Техническая механика

Для того чтобы второй закон Ньютона выполнялся в неинерциальных системах отсчета в дополнение к силам, которые действуют на тела вводят силы инерции.

Определение и формула силы инерции

ОПРЕДЕЛЕНИЕ

Силой инерции называют силу, которая вводится только потому, что система координат, в которой происходит рассмотрение движения тел, является неинерциальной.

Возникновение сил инерции не связано с действием каких-либо тел. Напомним, что неинерциальными системами отсчета являются любые системы, движущейся с ускорением относительно инерциальных систем.

Третий закон Ньютона для сил инерции не выполняется.

Пусть ускорение тела относительно инерциальной системы отсчета равно . Обычно такое ускорение называют абсолютным, при этом ускорение тела относительно неинерциальной системы отсчета носит название относительного (). Второй закон Ньютона для инерциальной системы отсчета запишем как:

где - равнодействующая сила, приложенная к телу массы m. В неинерциальной системе отсчета:

поскольку:

Добавим к правой части выражения (2) силы инерции, так чтобы выполнялся второй закон Ньютона в неинерциальной системе отсчета:

В таком случае получим, что сила инерции равна:

Формула (5) для силы инерции дает верное описание движения в неинерциальной системе отсчета. При этом нахождение разности относительного и абсолютного ускорений является кинематической задачей. Ее можно решить, если известен характер движения неинерциальной системы отсчета относительно инерциальной.

Системы отсчета, движущиеся прямолинейно с постоянным ускорением

Система отсчета, которая перемещается прямолинейно с постоянным ускорением - это простейший случай неинерциальной системы. Рассмотрим неинерциальную систему отсчета, которая движется прямолинейно с постоянным ускорением (переносное ускорение) относительно инерциальной системы отсчета. Тогда:

Согласно формуле (5) сила инерции равна:

Вращающаяся система отсчета

Рассмотрим систему отсчета, вращающуюся относительно неподвижной оси с постоянной скоростью . Для тела находящегося в состоянии покоя в такой системе отсчета формулу для силы инерции можно записать как:

где - радиус-вектор, по величине равный расстоянию от оси вращения до рассматриваемого тела, направленный от центра к телу. Сила инерции (8) называется центробежной силой инерции.

Все тела на поверхности Земли испытывают действие центробежной силы инерции.

Отметим, что всякую задачу можно решить в инерциальной системе отсчета. Применение неинерциальных систем продиктовано соображениями удобства применения неинерциальных систем.

Примеры решения задач по теме «Сила инерции»

ПРИМЕР 1

Задание Какова сила нормального давления тела (вес) на поверхность Земли, если тело неподвижно, имеет массу m. Находится на широте . Радиус Земли считать равным R.
Решение Сделаем рисунок.

Свяжем систему отсчета с Землей. На груз в этой системе отсчета действуют силы: сила тяжести (); сила реакции опоры (); сила трения покоя (). Кроме этих сил, так как систему отсчета связанную с Землей в нашем случае инерциальной считать не будем, действует центробежная сила инерции (). Формулу для расчета силы инерции возьмем:

где радиус траектории (окружности) по которой движется груз.

Систему координат выберем так, что ее начало совпадет с центром тела, ось Y будет перпендикулярна поверхности Земли, ось X - касательная к поверхности Земли (см. рис.1). Так как тело не движется относительно Земли, то второй закон Ньютона запишем как:

В проекциях на оси X и Y выражения (1.2), учитывая (1.1) имеем:

Так как вес тела (P) по величине равен (N), выразим его из первого уравнения системы (1.3), получим:

Ответ

При изучении вопроса о том, что такое сила инерции (СИ), часто происходят недопонимания, приводящие к псевдонаучным открытиям и парадоксам. Давайте разберемся в данном вопросе, применив научный подход и обосновав все сказанное подтверждающими формулами.

Сила инерции окружает нас повсюду. Ее проявления люди заметили еще в древности, но объяснить не могли. Серьезно ее изучением занимался Галилей, а затем известный Именно из-за его пространного толкования стали возможны ошибочные гипотезы. Это вполне закономерно, ведь ученый сделал предположение, а накопленного наукой багажа знаний в этой области еще не существовало.

Ньютон утверждал, что естественным свойством всех материальных объектов является возможность находиться в состоянии по прямой линии или же покоиться, при условии, что не оказывается внешнего воздействия.

Давайте на основании современных знаний «расширим» данное предположение. Еще Галилео Галилей обратил внимание, что сила инерции непосредственно связана с гравитацией (притяжением). А естественные притягивающие объекты, воздействие которых очевидно - это планеты и звезды (благодаря своей массе). А так как они имеют форму шара, то на это и указал Галилей. Однако Ньютон данный момент полностью проигнорировал.

Сейчас известно, что вся Вселенная пронизана гравитационными линиями различной интенсивности. Косвенно подтверждено, хотя математически не доказано, существование гравитационного излучения. Следовательно, сила инерции всегда возникает при участии гравитации. Ньютон в своем предположении о «естественном свойстве» этого также не учел.

Более правильно исходить из другого определения - указанная сила представляет собой значение которой является произведением массы (m) перемещающегося тела на его ускорение (a). Вектор направлен встречно ускорению, то есть:

где F, а - значения векторов силы и полученного ускорения; m - масса движущегося тела (или математической

Физика и механика предлагают два названия для подобного воздействия: кориолисова и переносная сила инерции (ПСИ). Оба термина равнозначны. Отличие в том, что первый вариант общепризнан и используется в курсе механики. Другими словами, справедливо равенство:

F kor = F per = m*(-a kor) = m*(-a per),

где F - кориолисова сила; F per - переносная сила инерции; a kor и a per - соответствующие векторы ускорения.

ПСИ включает в себя три составляющих: инерции, поступательная СИ и вращательная. Если с первой обычно сложностей не возникает, то другие две требуют пояснения. Поступательная сила инерции определяется ускорением всей системы в целом относительно какой-либо инерциальной системы при поступательной разновидности движения. Соответственно, третья составляющая возникает из-за ускорения, появляющегося при вращении тела. В то же время, данные три силы могут существовать и независимо, не являясь частью ПСИ. Все они представлены одной и той же основной формулой F = m*a, а различия лишь в типе ускорения, которое, в свою очередь, зависит от разновидности движения. Таким образом, они являются частным случаем инерции. Каждая из них участвует в расчете теоретического абсолютного ускорения материального тела (точки) в неподвижной системе отсчета (невидимо для наблюдения из неинерциальной системы).

ПСИ необходима при изучении вопроса относительного движения, так как для создания формул движения тела в неинерциальной системе необходимо учитывать не только другие известные силы, но и ее (F kor или F per).

Инертность - способность сохранять свое состояние неизмен­ным, это внутреннее свойство всех материальных тел.

Сила инерции - сила, возникающая при разгоне или торможе­нии тела (материальной точки) и направленная в обратную сторо­ну от ускорения. Силу инерции можно измерить, она приложена к «связям» - телам, связанным с разгоняющимся или тормозящимся телом.

