебаться, извиваться. Описав свое открытие, Сасскинд представил революционную идею струн.

К сожалению, подавляющее большинство его коллег встретили теорию весьма прохладно.

Стандартная модель

В то время общепринятая наука представляла частицы точками, а не струнами. В течение многих лет физики исследовали поведение субатомных частиц, сталкивая их на высоких скоростях и изучая последствия этих столкновений. Выяснилось, что Вселенная намного богаче, чем это можно было себе представить. Это был настоящий «демографический взрыв» элементарных частиц. Аспиранты физических вузов бегали по коридорам с криками, что открыли новую частицу, – не хватало даже букв для их обозначения. Но, увы, в «родильном доме» новых частиц ученые так и не смогли отыскать ответ на вопрос – зачем их так много и откуда они берутся?

Это подтолкнуло физиков к необычному и потрясающему предсказанию – они поняли, что силы, действующие в природе, также можно объяснить с помощью частиц. То есть существуют частицы материи, а есть частицы-переносчики взаимодействий. Таковым, например, является фотон – частица света. Чем больше этих частиц-перенос­чиков – тех же фотонов, которыми обмениваются частицы материи, тем ярче свет. Ученые предсказывали, что именно этот обмен частицами-переносчиками – есть не что иное, как то, что мы воспринимаем как силу. Это подтвердилось экспериментами. Так физикам удалось приблизиться к мечте Эйнштейна по объединению сил.

Ученые считают, что если мы перенесемся к моменту сразу после Большого взрыва, когда Вселенная была на триллионы градусов горячее, частицы-переносчики электромагнетизма и слабого взаимодействия станут неразличимы и объединятся в одну-е­дин­ственную силу, называемую электрослабой. А если вернуться во времени еще дальше, то электрослабое взаимодействие соединилось бы с сильным в одну суммарную «суперсилу».

Несмотря на то, что все это еще ждет своих доказательств, квантовая механика вдруг объяснила, как три из четырех сил взаимодействуют на субатомном уровне. Причем объяснила красиво и непротиворечиво. Эта стройная картина взаимодействий, в конечном счете, получила название Стандартной модели. Но, увы, и в этой совершенной теории была одна большая проблема – она не включала в себя самую известную силу макроуровня – гравитацию.

Взаимодействия между различными частицами в Стандартной модели
Гравитон

Для не успевшей «расцвести» теории струн наступила «осень», уж слишком много проблем она содержала с самого рождения. Например, выкладки теории предсказали существование частиц, которых, как точно установили вскоре, не существует. Это так называемый тахион – частица, которая движется в вакууме быстрее света. Помимо прочего выяснилось, что теория требует целых 10 измерений. Неудивительно, что это очень смущало физиков, ведь это очевидно больше, чем то, что мы видим.

К 1973 году только несколько молодых физиков все еще боролись с загадочными выкладками теории струн. Одним из них был американский физик-теоретик Джон Шварц. В течение четырех лет Шварц пытался приручить непослушные уравнения, но без толку. Помимо других проблем, одно из этих уравнений упорно описывало таинственную частицу, которая не имела массы и не наблюдалась в природе.

Ученый уже решил забросить свое гиблое дело, и тут его осенило – может быть, уравнения теории струн описывают, в том числе, и гравитацию? Впрочем, это подразумевало пересмотр размеров главных «героев» теории – струн. Предположив, что струны в миллиарды и миллиарды раз меньше атома, «струнщики» превратили недостаток теории в ее достоинство. Таинственная частица, от которой Джон Шварц так настойчиво пытался избавиться, теперь выступала в качестве гравитона – частицы, которую долго искали и которая позволила бы перенести гравитацию на квантовый уровень. Именно так теория струн дополнила пазл гравитацией, отсутствующей в Стандартной модели. Но, увы, даже на это открытие научное сообщество никак не отреагировало. Теория струн оставалась на грани выживания. Но Шварца это не остановило. Присоединиться к его поискам захотел только один ученый, готовый рискнуть своей карьерой ради таинственных струн – Майкл Грин.

Субатомные матрешки

Несмотря ни на что, в начале 1980?х годов теория струн все еще имела неразрешимые противоречия, называемые в науке аномалиями. Шварц и Грин принялись за их устранение. И усилия их не прошли даром: ученые сумели устранить некоторые противоречия теории. Каково же было изумление этих двоих, уже привыкших к тому, что их теорию пропускают мимо ушей, когда реакция ученого сообщес­тва взорвала научный мир. Меньше чем за год число струнных теоретиков подпрыгнуло до сотен человек. Именно тогда теорию струн наградили титулом Теории Всего. Новая теория, казалось, способна описать все составляющие мироздания. И вот эти составляющие.

Каждый атом, как известно, состоит из еще меньших частиц – электронов, которые кружатся вокруг ядра, состоящего из протонов и нейтронов. Протоны и нейтроны, в свою очередь, состоят из еще меньших частиц – кварков. Но теория струн утверждает, что на кварках дело не заканчивается. Кварки состоят из крошечных извивающихся нитей энергии, которые напоминают струны. Каждая из таких струн невообразимо мала.

Мала настолько, что если бы атом был увеличен до размеров Солнечной системы, струна была бы размером с дерево. Так же, как различные колебания струны виолончели создают то, что мы слышим, как разные музыкальные ноты, различные способы (моды) вибрации струны придают частицам их уникальные свойства – массу, заряд и прочее. Знаете, чем, условно говоря, отличаются протоны в кончике вашего ногтя от пока не открытого гравитона? Только набором крошечных струн, которые их составляют, и тем, как эти струны колеблются.

Конечно, все это более чем удивительно. Еще со времен Древней Греции физики привыкли к тому, что все в этом мире состоит из чего-то вроде шаров, крошечных частиц. И вот, не успев привыкнуть к алогичному поведению этих шаров, вытекающему из квантовой механики, им предлагается вовсе оставить парадигму и оперировать какими-то обрезками спагетти...

Пятое измерение

Хотя многие ученые называют теорию струн триумфом математики, некоторые проблемы у нее все же остаются – прежде всего, отсутствие какой-либо возможности в ближайшее время проверить ее экспериментально. Ни один инструмент в мире, ни существующий, ни способный появиться в перспективе, «увидеть» струны неспособен. Поэтому некоторые ученые, кстати, даже задаются вопросом: теория струн – это теория физики или философии?.. Правда, видеть струны «воочию» вовсе не обязательно. Для доказательства теории струн требуется, скорее, другое – то, что звучит как научная фантастика – подтверждение существования дополнительных измерений пространства.