Рассчитано, что сила инерции равна

F ин = | m*a|

Таким образом, силы, действующие на материальные точки m 1 и m 2 (рис. 14.1), при разгоне платформы соответственно равны

F ин1 = m 1 *a ; F ин2 = m 2 *a

Разгоняющееся тело (плат­форма с массой т (рис. 14.1)) силу инерции не воспринимает, иначе разгон платформы вооб­ще был бы невозможен.

При вращательном движении (криволинейном) возникающее ускорение принято представлять в виде двух составляющих: нормального а п и касательного а t (рис. 14.2).

Поэтому при рассмотрении кри­волинейного движения могут воз­никнуть две составляющие силы инерции: нормальная и касательная

a = a t + a n ;

При равномерном движении по дуге всегда возникает нормаль­ное ускорение, касательное ускорение равно нулю, поэтому действует только нормальная составляющая силы инерции, направленная по радиусу из центра дуги (рис. 14.3).

Принцип кинетостатики (принцип Даламбера)

Принцип кинетостатики используют для упрощения решения ряда технических задач.

Реально силы инерции приложены к телам, связанным с разго­няющимся телом (к связям).

Даламбер предложил условно прикладывать силу инерции к ак­тивно разгоняющемуся телу. Тогда система сил, приложенных к ма­териальной точке, становится уравновешенной, и можно при реше­нии задач динамики использовать уравнения статики.

Принцип Даламбера:

Материальная точка под действием активных сил, реакций связей и условно приложенной силы инерции находится в равновесии;

Конец работы -

Эта тема принадлежит разделу:

Теоретическая механика

Теоретическая механика.. лекция.. тема основные понятия и аксиомы статики..

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ:

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Задачи теоретической механики
Теоретическая механика - наука о механическом движении материальных твердых тел и их взаимодействии. Механическое дви­жение понимается как перемещение тела в пространстве и во време­ни по от

Третья аксиома
Не нарушая механического состояния тела, можно добавить или убрать уравновешенную систему сил (принцип отбрасывания систе­мы сил, эквивалентной нулю) (рис. 1.3). Р,=Р2 Р,=Р.

Следствие из второй и третьей аксиом
Силу, действующую на твер­дое тело, можно перемещать вдоль линии ее действия (рис. 1.6).

Связи и реакции связей
Все законы и теоремы статики справедливы для свободного твердого тела. Все тела делятся на свободные и связанные. Свободные тела - тела, перемещение которых не ограничено.

Жесткий стержень
На схемах стержни изображают толсто сплошной линией (рис. 1.9). Стержень може

Неподвижный шарнир
Точка крепления пере­мещаться не может. Стер­жень может свободно повора­чиваться вокруг оси шарни­ра. Реакция такой опоры про­ходит через ось шарнира, но

Плоская система сходящихся сил
Система сил, линии действия которых пе­ресекаются в одной точке, называется сходя­щейся (рис. 2.1).

Равнодействующая сходящихся сил
Равнодействующую двух пересекающихся сил можно опреде­лить с помощью параллелограмма или треугольника сил (4-я ак­сиома) (вис. 2.2).

Условие равновесия плоской системы сходящихся сил
При равновесии системы сил равнодействующая должна быть равна нулю, следовательно, при геометрическом построении конец последнего вектора должен совпасть с началом первого. Если

Решение задач на равновесие геометрическим способом
Геометрическим способом удобно пользоваться, если в системе три силы. При решении задач на равновесие тело считать абсолютно твердым (отвердевшим). Порядок решения задач:

Решение
1. Усилия, возникающие в стержнях крепления, по величине равны силам, с которыми стержни поддерживают груз (5-я аксиома статики) (рис. 2.5а). Определяем возможные направления реакций связе

Проекция силы на ось
Проекция силы на ось определяется отрезком оси, отсекаемым перпендикулярами, опущенными на ось из начала и конца вектора (рис. 3.1).

Сил аналитическим способом
Величина равнодействующей равна векторной (геометрической) сумме векторов системы сил. Определяем равнодействующую геоме­трическим способом. Выберем систему координат, определим про­екции всех зада

Сходящихся сил в аналитической форме
Исходя из того, что равнодействующая равна нулю, получим: Усл

Пара сил, момент пары сил
Парой сил называется система двух сил, равных по модулю, параллельных и направлен­ных в разные стороны. Рассмотрим систему сил (Р; Б"), образую­щих пару.

Момент силы относительно точки
Сила, не проходящая через точку крепления тела, вызывает вра­щение тела относительно точки, поэтому действие такой силы на тело оценивается моментом. Момент силы отн

Теорема Пуансо о параллельном переносе сил
Силу можно перенести параллельно линии ее действия, при этом нужно добавить пару сил с моментом, равным произведению модуля силы на расстояние, на которое перенесена сила.

Расположенных сил
Линии действия произвольной системы сил не пересекаются в одной точке, поэтому для оценки состояния тела такую систему следует упростить. Для этого все силы системы переносят в одну произ­вольно вы

Влияние точки приведения
Точка приведения выбрана произвольно. При изменении поло­жения точки приведения величина главного вектора не изменится. Величина главного момента при переносе точки приведения из­менится,

Плоской системы сил
1. При равновесии главный вектор системы равен нулю. Аналитическое определение главного вектора приводит к выводу:

Виды нагрузок
По способу приложения нагрузки делятся на сосредоточенные и распределенные. Если реально передача нагрузки происходит на пренебрежимо малой площадке (в точке), нагрузку называют сосре­доточенной

Момент силы относительно оси
Момент силы относительно оси равен моменту проекции силы на плоскость, перпендикулярную оси, относительно точки пересечения оси с плоскостью (рис. 7.1 а). MOO

Вектор в пространстве
В пространстве вектор силы проецируется на три взаимно пер­пендикулярные оси координат. Проекции вектора образуют ребра прямоугольного параллелепипеда, век­тор силы совпадает с диагональю (рис. 7.2

Пространственная сходящаяся система сил
Пространственная сходящаяся система сил - система сил, не лежащих в одной плоскости, линии действия которых пересе­каются в одной точке. Равнодействующую пространственной системы си

Приведение произвольной пространственной системы сил к центру О
Дана пространственная система сил (рис. 7.5а). Приведем ее к центру О. Силы необходимо параллельно перемещать, при этом образует­ся система пар сил. Момент каждой из этих пар равен

Центр тяжести однородных плоских тел
(плоских фигур) Очень часто приходится определять центр тяжести различных плоских тел и геометрических плоских фигур сложной формы. Для плоских тел можно записать: V =

Определение координат центра тяжести плоских фигур
Примечание. Центр тяжести симметричной фигуры находится на оси симметрии. Центр тяжести стержня находится на середине высоты. Поло­жения центров тяжести простых геометрических фигур могут

Кинематика точки
Иметь представление о пространстве, времени, траектории, пути, скорости и ускорении.Знать способы задания движения точки (естественный и координатный). Знать обозначения, едини

Пройденный путь
Путь измеряется вдоль траектории в направлении движения. Обозначение - S, единицы измерения - метры. Уравнение движения точки: Уравнение, определяющ

Скорость движения
Векторная величина, характеризующая в данный момент бы­строту и направление движения по траектории, называется скоро­стью. Скорость - вектор, в любой момент направленный по к

Ускорение точки
Векторная величина, характеризующая быстроту изменения скорости по величине и направлению, называется ускорением точки. Скорость точки при перемещении из точки М1

Равномерное движение
Равномерное движение - это движение с постоянной скоро­стью: v = const. Для прямолинейного равномерного движения (рис. 10.1 а)

Равнопеременное движение
Равнопеременное движение - это движение с постоянным ка­сательным ускорением: at = const. Для прямолинейного равнопеременного движения

Поступательное движение
Поступательным называют такое движение твердого тела, при котором всякая прямая линия на теле при движении остается парал­лельной своему начальному положению (рис. 11.1, 11.2). При

Вращательное движение
При вращательном движении все точки тела описывают окруж­ности вокруг общей неподвижной оси. Неподвижная ось, вокруг которой вращаются все точки тела, называется осью вращения.

Частные случаи вращательного движения
Равномерное вращение (угловая скорость постоянна): ω =const Уравнение (закон) равномерного вращения в данном случае име­ет вид:

Скорости и ускорения точек вращающегося тела
Тело вращается вокруг точки О. Определим параметры дви­жения точки A , расположенной на расстоянии RA от оси вращения (рис. 11.6, 11.7). Путь

Решение
1. Участок 1 - неравномерное ускоренное движение, ω = φ’ ; ε = ω’ 2. Участок 2 - скорость постоянна - движение равномерное, . ω = const 3.

Основные определения
Сложным движением считают движение, которое можно разло­жить на несколько простых. Простыми движениями считают посту­пательное и вращательное. Для рассмотрения сложного движения точ

Плоскопараллельное движение твердого тела
Плоскопараллельным, или плоским, называется такое движение твердого тела, при котором все точки тела перемещаются парал­лельно некоторой неподвижной в рассматриваемой системе отсчета

Поступа­тельное и вращательное
Плоскопараллельное движение раскладывают на два движения: поступательное вместе с некоторым полюсом и вращательное от­носительно этого полюса. Разложение используют для опред

Центра скоростей
Скорость любой точки тела можно определять с помощью мгновенного центра скоростей. При этом сложное движение пред­ставляют в виде цепи вращений вокруг разных центров. Задача

Аксиомы динамики
Законы динамики обобщают результаты многочисленных опытов и наблюдений. Законы динамики, которые принято рассматривать как аксиомы, были сформулированы Ньютоном, но первый и четвертый законы были и

Понятие о трении. Виды трения
Трение - сопротивление, возникающее при движении одного шероховатого тела по поверхности другого. При скольжении тел воз­никает трение скольжения, при качении - трение качения. Природа сопро

Трение качения
Сопротивление при качении связано с взаимной деформацией грунта и колеса и значительно меньше трения скольжения. Обычно считают грунт мягче колеса, тогда в основном дефор­мируется грунт, и

Свободная и несвободная точки
Материальная точка, движение которой в пространстве не огра­ничено какими-нибудь связями, называется свободной. Задачи реша­ются с помощью основного закона динамики. Материальные то

Решение
Активные силы: движущая сила, сила трения, сила тяжести. Ре­акция в опоре R. Прикладываем силу инерции в обратную от ускоре­ния сторону. По принципу Даламбера, система сил, действующих на платформу

Работа равнодействующей силы
Под действием системы сил точка массой т перемещается из положения М1 в положение M 2 (рис. 15.7). В случае движения под действием системы сил пользуютс

Мощность
Для характеристики работоспособности и быстроты соверше­ния работы введено понятие мощности. Мощность - работа, выполненная в единицу времени:

Мощность при вращении
Рис. 16.2 Тело движется по дуге радиуса из точки М1 в точку М2 М1М2 = φr Работа силы

Коэффициент полезного действия
Каждая машина и механизм, совершая работу, тратит часть энергии на преодоление вредных сопротивлений. Таким образом, машина (механизм) кроме полезной работы совершает еще и дополнитель

Теорема об изменении количества движения
Количеством движения материальной точки называется векторная величина, равная произведению массы точки на ее скорость mv. Вектор количества движения совпадает по

Теорема об изменении кинетической энергии
Энергией называется способность тела совершать механиче­скую работу. Существуют две формы механической энергии: потенциальная энергия, или энергия положения, и кинетическая энергия,

Основы динамики системы материальных точек
Совокупность материальных точек, связанных между собой силами взаимодействия, называется механической системой. Любое материальное тело в механике рассматривается как механическая

Основное уравнение динамики вращающегося тела
Пусть твердое тело под действием внешних сил вращается во­круг оси Оz с угловой скоростью

Напряжения
Метод сечений позволяет определить величину внутреннего си­лового фактора в сечении, но не дает возможности установить за­кон распределения внутренних сил по сечению. Для оценки прочно­сти н

Внутренние силовые факторы, напряжения. Построение эпюр
Иметь представление о продольных силах, о нормальных на­пряжениях в поперечных сечениях. Знать правила построения эпюр продольных сил и нормальных напряжений, закон распределения

Продольных сил
Рассмотрим брус, нагруженный внешними силами вдоль оси. Брус закреплен в стене (закрепление «заделка») (рис. 20.2а). Делим брус на участки нагружения. Участком нагружения с

Геометрические характеристики плоских сечений
Иметь представление о физическом смысле и порядке опре­деления осевых, центробежных и полярных моментов инерции, о главных центральных осях и главных центральных моментах инерции.

Статический момент площади сечения
Рассмотрим произвольное сечение (рис. 25.1). Если разбить сечение на бесконечно малые площадки dA и умножить каждую площадку на расстояние до оси координат и проинтегрировать получе

Центробежный момент инерции
Центробежным моментом инерции сечения называется взятая ковсей площади сумма произведений элементарных площадок на обе координаты:

Осевые моменты инерции
Осевым моментом инерции сечения относительно некоторой реи, лежащей в этой же плоскости, называется взятая по всей пло­щади сумма произведений элементарных площадок на квадрат их расстояния

Полярный момент инерции сечения
Полярным моментом инерции сечения относительно некоторой точки (полюса) называется взятая по всей площади сумма произве­дений элементарных площадок на квадрат их расстояния до этой точки:

Моменты инерции простейших сечений
Осевые моменты инерции прямоугольника (рис. 25.2) Представим прямо

Полярный момент инерции круга
Для круга вначале вычисляют поляр­ный момент инерции, затем - осевые. Представим круг в виде совокупности бесконечно тонких колец (рис. 25.3).

Деформации при кручении
Кручение круглого бруса происходит при нагружении его па­рами сил с моментами в плоскостях, перпендикулярных продольной оси. При этом образующие бруса искривляются и разворачиваются на угол γ,

Гипотезы при кручении
1. Выполняется гипотеза плоских сечений: поперечное сечение бруса, плоское и перпен- дикулярное продольной оси, после деформацииостается плоским и перпендикулярным продольной оси.