О чем идет речь? Все мы привыкли к трем измерениям пространства и одному – времени. Но теория струн предсказывает наличие и других – дополнительных – измерений. Но начнем по порядку.

На самом деле, идея о существовании других измерений возникла почти сто лет назад. Пришла она в голову никому не известному тогда немецкому математику Теодору Калуца в 1919 году. Он предположил возможность наличия в нашей Вселенной еще одного измерения, которое мы не видим. Об этой идее узнал Альберт Эйнштейн, и сначала она ему очень понравилась. Позже, однако, он засомневался в ее правильности, и задержал публикацию Калуцы на целых два года. В конечном счете, правда, статья все-таки была опубликована, а дополнительное измерение стало своеобразным увлечением гения физики.

Как известно, Эйнштейн показал, что гравитация есть не что иное, как деформация измерений пространства-времени. Калуца предположил, что электромагнетизм тоже может быть рябью. Почему же мы ее не наблюдаем? Калуца нашел ответ на этот вопрос – рябь электромагнетизма может существовать в дополнительном, скрытом измерении. Но где оно?

Ответ на этот вопрос дал шведский физик Оскар Клейн, который предположил, что пятое измерение Калуцы свернуто в миллиарды раз сильнее, чем размеры одного атома, поэтому мы и не можем его видеть. Идея о существовании этого крошечного измерения, которое находится повсюду вокруг нас, и лежит в основе теории струн.

Одна из предполагаемых форм дополнительных закрученных измерений. Внутри каждой из таких форм вибрирует и движется струна – основной компонент Вселенной. Каждая форма шестимерна – по числу шести дополнительных измерений

Десять измерений

Но на самом деле уравнения теории струн требуют даже не одного, а шести дополнительных измерений (итого, с известными нам четырьмя, их получается ровно 10). Все они имеют очень закрученную и искривленную сложную форму. И все – невообразимо малы.

Каким же образом эти крошечные измерения могут оказывать влияние на наш большой мир? Согласно теории струн, решающее: для нее все определяет форма. Когда на саксофоне вы нажимаете разные клавиши, вы получаете и разные звуки. Это происходит потому, что при нажатии той или иной клавиши или их комбинации, вы меняете форму пространства в музыкальном инструменте, где циркулирует воздух. Благодаря этому и рождаются разные звуки.

Теория струн полагает, что дополнительные искривленные и закрученные измерения пространства проявляются похожим образом. Формы этих дополнительных измерений сложны и разнообразны, и каждое заставляет вибрировать струну, находящуюся внутри таких измерений, по-разному именно благодаря своим формам. Ведь если предположить, например, что одна струна вибрирует внутри кувшина, а другая – внутри изогнутого почтового рожка, это будут совершенно разные вибрации. Впрочем, если верить теории струн, на деле формы дополнительных измерений выглядят куда сложнее кувшина.

Как устроен мир

Науке сегодня известен набор чисел, которые являются фундаментальными постоянными Вселенной. Именно они определяют свойства и характеристики всего вокруг нас. Среди таких констант, например, заряд электрона, гравитационная постоянная, скорость света в вакууме... И если мы изменим эти числа даже в незначительное число раз – последствия будут катастрофическими. Предположим, мы увеличили силу электромагнитного взаимодействия. Что же произошло? Мы можем вдруг обнаружить, что ионы стали сильнее отталкиваться друг от друга, и термоядерный синтез, который заставляет звезды светить и излучать тепло, вдруг дал сбой. Все звезды погаснут.

Но причем здесь теория струн с ее дополнительными измерениями? Дело в том, что, согласно ей, именно дополнительные измерения определяют точное значение фундаментальных констант. Одни формы измерений заставляют одну струну вибрировать определенным образом, и порождают то, что мы видим, как фотон. В других формах струны вибрируют по-другому, и порождают электрон. Воистину бог кроется в «мелочах» – именно эти крошечные формы определяют все основополагающие константы этого мира.

Теория суперструн

В середине 1980-х годов теория струн приобрела величественный и стройный вид, но внутри этого монумента царила путаница. Всего за несколько лет возникло целых пять версий теории струн. И хотя каждая из них построена на струнах и дополнительных измерениях (все пять версий объединены в общую теорию суперструн – NS), в деталях эти версии расходились значительно.

Так, в одних версиях струны имели открытые концы, в других – напоминали кольца. А в некоторых вариантах теория даже требовала не 10, а целых 26 измерений. Парадокс в том, что все пять версий на сегодняшний день можно назвать одинаково верными. Но какая из них действительно описывает нашу Вселенную? Это очередная загадка теории струн. Именно поэтому многие физики снова махнули рукой на «сумасбродную» теорию.

Но самая главная проблема струн, как уже было сказано, в невозможности (по крайней мере, пока) доказать их наличие экспериментальным путем.

Некоторые ученые, однако, все же поговаривают, что на следующем поколении ускорителей есть очень минимальная, но все же возможность проверить гипотезу о дополнительных измерениях. Хотя большинство, конечно, уверено, что если это и возможно, то произойти это, увы, должно еще очень нескоро – как минимум через десятилетия, как максимум – даже через сотню лет.

В школе мы учили, что материя состоит из атомов, а атомы — из ядер, вокруг которых вращаются электроны. Примерно так же планеты вращаются вокруг солнца, поэтому это нам представить легко. Затем атом расщепили на элементарные частицы, и представить строение вселенной стало сложнее. В масштабе частиц действуют другие законы, и найти аналогию из жизни получается не всегда. Физика стала абстрактной и запутанной.

Но следующий шаг теоретической физики вернул ощущение реальности. Теория струн описала мир в понятиях, которые снова можно представить, а значит, легче понять и запомнить.

Тема все равно непростая, поэтому пойдем по порядку. Сначала разберем, в чем заключается теория, потом попробуем понять, зачем ее придумали. А на десерт — немного истории, у теории струн она короткая, но с двумя революциями.

Вселенная состоит из вибрирующих нитей энергии

До теории струн элементарные частицы считали точками — безразмерными формами с определенными свойствами. Теория струн описывает их как нити энергии, у которых один размер все же есть — длина. Эти одномерные нити назвали квантовыми струнами .

Теоретическая физика

Теоретическая физика
описывает мир с помощью математики, в отличие от экспериментальной физики. Первым физиком-теоретиком был Исаак Ньютон (1642-1727)

Ядро атома с электронами, элементарные частицы и квантовые струны глазами художника. Фрагмент документального фильма «Элегантная вселенная»

Квантовые струны очень малы, их длина порядка 10 -33 см. Это в сто миллионов миллиардов раз меньше протонов, которых сталкивают на Большом адронном коллайдере. Для подобных экспериментов со струнами пришлось бы построить ускоритель размером с галактику. Пока не нашли способ обнаружить струны, но благодаря математике мы можем предположить некоторые их свойства.

Квантовые струны бывают открытыми и закрытыми . У открытых концы свободные, у закрытых замыкаются друг на друга, образуя петли. Струны постоянно «открываются» и «закрываются», соединяются с другими струнами и распадаются на более мелкие.


Квантовые струны натянуты . Натяжение в пространстве происходит благодаря разнице энергии: у закрытых струн между сомкнутыми концами, у открытых — между концами струн и пустотой. Эту пустоту физики называют двумерными гранями измерений, или бранами — от слова мембрана.

сантиметров — минимально возможный размер объекта во вселенной. Его называют планковской длиной

Мы состоим из квантовых струн

Квантовые струны вибрируют . Это колебания, похожие на колебания струн балалайки, с равномерными волнами и целым числом минимумов и максимумов. При вибрации квантовая струна не издает звука, в масштабах элементарных частиц нечему передавать звуковые колебания. Она сама становится частицей: вибрирует с одной частотой — кварк, с другой — глюон, с третьей — фотон. Поэтому квантовая струна — это единый строительный элемент, «кирпичик» вселенной.

Вселенную принято изображать как космос и звезды, но это и наша планета, и мы с вами, и текст на экране, и ягоды в лесу.

Схема струнных колебаний. При любой частоте все волны одинаковые, их количество целое: одна, две и три


Подмосковье, 2016 год. Земляники много — больше только комаров. Они тоже из струн.


А космос — он где-то там. Вернемся к космосу

Итак, в основе вселенной — квантовые струны, одномерные нити энергии, которые вибрируют, меняют размер и форму и обмениваются энергией с другими струнами. Но это не все.

Квантовые струны перемещаются в пространстве . И пространство в масштабах струн — это самая любопытная часть теории.

Квантовые струны перемещаются в 11 измерениях

Теодор Калуца
(1885-1954)

Все началось с Альберта Эйнштейна. Его открытия показали, что время относительно, и объединили его с пространством в единый простанственно-временной континуум. Работы Эйнштейна объяснили гравитацию, движение планет и возникновение черных дыр. Кроме того, они вдохновили современников на новые открытия.

Уравнения Общей теории относительности Эйнштейн опуликовал в 1915-16 годах, а уже в 1919-м польский математик Теодор Калуца попытался применить его расчеты к теории электромагнитного поля. Но возник вопрос: если эйнштейновская гравитация искривляет четыре измерения пространства-времени, что искривляют электромагнитные силы? Вера в Эйнштейна была сильна, и Калуца не усомнился в том, что его уравнения опишут электромагнетизм. Вместо этого он предположил, что электромагнитные силы искривляют дополнительное, пятое измерение. Эйнштейну идея пришлась по душе, но проверки экспериментами теория не прошла и была забыта — до 1960-х.

Альберт Эйнштейн (1879-1955)

Теодор Калуца
(1885-1954)

Теодор Калуца
(1885-1954)

Альберт Эйнштейн
(1879-1955)

Первые уравнения теории струн давали странные результаты. В них появлялись тахионы — частицы с отрицательной массой, которые двигались быстрее скорости света. Здесь и пригодилась идея Калуцы о многомерности вселенной. Правда, пяти измерений не хватило, как не хватило шести, семи или десяти. Математика первой теории струн обретала смысл, только если в нашей вселенной 26 измерений! Более поздним теориям хватило десяти, а в современной их одиннадцать — десять пространственных и время.

Но если так, почему мы не видим дополнительные семь измерений? Ответ прост — они слишком малы. Издалека объемный предмет будет казаться плоским: водопроводная труба покажется лентой, а воздушный шарик — кругом. Даже если бы мы могли увидеть объекты в других измерениях, мы бы не рассмотрели их многомерность. Этот эффект ученые называют компактификацией .


Дополнительные измерения свернуты в неуловимо малые формы пространства-времени — их называют простанствами Калаби-Яу. Издалека выглядит плоским.

Семь дополнительных измерений мы можем представить только в виде математических моделей. Это фантазии, которые построены на известных нам свойствах пространства и времени. При добавлении третьего измерения мир становится объемным, и мы можем обойти препятствие. Возможно, по тому же принципу корректно добавить остальные семь измерений — и тогда по ним можно обогнуть пространство-время и попасть в любую точку любой вселенной в любой момент времени.

измерений во вселенной по первому варианту теории струн — бозонному. Сейчас его считают неактуальным


У линии только одно измерение — длина


Воздушный шарик объемный, у него есть третье измерение — высота. Но для двумерного человечка он выглядит линией


Как двумерный человечек не может представить многомерность, так и мы не можем представить все измерения вселенной

По такой модели квантовые струны путешествуют всегда и везде, а значит, одни и те же струны кодируют свойства всех возможных вселенных от их рождения и до конца времен. К сожалению, наш воздушный шарик плоский. Наш мир — лишь четырехмерная проекция одиннадцатимерной вселенной на видимые масшабы пространства-времени, и мы не можем последовать за струнами.

Когда-нибудь мы увидим Большой Взрыв

Когда-нибудь мы рассчитаем частоту вибраций струн и организацию дополнительных измерений в нашей вселенной. Тогда мы узнаем о ней абсолютно все и сможем увидеть Большой Взрыв или слетать на Альфу Центавра. Но пока это невозможно — нет никаких намеков, на что опереться в расчетах, и найти нужные цифры можно только перебором. Математики подсчитали, что перебрать придется 10 500 вариантов. Теория зашла в тупик.

И все же теория струн еще способна объяснить природу вселенной. Для этого она должна связать все другие теории, стать теорией всего.