Внутренние силовые факторы при кручении
Кручением называется нагружение, при котором в поперечном сечении бруса возникает только один внутренний силовой фактор - крутящий момент. Внешними нагрузками также являются две про

Эпюры крутящих моментов
Крутящие моменты могут меняться вдоль оси бруса. После определения величин моментов по сечениям строим график-эпюру крутящих моментов вдоль оси бруса.

Напряжения при кручении
Проводим на поверхности бру­са сетку из продольных и попе­речных линий и рассмотрим рису­нок, образовавшийся на поверхно­сти после Рис. 27.1а деформации (рис. 27.1а). Поп

Максимальные напряжения при кручении
Из формулы для определения напряжений и эпюры распределе­ния касательных напряжений при кручении видно, что максималь­ные напряжения возникают на поверхности. Определим максимальное напряж

Виды расчетов на прочность
Существует два вида расчета на прочность 1. Проектировочный расчет - определяется диаметр бруса (вала) в опасном сечении:

Расчет на жесткость
При расчете на жесткость определяется деформация и сравни­вается с допускаемой. Рассмотрим деформацию круглого бруса над действием внешней пары сил с моментом т (рис. 27.4).

Основные определения
Изгибом называется такой вид нагружения, при котором в по­перечном сечении бруса возникает внутренний силовой фактор -изгибающий момент. Брус, работающий на

Внутренние силовые факторы при изгибе
Пример 1.Рассмотрим балку, на которую действует пара сил с моментом т и внешняя сила F (рис. 29.3а). Для определения вну­тренних силовых факторов пользуемся методом с

Изгибающих моментов
Поперечная сила в сече­нии считается положитель­ной, если она стремится раз­вернуть се

Дифференциальные зависимости при прямом поперечном изгибе
Построение эпюр поперечных сил и изгибающих моментов су­щественно упрощается при использовании дифференциальных зави­симостей между изгибающим моментом, поперечной силой и интен­сивностью равномерн

Методом сечения Полученное выражение можно обобщить
Поперечная сила в рассматриваемом сечении равна алгебраической сумме всех сил, действующих на балку до рассматриваемого сечения: Q = ΣFi Поскольку речь идет

Напряжения
Рассмотрим изгиб балки, защемленной справа и нагруженной сосредоточенной силой F (рис. 33.1).

Напряженное состояние в точке
Напряженное состояние в точке характеризуется нормальны­ми и касательными напряжениями, возникающими на всех площад­ках (сечениях), проходящих через данную точку. Обычно достаточ­но определить напр

Понятие о сложном деформированном состоянии
Совокупность деформаций, возникающих по различным напра­влениям и в различных плоскостях, проходящих через точку, опре­деляют деформированное состояние в этой точке. Сложное деформи

Расчет круглого бруса на изгиб с кручением
В случае расчета круглого бруса при действии изгиба и кру­чения (рис. 34.3) необходимо учитывать нормальные и касательные напряжения, т. к. максимальные значения напряжений в обоих слу­чаях возника

Понятие об устойчивом и неустойчивом равновесии
Относительно короткие и массивные стержни рассчитывают на сжатие, т.к. они выходят из строя в результате разрушения или остаточных деформаций. Длинные стержни небольшого поперечного сечения под дей

Расчет на устойчивость
Расчет на устойчивость заключается в определении допускае­мой сжимающей силы и в сравнении с ней силы действующей:

Расчет по формуле Эйлера
Задачу определения критической силы математиче­ски решил Л. Эйлер в 1744 г. Для шарнирно закрепленного с обеих сторон стержня (рис. 36.2) формула Эйлера имеет вид

Критические напряжения
Критическое напряжение - напряжение сжатия, соответству­ющее критической силе. Напряжение от сжимающей силы определяется по формуле

Пределы применимости формулы Эйлера
Формула Эйлера выполняется только в пределах упругих де­формаций. Таким образом, критическое напряжение должно быть меньше предела упругости материала. Пред

Неинерциальной системой отсчёта называется система, движущаяся ускоренно относительно инерциальной.

Законы Ньютона справедливы только в инерциальных системах отсчета. Поэтому все рассматриваемые до сих пор вопросы относились к инерциальным системам. Однако на практике часто приходится иметь дело с неинерциальными системами отсчёта. Выясним, как должен записываться основной закон динамики в таких системах. Рассмотрим в начале движение материальной точки в инерциальной системе отсчёта:

Введём кроме неё неинерциальную систему отсчёта и договоримся первую называть неподвижной, а вторую подвижной:

На основании теоремы сложения ускорений:

Отсюда перепишем:

Мы видим, что в неинерциальной системе отсчёта ускорение точки определяется не только силой и массойm , но и характером движения самой подвижной системы отсчёта.

–фиктивные силы (они не обусловлены взаимодействием тел, а связаны с ускоренным движением неинерциальной системы относительно инерциальной) или силы инерции.

В инерциальных системах отсчёта единственной причиной ускоренного движения материальной точки являются силы, действующие со стороны материальных тел. В неинерциальных системах причиной ускоренного движения являются и силы инерции, не связанные ни с каким взаимодействием.

Необходимо подчеркнуть, что на точку, находящуюся в подвижной системе координат, силы инерции оказывают реальное действие, так как они входят в уравнение движения. Пример: движение человека в вагоне, при движении вагона с постоянной скоростью.

,

.

Пусть теперь вагон замедляет свой ход:

.

Таким образом, введение сил инерции приводит к удобной формулировке основных законов механики в относительном движении и придаёт им некоторую наглядность.

Рассмотрим два частных случая.

Пусть материальная точка совершает равномерное прямолинейное движение относительно движущейся системы координат, тогда с учетом
получим:

.

Таким образом, реальные силы уравновешиваются силами инерции.

Пусть материальная точка находится в покое по отношению к подвижной системе координат:

Тогда
,

Как уже отмечалось, законы Ньютона выполняются только в инерциальных системах отсчета. Системы отсчета, движущиеся относительно инерциальной системы с ускорением, называются н еинерциальными. В неинерциальных системах законы Ньютона, вообще говоря, уже несправедливы. Однако законы динамики можно применять и для них, если кроме сил, обусловленных воздействием тел друг на друга, ввести в рассмотрение силы особого рода – так называемые силы инерции.

Если учесть силы инерции, то второй закон Ньютона будет справедлив для любой системы отсчета: произведение массы тела на ускорение в рассматриваемой системе отсчета равно сумме всех сил, действующих на данное тело (включая и силы инерции). Силы инерции при этом должны быть такими, чтобы вместе с силами , обусловленными воздействием тел друг на друга, они сообщали телу ускорение , каким оно обладает в неинерциальных системах отсчета, т. е.

(1)

Так как
( – ускорение тела в инерциальной системе отсчета), то

Силы инерции обусловлены ускоренным движением системы отсчета относительно измеряемой системы, поэтому в общем случае нужно учитывать следующие случаи проявления этих сил:

1) силы инерции при ускоренном поступательном движении системы отсчета;

2) силы инерции, действующие на тело, покоящееся во вращающейся системе отсчета;

3) силы инерции, действующие на тело, движущееся во вращающейся системе отсчета.