Теория струн станет теорией всего. Может быть

Во второй половине XX века физики подтвердили ряд фундаментальных теорий о природе вселенной. Казалось, еще немного — и мы все поймем. Однако главную проблему решить не удается до сих пор: теории прекрасно работают по отдельности, но общей картины не дают.

Главных теорий две: теория относительности и квантовая теория поля.

вариантов организации 11 измерений в пространствах Калаби-Яу — хватит для всех возможных вселенных. Для сравнения, количество атомов в наблюдаемой части вселенной — порядка 10 80

вариантов организации пространств Калаби-Яу — хватит для всех возможных вселенных. Для сравнения, количество атомов в наблюдаемой вселенной — порядка 10 80

Теория относительности
описала гравитационное взаимодействие между планетами и звездами и объяснила феномен черных дыр. Это физика наглядного и логичного мира.


Модель гравитационного взаимодействия Земли и Луны в эйнштейновском пространстве-времени

Квантовая теория поля
определила типы элементарных частиц и описала 3 вида взаимодействия между ними: сильное, слабое и электромагнитное. Это физика хаоса.


Квантовый мир глазами художника. Видео с сайта MiShorts

Квантовую теорию поля с добавлением массы для нейтрино называют Стандартной моделью . Это основная теория строения вселенной на квантовом уровне. Большинство предсказаний теории подтверждается в экспериментах.

Стандартная модель делит все частицы на фермионы и бозоны. Фермионы формируют материю — в эту группу входят все наблюдаемые частицы, такие как кварк и электрон. Бозоны — это силы, которые отвечают за взаимодействие фермионов, например, фотон и глюон. Уже известно два десятка частиц, и ученые продолжают открывать новые.

Логично предположить, что и гравитационное взаимодействие передается своим бозоном. Его пока не нашли, однако описали свойства и придумали название — гравитон .

Но объединить теории не получается. По Стандартной модели, элементарные частицы — безразмерные точки, которые взаимодействуют на нулевых расстояниях. Если это правило применить к гравитону, уравнения дают бесконечные результаты, что лишает их смысла. Это лишь одно из противоречий, но оно хорошо иллюстрирует, как далека одна физика от другой.

Поэтому ученые ищут альтернативную теорию, способную объединить все теории в одну. Такую теорию назвали единой теорией поля, или теорией всего .

Фермионы
формируют все типы материи, кроме темной

Бозоны
переносят энергию между фермионами

Теория струн может объединить научный мир

Теория струн в этой роли выглядит привлекательнее других, так как сходу решает главное противоречие. Квантовые струны вибрируют, поэтому расстояние между ними больше нуля, и невозможных результатов вычислений для гравитона удается избежать. Да и сам гравитон неплохо вписывается в концепцию струн.

Но теория струн не доказана экспериментами, ее достижения остаются на бумаге. Тем удивительнее тот факт, что за 40 лет от нее не отказались — настолько велик ее потенциал. Чтобы понять, почему так происходит, оглянемся назад и посмотрим, как она развивалась.

Теория струн пережила две революции

Габриэле Венециано
(род. 1942)

Поначалу теорию струн вовсе не считали претендентом на объединение физики. Ее и открыли-то случайно. В 1968 году молодой физик-теоретик Габриэле Венециано изучал сильные взаимодействия внутри атомного ядра. Неожиданно он обнаружил, что их неплохо описывает бета-функция Эйлера — набор уравнений, которые за 200 лет до того составил швейцарский математик Леонард Эйлер. Это было странно: в те времена атом считался неделимым, а работа Эйлера решала исключительно математические задачи. Никто не понимал, почему уравнения работают, но ими активно пользовались.

Физический смысл бета-функции Эйлера выяснили два года спустя. Трое физиков, Йохиро Намбу, Хольгер Нильсен и Леонард Сасскинд, предположили, что элементарные частицы могут быть не точками, а одномерными вибрирующими струнами. Сильное взаимодействие для таких объектов уравнения Эйлера описывали идеально. Первый вариант теории струн назвали бозонным, так как он описывал струнную природу бозонов, ответственных за взаимодействия материи, и не касался фермионов, из которых материя состоит.

Теория была сырой. В ней фигурировали тахионы, а основные предсказания противоречили результатам экспериментов. И хотя от тахионов удалось избавиться с помощью многомерности Калуцы, теория струн не прижилась.

  • Габриэле Венециано
  • Йохиро Намбу
  • Хольгер Нильсен
  • Леонард Сасскинд
  • Джон Шварц
  • Майкл Грин
  • Эдвард Виттен
  • Габриэле Венециано
  • Йохиро Намбу
  • Хольгер Нильсен
  • Леонард Сасскинд
  • Джон Шварц
  • Майкл Грин
  • Эдвард Виттен

Но верные сторонники у теории остались. В 1971 году Пьер Рамон добавил в теорию струн фермионы, сократив количество измерений с 26 до десяти. Это положило начало теории суперсимметрии .

Она гласила, что каждому фермиону соответствует свой бозон, а значит, материя и энергия симметричны. Неважно, что наблюдаемая вселенная несимметрична, говорил Рамон, существуют условия, при которых симметрия все же соблюдается. А если по теории струн фермионы и бозоны кодируются одними и теми же объектами, то в этих условиях материя может превращаться в энергию, и наоборот. Это свойство струн назвали суперсимметричностью, а саму теорию струн — суперструнной.

В 1974 году Джон Шварц и Джоэль Шерк обнаружили, что некоторые свойства струн удивительно точно совпали со свойствами предполагаемого переносчика гравитации — гравитона. С этого момента теория начала всерьез претендовать на обобщающую.

измерений пространства-времени было в первой теории суперструн


«Математическая структура теории струн столь прекрасна и имеет столько поразительных свойств, что, несомненно, должна указывать на что-то более глубокое»

Первая суперструнная революция произошла в 1984 году. Джон Шварц и Майкл Грин представили математическую модель, которая показывала, что многие противоречия между теорией струн и Стандартной моделью устранимы. Новые уравнения также связывали теорию со всеми видами материи и энергии. Научный мир охватила лихорадка — физики бросали свои исследования и переключались на изучение струн.

С 1984 по 1986 года было написано более тысячи работ по теории струн. Они показали, что многие положения Стандартной модели и теории гравитации, которые годами собирались по крупицам, естественным образом вытекают из струнной физики. Исследования убедили ученых, что объединяющая теория не за горами.


«Момент, когда вы знакомитесь с теорией струн и осознаете, что почти все основные достижения физики последнего столетия следуют — и следуют с такой элегантностью — из столь простой отправной точки, ясно демонстрирует вам всю невероятную мощь этой теории»

Но теория струн не спешила раскрывать свои тайны. На месте решенных проблем возникали новые. Ученые обнаружили, что существует не одна, а пять теорий суперструн. В них струны обладали разными типами суперсимметрии, и не было никакой возможности понять, какая из теорий верна.

Математические методы имели свой предел. Физики привыкли к сложным уравнениям, которые не дают точных результатов, однако для теории струн не получалось написать даже точных уравнений. А приближенные результаты приближенных уравнений не давали ответов. Стало ясно, что для изучения теории нужна новая математика, но никто не знал, какая именно. Пыл ученых поутих.

Вторая суперструнная революция прогремела в 1995 году. Конец застою положил доклад Эдварда Виттена на конференции по теории струн в Южной Калифорнии. Виттен показал, что все пять теорий — это частные случаи одной, более общей теории суперструн, в которой не десять измерений, а одиннадцать. Объединяющую теорию Виттен назвал М-теорией, или Матерью всех теорий, от английского слова Mother.

Но важнее было другое. М-теория Виттена настолько хорошо описывала эффект гравитации в теории суперструн, что ее назвали суперсимметричной теорией гравитации, или теорией супергравитации . Это воодушевило ученых, и научные журналы вновь заполнили публикации по струнной физике.

измерений пространства-времени в современной теории суперструн


«Теория струн — это часть физики двадцать первого века, случайно попавшая в век двадцатый. Могут пройти десятилетия, или даже столетия, прежде чем она будет полностью разработана и осознана»

Отголоски этой революции слышны и сегодня. Но несмотря на все усилия ученых, в теории струн больше вопросов, чем ответов. Современная наука пытается построить модели многомерной вселенной и изучает измерения как мембраны пространства. Их называют бранами — помните пустоту, на которой натянуты открытые струны? Предполагают, что и сами струны могут оказаться двух- или трехмерными. Даже говорят о новой 12-мерной фундаментальной теории — F-теории, Отце всех теорий, от слова Father. История теории струн далека от завершения.

Теорию струн пока не доказали — но и не опровергли

Главная проблема теории — в отсутствии прямых доказательств. Да, из нее вытекают другие теории, ученые складывают 2 и 2, и получается 4. Но это не значит, что четверка состоит из двоек. Эксперименты на Большой адронном коллайдере пока не обнаружили и суперсимметрию, что подтвердило бы единую структурную основу вселенной и сыграло бы на руку сторонникам струнной физики. Но нет и опровержений. А потому элегантная математика теории струн продолжает будоражить умы ученых, обещая разгадки всех тайн мироздания.

Говоря о теории струн, нельзя не упомянуть Брайана Грина, профессора Колумбийского университета и неутомимого популяризатора теории. Грин выступает с лекциями и снимается на телевидении. В 2000 году его книга «Элегантная вселенная. Суперструны, скрытые размерности и поиск окончательной теории» стала финалистом Пулитцеровской премии. В 2011 он сыграл себя в 83-й серии «Теории Большого Взрыва». В 2013 году посетил Московский политехнический институт и дал интервью «Ленте-ру»

Если не хотите становиться знатоком теории струн, но хотите понимать, в каком мире живете, запомните шпаргалку:

  1. Вселенная состоит из нитей энергии — квантовых струн, которые вибрируют как струны музыкальных инструментов. Разная частота вибрации превращает струны в разные частицы.
  2. Концы струн могут быть свободны, а могут замыкаться друг на друга, образуя петли. Струны все время замыкаются, размыкаются и обмениваются энергией с другими струнами.
  3. Квантовые струны существуют в 11-мерной вселенной. Дополнительные 7 измерений свернуты в неуловимо малые формы пространства-времени, поэтому мы их не видим. Это называется компактификацией измерений.
  4. Если бы мы узнали, как именно свернуты измерения в нашей вселенной, то, возможно, смогли бы путешествовать во времени и к другим звездам. Но пока это невозможно — слишком много вариантов нужно перебрать. Их бы хватило на все возможные вселенные.
  5. Теория струн может объединить все физические теории и открыть нам тайны мироздания — для этого есть все предпосылки. Но пока нет доказательств.
  6. Из теории струн логически следуют другие открытия современной науки. К сожалению, это ничего не доказывает.
  7. Теория струн пережила две суперструнные революции и многолетние периоды забвения. Одни ученые считают ее научной фантастикой, другие верят, что новые технологии помогут ее доказать.
  8. Самое главное: если планируете рассказать о теории струн друзьям, убедитесь, что среди них нет физика — сбережете время и нервы. И будете выглядеть, как Брайан Грин в Политехническом институте:

Приходила ли вам в голову мысль, что вселенная похожа на виолончель? Правильно - не приходила. Потому что вселенная не похожа на виолончель. Но это не означает, что у нее нет струн.

Конечно, струны мироздания едва ли похожи на те, которые мы себе представляем. В теории струн ими называются невероятно малые вибрирующие нити энергии. Эти нити похожи, скорее, на крошечные "Резинки", способные извиваться, растягиваться и сжиматься на все лады
. Все это, однако, не означает, что на них нельзя "Сыграть" симфонию вселенной, ведь из этих "нитей", по мнению струнных теоретиков, состоит все сущее.

Противоречие физики.
Во второй половине XIX века физикам казалось, что ничего серьезного в их науке открыть больше нельзя. Классическая физика считала, что серьезных проблем в ней не осталось, а все устройство мира выглядело идеально отлаженной и предсказуемой машиной. Беда, как и водится, случилась из-за ерунды - одного из мелких "Облачков", еще остававшихся на чистом, понятном небе науки. А именно - при расчете энергии излучения абсолютно черного тела (гипотетическое тело, которое при любой температуре полностью поглощает падающее на него излучение, независимо от длины волны - NS. Расчеты показывали, что общая энергия излучения любого абсолютно черного тела должна быть бесконечно большой. Чтобы уйти от столь явного абсурда, немецкий ученый Макс Планк в 1900 году предположил, что видимый свет, рентгеновские лучи и другие электромагнитные волны могут испускаться только некоторыми дискретными порциями энергии, которые он назвал квантами. С их помощью удалось решить частную проблему абсолютно черного тела. Однако последствия квантовой гипотезы для детерминизма тогда еще не осознавались. Пока в 1926 году другой немецкий ученый, Вернер Гейзенберг, не сформулировал знаменитый принцип неопределенности.