Рассмотрим эти случаи.

1. Силы инерции при ускоренном поступательном движение системы отсчета. Пусть на тележке к штативу на нити подвешен шарик массой т . Пока тележка покоится или движется равномерно и прямолинейно, нить, удерживающая шарик, занимает вертикальное положение и сила тяжести
уравновешивается силой реакции нити .

Если тележку привести в поступательное движение с ускорением , то нить начнет отклоняться от вертикали назад до такого угла α , пока результирующая сила
не обеспечит ускорение шарика, равное . Таким образом, результирующая сила направлена в сторону ускорения тележки и для установившегося движения шарика (шарик теперь движется вместе с тележкой с ускорением ) равна
, откуда
,т. е. угол отклонения нити от вертикали тем больше, чем больше ускорение тележки.

Относительно системы отсчета, связанной с ускоренно движущейся тележкой, шарик покоится, что возможно, если сила , которая является ничем иным, как силой инерции, так как на шарик никакие другие силы не действуют. Таким образом,

(2)

Проявление сил инерции при поступательном движении наблюдается в повседневных явлениях. Например, когда поезд набирает скорость, то пассажир, сидящий по ходу поезда, под действием силы инерции прижимается к спинке сиденья. Наоборот, при торможении поезда сила инерции направлена в противоположную сторону, и пассажир удаляется от спинки сиденья. Особенно эти силы заметны при внезапном торможении поезда. Силы инерции проявляются в перегрузках, которые возникают при запуске и торможении космических кораблей.

2. Силы инерции, действующие на тело, покоящееся во вращающейся системе отсчета. Пусть диск равномерно вращается с угловой скоростью ω (ω =const ) вокруг вертикальной оси, проходящей через его центр. На диске, на разных расстояниях от оси вращения, установлены маятники (на нитях подвешены шарики массой m ). При вращении маятников вместе с диском шарики отклоняются от вертикали на некоторый угол.

В инерциальной системе отсчета, связанной, например, с помещением, где установлен диск, шарик равномерно вращается по окружности радиусом R (расстояние от центра вращающегося шарика до оси вращения). Следовательно, на него действует сила, модуль которой равен F = 2 R и направлена сила перпендикулярно оси вращения диска. Она является равнодействующей силы тяжести
и силы натяжения нити :
. Когда движение шарика установится, то
, откуда
,т. е. углы отклонения нитей маятников будут тем больше, чем больше расстояние R от центра шарика до оси вращения диска и чем больше угловая скорость вращения ω .

Относительно системы отсчета, связанной с вращающимся диском, шарик покоится, что возможно, если сила уравновешивается равной и противоположно направленной ей силой , которая является ничем иным, как силой инерции, так как на шарик никакие другие силы не действуют. Сила , называемая центробежной силой инерции , направлена по горизонтали от оси вращения диска и её модуль равен

F ц = 2 R (3)

Действию центробежных сил инерции подвергаются, например, пассажиры в движущемся транспорте на поворотах, летчики при выполнении фигур высшего пилотажа; центробежные силы инерции используются во всех центробежных механизмах: насосах, сепараторах и т. д., где они достигают огромных значений. При проектировании быстро вращающихся деталей машин (роторов, винтов самолетов и т. д.) принимаются специальные меры для уравновешивания центробежных сил инерции.

Из формулы (3) вытекает, что центробежная сила инерции, действующая на тела во вращающихся системах отсчета в направлении радиуса от оси вращения, зависит от угловой скорости вращения ω системы отсчета и радиуса R , но не зависит от скорости тел относительно вращающихся систем отсчета. Следовательно, центробежная сила инерции действует во вращающихся системах отсчета на все тела, удаленные от оси вращения на конечное расстояние, независимо от того, покоятся ли они в этой системе (как мы предполагали до сих пор) или движутся относительно нее с какой-то скоростью.

3. Силы инерции, действующие на тело, движущееся во вращающейся системе отсчета. Пусть шарик массой т движется с постоянной скоростью вдоль радиуса равномерно вращающегося диска (). Если диск не вращается, то шарик, направленный вдоль радиуса, движется по радиальной прямой и попадает в точку А, если же диск привести во вращение в направлении, указанном стрелкой, то шарик катится по кривой ОВ , причем его скорость относительно диска изменяет свое направление. Это возможно лишь тогда, если на шарик действует сила, перпендикулярная скорости .

Для того чтобы заставить шарик катиться по вращающемуся диску вдоль радиуса, используем жестко укрепленный вдоль радиуса диска стержень, на котором шарик движется без трения равномерно и прямолинейно со скоростью .

При отклонении шарика стержень действует на него с некоторой силой . Относительно диска (вращающейся системы отсчета) шарик движется равномерно и прямолинейно, что можно объяснить тем, что сила уравновешивается приложенной к шарику силой инерции , перпендикулярной скорости . Эта сила называется кориолисовой силой инерции .

Можно показать, что сила Кориолиса

(4)

Вектор перпендикулярен векторам скорости тела и угловой скорости вращения системы отсчета в соответствии с правилом правого винта.

Сила Кориолиса действует только на тела, движущиеся относительно вращающейся системы отсчета, например, относительно Земли. Поэтому действием этих сил объясняется ряд наблюдаемых на Земле явлений. Так, если тело движется в северном полушарии на север, то действующая на него сила Кориолиса, как это следует из выражения (4), будет направлена вправо по отношению к направлению движения, т. е. тело несколько отклонится на восток. Если тело движется на юг, то сила Кориолиса также действует вправо, если смотреть по направлению движения, т. е. тело отклонится на запад. Поэтому в северном полушарии наблюдается более сильное подмывание правых берегов рек; правые рельсы железнодорожных путей по движению изнашиваются быстрее, чем левые, и т. д. Аналогично можно показать, что в южном полушарии сила Кориолиса, действующая на движущиеся тела, будет направлена влево по отношению к направлению движения.

Благодаря силе Кориолиса падающие на поверхность Земли тела отклоняются к востоку (на широте 60° это отклонение должно составлять 1 см при падении с высоты 100 м). С силой Кориолиса связано поведение маятника Фуко, явившееся в свое время одним из доказательств вращения Земли. Если бы этой силы не было, то плоскость колебаний качающегося вблизи поверхности Земли маятника оставалась бы неизменной (относительно Земли). Действие же сил Кориолиса приводит к вращению плоскости колебаний вокруг вертикального направления.

,

где силы инерции задаются формулами (2) – (4).

Обратим еще раз внимание на то, что силы инерции вызываются не взаимодействием тел, а ускоренным движением системы отсчета . Поэтому они не подчиняются третьему закону Ньютона, так как если на какое-либо тело действует сила инерции, то не существует противодействующей силы, приложенной к данному телу. Два основных положения механики, согласно которым ускорение всегда вызывается силой, а сила всегда обусловлена взаимодействием между телами, в системах отсчета, движущихся с ускорением, одновременно не выполняются.