Суть его сводится к тому, что вопреки всем господствующим до того утверждениям, природа ограничивает нашу способность предсказывать будущее на основе физических законов. Речь, конечно, идет о будущем и настоящем субатомных частиц. Выяснилось, что они ведут себя совершенно не так, как это делают любые вещи в окружающем нас макромире. На субатомном уровне ткань пространства становится неровной и хаотичной. Мир крошечных частиц настолько бурный и непонятный, что это противоречит здравому смыслу. Пространство и время в нем настолько искривлены и переплетены, что там нет обычных понятий левого и правого, верха и низа, и даже до и после. Не существует способа сказать наверняка, в какой именно точке пространства находится в данный момент та или иная частица, и каков при этом момент ее импульса. Существует лишь некая вероятность нахождения частицы во множестве областей пространства - времени. Частицы на субатомном уровне словно "Размазаны" по пространству. Мало этого, не определен и сам "Статус" частиц: в одних случаях они ведут себя как волны, в других - проявляют свойства частиц. Это то, что физики называют корпускулярно-волновым дуализмом квантовой механики.

В общей теории относительности, словно в государстве с противоположными законами, дело обстоит принципиально иначе. Пространство представляется похожим на батут - гладкую ткань, которую могут изгибать и растягивать объекты, обладающие массой. Они создают деформации пространства - времени - то, что мы ощущаем как гравитацию. Стоит ли говорить, что стройная, правильная и предсказуемая общая теория относительности находится в неразрешимом конфликте с "Взбалмошной Хулиганкой" - квантовой механикой, и, как следствие, макромир не может "помириться" с микромиром. Вот тут на помощь и приходит теория струн.

Теория всего.
Теория струн воплощает мечту всех физиков по объединению двух, в корне противоречащих друг другу ото и квантовой механики, мечту, которая до конца дней не давала покоя величайшему "Цыгану и Бродяге" Альберту Эйнштейну.

Многие ученые уверены, что всё, от изысканного танца галактик до безумной пляски субатомных частиц, может в итоге объясняться всего одним фундаментальным физическим принципом. Может быть - даже единым законом, который объединяет все виды энергии, частиц и взаимодействий в какой-нибудь элегантной формуле.

Ото описывает одну из самых известных сил вселенной - гравитацию. Квантовая механика описывает три других силы: сильное ядерное взаимодействие, которое склеивает протоны и нейтроны в атомах, электромагнетизм и слабое взаимодействие, которое участвует в радиоактивном распаде. Любое событие в мироздании, от ионизации атома до рождения звезды, описывается взаимодействиями материи посредством этих четырех сил. С помощью сложнейшей математики удалось показать, что электромагнитное и слабое взаимодействия имеют общую природу, объединив их в единое электрослабое. Впоследствии к ним добавилось и сильное ядерное взаимодействие - но вот гравитация к ним не присоединяется никак. Теория струн - одна из самых серьезных кандидаток на то, чтобы соединить все четыре силы, а, значит, объять все явления во вселенной - недаром ее еще называют "Теорией Всего".

Вначале был миф.
До сих пор далеко не все физики пребывают в восторге от теории струн. А на заре ее появления она и вовсе казалась бесконечно далекой от реальности. Само ее рождение - легенда.

В конце 1960-х годов молодой итальянский физик - теоретик Габриэле венециано искал уравнения, которые смогли бы объяснить сильные ядерные взаимодействия - чрезвычайно мощный "Клей", который скрепляет ядра атомов, связывая воедино протоны и нейтроны. Согласно легенде, как-то он случайно наткнулся на пыльную книгу по истории математики, в которой нашел уравнение двухсотлетней давности, впервые записанное швейцарским математиком Леонардом Эйлером. Каково же было удивление венециано, когда он обнаружил, что уравнение Эйлера, которое долгое время считали ничем иным, как математической диковинкой, описывает это сильное взаимодействие.

Как же было на самом деле? Уравнение, вероятно, стало результатом долгих лет работы венециано, а случай лишь помог сделать первый шаг к открытию теории струн. Уравнение Эйлера, чудесным образом объяснившее сильное взаимодействие, обрело новую жизнь.

В конце концов, оно попалось на глаза молодому американскому физику - теоретику Леонарду сасскинду, который увидел, что в первую очередь формула описывала частицы, которые не имели внутренней структуры и могли вибрировать. Эти частицы вели себя так, что не могли быть просто точечными частицами. Сасскинд понял - формула описывает нить, которая подобна упругой резинке. Она могла не только растягиваться и сжиматься, но и колебаться, извиваться. Описав свое открытие, сасскинд представил революционную идею струн.

К сожалению, подавляющее большинство его коллег встретили теорию весьма прохладно.

Стандартная модель.
В то время общепринятая наука представляла частицы точками, а не струнами. В течение многих лет физики исследовали поведение субатомных частиц, сталкивая их на высоких скоростях и изучая последствия этих столкновений. Выяснилось, что вселенная намного богаче, чем это можно было себе представить. Это был настоящий "Демографический Взрыв" элементарных частиц. Аспиранты физических вузов бегали по коридорам с криками, что открыли новую частицу, - не хватало даже букв для их обозначения.

Но, увы, в "Родильном Доме" новых частиц ученые так и не смогли отыскать ответ на вопрос - зачем их так много и откуда они берутся?

Это подтолкнуло физиков к необычному и потрясающему предсказанию - они поняли, что силы, действующие в природе, также можно объяснить с помощью частиц. То есть существуют частицы материи, а есть частицы - переносчики взаимодействий. Таковым, например, является фотон - частица света. Чем больше этих частиц - переносчиков - тех же фотонов, которыми обмениваются частицы материи, тем ярче свет. Ученые предсказывали, что именно этот обмен частицами - переносчиками - есть не что иное, как то, что мы воспринимаем как силу. Это подтвердилось экспериментами. Так физикам удалось приблизиться к мечте Эйнштейна по объединению сил.

Ученые считают, что если мы перенесемся к моменту сразу после большого взрыва, когда вселенная была на триллионы градусов горячее, частицы - переносчики электромагнетизма и слабого взаимодействия станут неразличимы и объединятся в одну - един ственную силу, называемую электрослабой. А если вернуться во времени еще дальше, то электрослабое взаимодействие соединилось бы с сильным в одну суммарную "Суперсилу".

Несмотря на то, что все это еще ждет своих доказательств, квантовая механика вдруг объяснила, как три из четырех сил взаимодействуют на субатомном уровне. Причем объяснила красиво и непротиворечиво. Эта стройная картина взаимодействий, в конечном счете, получила название стандартной модели. Но, увы, и в этой совершенной теории была одна большая проблема - она не включала в себя самую известную силу макроуровня - гравитацию.

Гравитон.
Для не успевшей "Расцвести" теории струн наступила "осень", уж слишком много проблем она содержала с самого рождения. Например, выкладки теории предсказали существование частиц, которых, как точно установили вскоре, не существует. Это так называемый тахион - частица, которая движется в вакууме быстрее света. Помимо прочего выяснилось, что теория требует целых 10 измерений. Неудивительно, что это очень смущало физиков, ведь это очевидно больше, чем то, что мы видим.

К 1973 году только несколько молодых физиков все еще боролись с загадочными выкладками теории струн. Одним из них был американский физик - теоретик Джон Шварц. В течение четырех лет Шварц пытался приручить непослушные уравнения, но без толку. Помимо других проблем, одно из этих уравнений упорно описывало таинственную частицу, которая не имела массы и не наблюдалась в природе.

Ученый уже решил забросить свое гиблое дело, и тут его осенило - может быть, уравнения теории струн описывают, в том числе, и гравитацию? Впрочем, это подразумевало пересмотр размеров главных "Героев" теории - струн. Предположив, что струны в миллиарды и миллиарды раз меньше атома, "Струнщики" превратили недостаток теории в ее достоинство. Таинственная частица, от которой Джон Шварц так настойчиво пытался избавиться, теперь выступала в качестве гравитона - частицы, которую долго искали и которая позволила бы перенести гравитацию на квантовый уровень. Именно так теория струн дополнила пазл гравитацией, отсутствующей в стандартной модели. Но, увы, даже на это открытие научное сообщество никак не отреагировало. Теория струн оставалась на грани выживания. Но Шварца это не остановило. Присоединиться к его поискам захотел только один ученый, готовый рискнуть своей карьерой ради таинственных струн - Майкл Грин.

Субатомные матрешки.
Несмотря ни на что, в начале 1980-х годов теория струн все еще имела неразрешимые противоречия, называемые в науке аномалиями. Шварц и Грин принялись за их устранение. И усилия их не прошли даром: ученые сумели устранить некоторые противоречия теории. Каково же было изумление этих двоих, уже привыкших к тому, что их теорию пропускают мимо ушей, когда реакция ученого сообщества взорвала научный мир. Меньше чем за год число струнных теоретиков подпрыгнуло до сотен человек. Именно тогда теорию струн наградили титулом теории всего. Новая теория, казалось, способна описать все составляющие мироздания. И вот эти составляющие.

Каждый атом, как известно, состоит из еще меньших частиц - электронов, которые кружатся вокруг ядра, состоящего из протонов и нейтронов. Протоны и нейтроны, в свою очередь, состоят из еще меньших частиц - кварков. Но теория струн утверждает, что на кварках дело не заканчивается. Кварки состоят из крошечных извивающихся нитей энергии, которые напоминают струны. Каждая из таких струн невообразимо мала. Мала настолько, что если бы атом был увеличен до размеров солнечной системы, струна была бы размером с дерево. Так же, как различные колебания струны виолончели создают то, что мы слышим, как разные музыкальные ноты, различные способы (моды) вибрации струны придают частицам их уникальные свойства - массу, заряд и прочее. Знаете, чем, условно говоря, отличаются протоны в кончике вашего ногтя от пока не открытого гравитона? Только набором крошечных струн, которые их составляют, и тем, как эти струны колеблются.

Конечно, все это более чем удивительно. Еще со времен древней Греции физики привыкли к тому, что все в этом мире состоит из чего-то вроде шаров, крошечных частиц. И вот, не успев привыкнуть к алогичному поведению этих шаров, вытекающему из квантовой механики, им предлагается вовсе оставить парадигму и оперировать какими-то обрезками спагетти.

Как устроен мир.
Науке сегодня известен набор чисел, которые являются фундаментальными постоянными вселенной. Именно они свойства и характеристики всего вокруг нас определяют. Среди таких констант, например, заряд электрона, гравитационная постоянная, скорость света в вакууме. И если мы изменим эти числа даже в незначительное число раз - последствия будут катастрофическими. Предположим, мы увеличили силу электромагнитного взаимодействия. Что же произошло? Мы можем вдруг обнаружить, что ионы стали сильнее отталкиваться друг от друга, и термоядерный синтез, который заставляет звезды светить и излучать тепло, вдруг дал сбой. Все звезды погаснут.

Но причем здесь теория струн с ее дополнительными измерениями? Дело в том, что, согласно ей, именно дополнительные измерения определяют точное значение фундаментальных констант. Одни формы измерений заставляют одну струну вибрировать определенным образом, и порождают то, что мы видим, как фотон. В других формах струны вибрируют по-другому, и порождают электрон. Воистину бог кроется в "Мелочах" - именно эти крошечные формы определяют все основополагающие константы этого мира.

Теория суперструн.
В середине 1980-х годов теория струн приобрела величественный и стройный вид, но внутри этого монумента царила путаница. Всего за несколько лет возникло целых пять версий теории струн. И хотя каждая из них построена на струнах и дополнительных измерениях (все пять версий объединены в общую теорию суперструн - NS), в деталях эти версии расходились значительно.

Так, в одних версиях струны имели открытые концы, в других - напоминали кольца. А в некоторых вариантах теория даже требовала не 10, а целых 26 измерений. Парадокс в том, что все пять версий на сегодняшний день можно назвать одинаково верными. Но какая из них действительно описывает нашу вселенную? Это очередная загадка теории струн. Именно поэтому многие физики снова рукой на "Сумасбродную" теорию махнули.

Но самая главная проблема струн, как уже было сказано, в невозможности (по крайней мере, пока) доказать их наличие экспериментальным путем.