Для любого из тел, находящихся в неинерциальной системе отсчета, силы инерции являются внешними; следовательно, здесь нет замкнутых систем. Это означает, что в неинерциальных системах отсчета не выполняются законы сохранения импульса, энергии и момента импульса. Таким образом, силы инерции действуют только в неинерциальных системах. В инерциальных системах отсчета таких сил не существует.

Возникает вопрос о «реальности» или «фиктивности» сил инерции. В ньютоновской механике, согласно которой сила есть результат взаимодействия тел, на силы инерции можно смотреть как на «фиктивные», «исчезающие» в инерциальных системах отсчета. Однако возможна и другая их интерпретация. Так как взаимодействия тел осуществляются посредством силовых полей, то силы инерции рассматриваются как воздействия, которым подвергаются тела со стороны каких-то реальных силовых полей, и тогда их можно считать «реальными». Независимо от того, рассматриваются ли силы инерции в качестве «фиктивных» или «реальных», многие явления, о которых упоминалось выше, объясняются с помощью сил инерции.

Силы инерции, действующие на тела в неинерциальной системе отсчета, пропорциональны их массам и при прочих равных условиях сообщают этим телам одинаковые ускорения. Поэтому в «поле сил инерции» эти тела движутся совершенно одинаково, если только одинаковы начальные условия. Тем же свойством обладают тела, находящиеся под действием сил поля тяготения.

При некоторых условиях силы инерции и силы тяготения невозможно различить. Например, движение тел в равноускоренном лифте происходит точно так же, как и в неподвижном лифте, висящем в однородном поле тяжести. Никакой эксперимент, выполненный внутри лифта, не может отделить однородное поле тяготения от однородного поля сил инерции.

Аналогия между силами тяготения и силами инерции лежит в основе принципа эквивалентности гравитационных сил и сил инерции (принципа эквивалентности Эйнштейна): все физические явления в поле тяготения происходят совершенно так же, как и в соответствующем поле сил инерции, если напряженности обоих полей в соответствующих точках пространства совпадают, а прочие начальные условия для рассматриваемых тел одинаковы. Этот принцип является основой общей теории относительности.

Силы инерции и основной закон механики

Берников Василий Русланович,

инженер.

Предисловие

Внутренние силы в ряде случаев являются причиной появления внешних сил, приложенных к системе , , , . Силы инерции всегда являются внешними по отношению к любой движущейся системе материальных тел , , , . Силы инерции действуют также как и силы взаимодействия, они вполне реальны, могут совершать работу, сообщать ускорение , , , . При большом количестве теоретических предпосылок в механике о возможности использования сил инерции в качестве поступательной при создании конструкций не приводили к положительному результату. Можно отметить только некоторые широко известные конструкции с небольшой эффективностью использования сил инерции: инерцоид Толчина , вихревой жидкостный движитель Фролова , движитель Торнсона . Медленное развитие инерционных движителей объясняется отсутствием фундаментального теоретического обоснования наблюдаемого эффекта. На основании обычных классических представлений физической механики в данной работе создана теоретическая база использования сил инерции в качестве поступательной.

§1. Основной закон механики и его следствия.

Рассмотрим законы преобразования сил и ускорений в различных системах отсчёта. Выберем произвольно неподвижную инерциальную систему отсчёта и условимся движение относительно неё считать абсолютным. В такой системе отсчёта основным уравнением движения материальной точки является уравнение, выражающее второй закон Ньютона.

mw абс = F , (1.1)

где F – сила взаимодействия тел.

Тело, покоящееся в движущейся системе отсчёта, увлекается последней в её движении относительно неподвижной системы отсчёта. Такое движение называется переносным. Движение тела относительно системы отсчёта называется относительным. Абсолютное движение тела складывается из его относительного и переносного движений. В неинерциальных системах отсчёта (системы отсчёта, движущиеся с ускорением) закон преобразования ускорений для поступательного движения имеет следующий вид

w абс = w отн + w пер. (1.2)

Учитывая (1.1) для сил запишем уравнение относительного движения для материальной точки в движущейся с поступательным ускорением системе отсчёта

mw отн = F - mw пер, (1.3)

где mw пер - это поступательная сила инерции, возникающая не из-за взаимодействия тел, а из-за ускоренного движения системы отсчёта. Движение тел под действием сил инерции аналогично движению во внешних силовых полях [ 2,с.359] . Импульс центра масс системы [ 3, с.198] может быть изменён путём изменения внутреннего вращательного импульса или внутреннего поступательного импульса. Силы инерции всегда являются внешними [ 2,с.359] по отношению к любой движущейся системе материальных тел.

Допустим теперь, что система отсчёта движется совершенно произвольно относительно неподвижной системы отсчёта. Это движение можно разделить на два: поступательное движение со скоростью v о, равной скорости движения начала координат, и вращательное движение вокруг мгновенной оси, проходящей через это начало. Угловую скорость этого вращения обозначим w , а расстояние от начала координат движущейся системы отсчёта до движущейся точки в ней через r . Кроме того, движущаяся точка имеет относительно движущейся системы отсчёта скорость v отн. Тогда для абсолютного ускорения [ 2,с.362] известно соотношение

w абс = w отн - 2[ v отн w ] + (d v о /dt) - w 2 r ^ + [ (dw / dt)r ] ,. (1.4)

где r ^ - компонента радиуса-вектора r , перпендикулярная к мгновенной оси вращения. Перенесём относительное ускорение в левую часть, а абсолютное в правую часть и всё умножим на массу тела, получим основное уравнение сил относительного движения [ 2,с.364] материальной точки в произвольно движущейся системе отсчёта

mw отн = mw абс + 2m[ v отн w ] - m(d v о /dt) + mw 2 r ^ – m[ (dw / dt)r ] . (1.5)

Или соответственно

mw отн = F + F к + F п + F ц + F ф, (1.6)

где: F – сила взаимодействия тел; F к – кориолисова сила инерции; F п – поступательная сила инерции; F ц – центробежная сила инерции; F ф – фазовая сила инерции.

Направление силы взаимодействия тел F совпадает с направлением ускорения тела. Кориолисова сила инерции F к направлена согласно векторному произведению радиальной и угловой скорости, то есть перпендикулярно обоим векторам. Поступательная сила инерции F п направлена противоположно ускорению тела. Центробежная сила инерции F ц направлена по радиусу от центра вращения тела. Фазовая сила инерции F ф направлена противоположно векторному произведению углового ускорения и радиуса от центра вращения перпендикулярно этим векторам.

Таким образом, достаточно знать величину и направление действия сил инерции и взаимодействия, чтобы определить траекторию движения тела относительно любой системы отсчёта.

Кроме сил инерции и взаимодействия тел существуют силы переменной массы, являющиеся следствием действия сил инерции. Рассмотрим второй закон Ньютона в дифференциальной форме [ 2, с.77]

dP /dt = ∑F , (1.7)

где: P – импульс системы тел; ∑F – сумма внешних сил.

Известно, что импульс системы тел в общем случае зависит от времени и, соответственно, равен

P (t) = m(t)v (t), (1.8)

где: m(t) – масса системы тел; v (t) – скорость системы тел.

Так как скорость - это производная по времени координат системы, то

v (t) = dr (t)/dt, (1.9)

где r – радиус-вектор.

В дальнейшем будем подразумевать зависимость от времени: массы, скорости и радиуса-вектора. Подставим (1.9) и (1.8) в (1.7) получим

d(m (dr /dt))/dt = ∑F . (1.10)

Внесём массу m под знак дифференциала [ 1,с.295] , тогда

d [ (d(mr )/dt) – r (dm/dt) ] /dt = ∑F .

Производная разности равна разности производных

d [ (d(mr )/dt) ] dt – d [ r (dm/dt) ] /dt =∑F .

Проведём подробное дифференцирование каждого слагаемого по правилам дифференцирования произведений

m(d 2 r /dt 2) + (dm/dt)(dr /dt) + (dm/dt)(dr /dt) +

+ r (d 2 m/dt 2) – r (d 2 m/dt 2) - (dm/dt)(dr /dt) = ∑F . (1.11)

Приведём подобные члены и запишем уравнение (1.11) в следующем виде

m(d 2 r /dt 2) = ∑F - (dm/dt)(dr /dt). (1.12)

В правой части уравнения (1.12) сумма всех внешних сил. Последнее слагаемое называется силой переменной массы, то есть

F пм = - (dm/dt)(dr /dt). (1.13)

Таким образом, к внешним силам добавляется ещё одна внешняя сила - сила переменной массы. Выражение в первой скобке правой части уравнения (1.13) - это скорость изменения массы, а выражение во второй скобке - это скорость отделения (присоединения) частиц. Таким образом, эта сила действует при изменении массы (реактивная сила) [ 2, с.120] системы тел с отделением (присоединением) частиц с соответствующей скоростью относительно этой системы тел. Уравнение (1.12) - это уравнение Мещерского [ 2, с.120] , знак минус указывает на то, что уравнение выведено в предположении действия внутренних сил (отделение частиц). Так как уравнение (1.12) выведено в предположении изменения импульса системы тел под воздействием внутренних сил, порождающих внешние, точным математическим методом, поэтому при его выводе в выражении (1.11) появились ещё две силы , которые не участвуют в изменении импульса системы тел, так как они при приведении подобных членов сокращаются. Перепишем уравнение (1.11), учитывая уравнение (1.13), не сокращая подобные члены, следующим образом

m(d 2 r /dt 2) + r (d 2 m/dt 2) +(dm/dt)(dr /dt) = ∑F + F пм + r (d 2 m/dt 2) +(dm/dt)(dr /dt). (1.14)

Обозначим предпоследний член выражения (1.14) через F m , а последний через F д, тогда

m(d 2 r /dt 2) + r (d 2 m/dt 2) + (dm/dt)(dr /dt) = ∑F + F пм + F m + F д. (1.15)

Так как сила F m не участвует в изменении импульса, то её можно записать отдельным уравнением

F m = r (d 2 m/dt 2). (1.16)

Рассмотрим физический смысл уравнения (1.16), для этого перепишем его в следующем виде

r = F m /(d 2 m/dt 2). (1.17)

Отношение силы к ускоренному росту массы в определённом объёме является величиной постоянной или пространство, занимаемое определённым количеством вида вещества, характеризуется минимальным объёмом. Сила F m статическая и выполняет функцию давления.

Сила F д также не участвует в изменении импульса системы тел, поэтому запишем её отдельным уравнением и рассмотрим её физический смысл

F д = (dm/dt)(dr /dt). (1.18)

Сила F д - это сила давления, оказываемая веществом, находящимся в жидком или газообразном состоянии на окружающее пространство. Характеризуется количеством, массой и скоростью частиц, обеспечивающих давление в определённом направлении. Следует отметить, что сила давления F д совпадает с силой переменной массы F пм и их разграничение произведено только для определения характера действия в различных условиях. Таким образом, уравнение (1.15) полностью описывает состояние вещества. То есть, рассматривая уравнение (1.15), можно заключить, что вещество характеризуется массой как мерой инертности, минимальным пространством, которое может занимать данное количество вещества без изменения его свойств и давлением, оказываемым веществом в жидком и газообразном состоянии на окружающее пространство.

§2. Характеристика действия сил инерции и переменной массы.

Поступательное ускоренное движение тела происходит под действием силы по второму закону Ньютона. То есть изменение величины скорости тела происходит при наличии ускорения и силы, вызвавшей это ускорение.

Использование центробежной силы инерции для поступательного движения возможно только при увеличении линейной скорости источников этих сил , так как при ускоренном движении системы силы инерции источников в направлении увеличения скорости системы уменьшаются вплоть до полного исчезновения. Кроме того, поле сил инерции должно быть неоднородным и иметь максимальное значение в части системы по направлению поступательного движения.

Рассмотрим движение тела (рис.2.1) массой m по окружности радиусом R.

Рис. 2.1.

Центробежная сила F ц, с которой тело давит на окружность, определяется формулой

F ц = m ω 2 R . (2.1)

Используя известное соотношение ω = v /R, где v линейная скорость тела перпендикулярная радиусу R, запишем формулу (2.1) в следующем виде

F ц = m v 2 / R . (2.2)

Центробежная сила действует в направлении радиуса R . Теперь мгновенно разорвём окружность, по которой движется тело. Опыт показывает, что тело полетит по касательной в направлении линейной скорости v , а не в направлении действия центробежной силы. То есть при отсутствии опоры, центробежная сила мгновенно исчезает.

Пусть тело массой m движется по элементу полуокружности (рис.2.2) радиусом R, причём полуокружность движется с ускорением w П перпендикулярно диаметру.

Рис. 2.2.

При равномерном движении тела (линейная скорость не меняется по величине), и ускоренном полуокружности, опора в виде полуокружности мгновенно исчезает и центробежная сила будет равна нулю. Если тело движется с положительным линейным ускорением, то оно будет догонять полуокружность и, центробежная сила будет действовать. Найдём линейное ускорение w тела, при котором центробежная сила действует, то есть давит на полуокружность. Для этого время, затраченное телом на путь по касательной до пересечения со штриховой линией параллельной диаметру и проведённой через точку В (рис.2.2), должно быть меньше или равно времени, которое затратит полуокружность в направлении перпендикулярном диаметру. Пусть начальные скорости тела и полуокружности равны нулю и затраченное время одинаково, тогда путь S АС, пройденный телом

S АС = w t 2 /2, (2.3)

а путь, пройденный полуокружностью S АВ будет

S АВ = w П t 2 /2. (2.4)

Разделим уравнение (2.3) на (2.4) получим

S АС / S АВ = w / w П.

Тогда ускорение тела w с учётом очевидного соотношения S АС / S АВ = 1/ cosΨ

w = w П /cosΨ, (2.5)

где 0 £ Ψ £ π/2.

Таким образом, проекция ускорения тела в элементе окружности на данное направление (рис.2.2) должна быть всегда больше или равна ускорению системы н том же направлении для поддержания в действии центробежной силы. То есть центробежная сила выступает в качестве поступательной движущей силы только при наличии положительного ускорения, изменяющей величину линейной скорости тела в системе

Аналогично получается соотношение для второй четверти полуокружности (рис.2.3).