Некоторые ученые, однако, все же поговаривают, что на следующем поколении ускорителей есть очень минимальная, но все же возможность проверить гипотезу о дополнительных измерениях. Хотя большинство, конечно, уверено, что если это и возможно, то произойти это, увы, должно еще очень нескоро - как минимум через десятилетия, как максимум - даже через сотню лет.

В начале XX века были сформированы две несущие опоры современного научного знания. Одной из них является общая теория относительности Эйнштейна, объясняющая явление силы тяжести и структуру пространства-времени. Другая - квантовая механика, описывающая физические процессы сквозь призму вероятности. Объединить эти два подхода призвана теория струн. Кратко и понятно объяснить ее можно, используя аналогии в повседневной жизни.

Теория струн простым языком

Основные положения одной из наиболее известных «теорий всего» сводятся к следующему:

  1. Основу мироздания составляют протяженные объекты, которые по форме напоминают струны;
  2. Этим объектам свойственно совершать различные колебания, словно на музыкальном инструменте;
  3. В результате этих колебаний образуются различные элементарные частицы (кварки, электроны и т.д.).
  4. Масса полученного объекта прямо пропорциональна амплитуде совершенного колебания;
  5. Теория помогает по-новому взглянуть на черные дыры;
  6. Также с помощью нового учения удалось раскрыть силу тяжести во взаимодействиях между фундаментальными частицами;
  7. В отличии господствующих ныне представлений о четырехмерном мире, в новой теории вводятся дополнительные измерения;
  8. В настоящее время концепция еще не принята официально в широком научном сообществе. Не известно ни одного эксперимента, который бы подтверждал эту гармоничную и выверенную на бумаге теорию.

Историческая справка

История данной парадигмы охватывает несколько десятилетий интенсивных исследований. Благодаря совместным усилиям физиков по всему миру, была разработана стройная теория, включающая концепции конденсированных сред, космологию и теоретическую математику.

Основные этапы ее развития:

  1. 1943-1959 гг. Появилось учение Вернера Гейзенберга об s-матрице, в рамках которого предлагалось отбросить понятия пространства и времени для квантовых явлений. Гейзенберг впервые обнаружил, что участники сильных взаимодействий представляют собой протяженные объекты, а не точки;
  2. 1959-1968 гг. Были обнаружены частицы с высокими спинами (моментами вращения). Итальянский физик Туллио Редже предложит группировать квантовые состояния в траектории (которые были названы его именем);
  3. 1968-1974 гг. Гарибрэле Венециано предложил модель двойного резонанса для описания сильных взаимодействий. Есиро Намбу развил эту идею и описал ядерные силы как вибрационные одномерные струны;
  4. 1974-1994 гг. Открытие суперструн, во многом благодаря работам российского ученого Александра Полякова;
  5. 1994-2003 гг. Появление М-теории, допустила большее, чем 11, количество измерений;
  6. 2003 - н. в. Майкл Дуглас разработал ландшафтную теорию струн с понятием ложного вакуума .

Теория квантовых струн

Ключевыми объектами в новой научной парадигме являются тончайшие объекты , которые своими колебательными движениями сообщают массу и заряд всякой элементарной частице.

Основные свойства струн согласно современным представлениям:

  • Длина их чрезвычайно мала - около 10 -35 метров. В подобном масштабе становятся различимы квантовые взаимодействия;
  • Однако в обыкновенных лабораторных условиях, которые не имеют дела с такими мелкими объектами, струна абсолютно неотличима от безразмерного точечного объекта;
  • Важной характеристикой струнного объекта является ориентация. Струны, обладающие ей, имеют пару с противоположным направлением. Существуют также неориентированные экземпляры.

Струны могут существовать как в виде отрезка, ограниченного с обоих концов, так и в виде замкнутой петли. Причем возможны такие превращения:

  • Отрезок или петля могут «размножиться», дав начало паре соответствующих объектов;
  • Отрезок дает начало петле, если часть его «закольцуется»;
  • Петля разрывается и становится открытой струной;
  • Два отрезка обмениваются сегментами.

Прочие фундаментальные объекты

В 1995 году оказалось, что не одни только одномерные объекты являются кирпичиками нашего мироздания. Было предсказано существование необычных формаций - бранов - в виде цилиндра или объемного кольца, которые имеют такие особенности:

  • Они в несколько миллиардов раз меньше атомов;
  • Могут распространяться через пространство и время, имеют массу и заряд;
  • В нашей Вселенной они представляют собой трехмерные объекты. Однако предполагают, что их форма гораздо более загадочна, поскольку значительная их часть может простираться в другие измерения;
  • Многомерное пространство, которое скрывается под бранами, является гиперпространством;
  • С этими структурами связывают существование частиц, являющихся переносчиками силы тяжести - гравитонов. Они свободно отделяются от бранов и плавно перетекают в другие измерения;
  • На бранах локализованных также электромагнитные, ядерные и слабые взаимодействия;
  • Наиболее важной разновидностью являются D-браны. На их поверхности крепятся конечные точки открытой струны в тот момент, когда она проходит сквозь пространство.

Критические замечания

Как и всякая научная революция, эта пробивается сквозь тернии непонимания и критики со стороны адептов традиционных взглядов.

Среди наиболее часто высказываемых замечаний:

  • Введение дополнительных измерений пространства-времени создает гипотетическую возможность существования огромного количества вселенных. По словам математика Питера Вольта, это приводит к невозможности предсказания любых процессов или явлений. Всякий эксперимент запускает большое количество различных сценариев, которые могут быть интерпретированы различными способами;
  • Отсутствует возможность подтверждения. Современный уровень развития техники не позволяет экспериментально подтвердить или опровергнуть кабинетные исследования;
  • Последние наблюдения за астрономическими объектами не волне укладываются в положения теории, что заставляет ученых пересматривать некоторые свои выводы;
  • Ряд физиков высказывают мнение, что концепция является спекулятивной и тормозит развитие других фундаментальных представлений.

Пожалуй, легче доказать теорему Ферма, чем простыми словами разъяснить положения теории струн. Математический аппарат ее столь обширен, что понять ее под силу лишь маститым ученым из крупнейших НИИ.

До сих пор не ясно, найдут ли реальное применение сделанные за последние десятки лет на кончике пера открытия. Если да, то нас ждет дивный новый мир с антигравитацией, множеством вселенных и разгадкой природы черных дыр.

Видео: теория струн кратко и доступно

В данном ролике физик Станислав Ефремов расскажет простыми словами, в чем заключается теория струн:



Просмотров