Рис. 2.3.

Только путь, проходимый телом по касательной будет начинаться из точки на движущейся с ускорением полуокружности до пересечения со штриховой линией параллельной диаметру и, проходящей через точку А начального положения полуокружности. Угол в этом случае определяется интервалом π/2 ³ Ψ ³ 0.

Для системы, тело в которой движется равномерно или с замедлением по окружности, центробежная сила не вызовет поступательного ускоренного движения системы, так как линейное ускорение тела будет равно нулю или тело будет отставать от ускоренного движения системы.

Если тело вращается с угловой скоростью ω и одновременно приближается к центру окружности со скоростью v , тогда возникает кориолисова сила

F к = 2m [v ω ]. (2.6)

Типичный элемент траектория показана на рис.2.4.

Рис. 2.4.

Все формулы (2.3),(2.4),(2.5) и выводы для поддержания в действии центробежной силы циркулирующей среды будут верны и для кориолисовой силы, так как при ускоренном движении системы тело, движущееся с положительным линейным ускорением, будет успевать за ускорением системы и, соответственно, двигаться по криволинейной траектории, а не по касательной прямой, когда кориолисова сила отсутствует. Кривую надо разделить на две половины. В первой половине кривой (рис.4) угол меняется от начальной точки до нижней в интервале -π/2 £ Ψ £ π/2, а во второй половине от нижней точки до центра окружности π/2 ³ Ψ ³ 0. Аналогично, при вращении тела и одновременном удалении (рис.2.5) его от центра, кориолисова сила действует как поступательная при положительном ускорении величины линейной скорости тела.

Рис. 2.5.

Интервал углов в первой половине от центра окружности до нижней точки 0 £ Ψ £ π/2, а во второй половине от нижней точки до конечной π/2 ³ Ψ ³ -π/2.

Рассмотрим поступательную силу инерции F п (рис.2.6), которая определяется по формуле

F п = -m w, (2.7)

где w – ускорение тела.

Рис. 2.6.

При положительном ускорении тела она действует против движения, а при отрицательном ускорении (замедлении) она действует по направлению движения тела. При воздействии элемента ускорения или замедления (рис.2.6) на систему, с которой связаны элементы, ускорение тела элемента по модулю, очевидно, должно быть больше модуля ускорения системы, вызванной поступательной силой инерции тела. То есть поступательная сила инерции выступает в качестве движущей при наличии положительного или отрицательного ускорения.

Фазовая сила инерции F ф (сила инерции, вызванная неравномерностью вращения) определяется формулой

F ф = -m [(dω /dt)R ]. (2.8)

Пусть радиус R перпендикулярен вектору угловой скорости ω , тогда в скалярном виде формула (2.8) приобретает вид

F ф = -m (dω/dt)R. (2.9)

При положительном угловом ускорении тела (рис.1.7) она действует против движения, а при отрицательном угловом ускорении (замедлении) она действует по направлению движения тела.

Рис. 2.7.

Используя известное соотношение ω = v /R, где v линейная скорость тела перпендикулярная радиусу R, запишем формулу (2.9) в следующем виде

F ф = -m (dv/dt). (2.10)

Так как dv/dt =w , где w – линейное ускорение тела, то уравнение (2.10) приобретает вид

F ф = -m w (2.11)

Таким образом, формула (2.11) аналогична формуле (2.7) для поступательной силы инерции, только ускорение w надо разложить на параллельную α II и перпендикулярную α ┴ составляющие (рис.2.8) по отношению к диаметру элемента полуокружности.


Рис. 2.8.

Очевидно, перпендикулярная составляющая ускорения w ┴ создаёт вращающий момент, так как в верхней части полуокружности она направлена влево, а в нижней части вправо. Параллельная составляющая ускорения w II создаёт поступательную силу инерции F фII , так как она направлена в верхней и нижней части полуокружности в одну сторону, совпадающую с направлением w II .

F фII = -m w II . (2.12)

Используя соотношение w II = w cosΨ, получим

F фII = -m w cosΨ, (2.13)

где угол Ψ находится в интервале -π/2 £ Ψ £ π/2.

Таким образом, получена формула (2.13) расчёта элемента фазовой силы инерции для поступательного движения. То есть фазовая сила инерции выступает в качестве движущей при наличии положительного или отрицательного линейного ускорения.

Итак, выделено четыре элемента поступательной силы инерции: центробежный, кориолисовый, поступательный, фазовый. Соединяя отдельные элементы определённым образом, можно соэдавать системы поступательной движущей силы инерции .

Рассмотрим силу переменной массы, определяемой формулой

F пм = - (dm/dt)(dr /dt). (2.14)

Так как скорость отсоединения (присоединения) частиц относительно системы тел равна

u =dr /dt, (2.15)

тогда уравнение (2.14) запишем так

F пм = -u (dm/dt). (2.16)

В уравнении (2.16) сила переменной массы ─ это значение силы, производимое отделяющейся частицей во время изменения её скорости от нуля до u или значение, производимое присоединяющейся частицей во время изменения её скорости от u до нуля. Таким образом, сила переменной массы действует в момент ускорения или замедления частиц, то есть она является поступательной силой инерции, но рассчитываемой по другим параметрам. С учётом выше написанного возникает необходимость уточнения вывода формулы Циолковского . Уравнение (1.12) перепишем в скалярном виде и положим ∑F = 0, тогда

m(d 2 r/dt 2) = - (dm/dt)(dr/dt). (2.17)

Так как ускорение системы

d 2 r/dt 2 = dv/dt,

где v – скорость системы, тогда уравнение (2.17) с учётом уравнения (2.15) будет

m(dv/dt) = - (dm/dt)u. (2.18)

Умножим уравнение (2.17) на dt получим

mdv = -udm, (2.19)

то есть, зная максимальную скорость u = u O отделения частиц, которую считаем постоянной, можно по соотношению начальной m O и конечной масс m определить конечную скорость системы v

v = -u O ∫ dm /m = u O ln(m O /m). (2.20)

m O /m = е v/uo . (2.21)

Уравнение (2.21) - это уравнение Циолковского.

§3. Контур циркулирующей среды центробежной силы инерции.

Рассмотрим циркуляцию среды по тору (рис. 3.1) со средним радиусом R, двигающейся с угловой скоростью ωотносительно центраО. Модульцентробежной силы, действующий на точечный элемент потока массой ∆m,будет равен

F= ∆m ω 2 R.

В любом сечении кольца для одинаковых элементов центробежная сила будет по величине одинакова и направлена по радиусу от центра, растягивая кольцо. От направления вращения центробежная сила не зависит.

Рис. 3.1.

Теперь произведём расчёт суммарной центробежной силы , действующей перпендикулярно диаметру верхней полуокружности (рис.3.2). Очевидно, что в направлении из середины диаметра перпендикулярная проекция силы будет максимальна, плавно спадая к краям полуокружности, из-за симметричности кривой относительно средней линии. Кроме того, равнодействующая проекций центробежных сил, действующих параллельно диаметру, будет равна нулю, так как они равны и противоположно направлены.

Рис. 3.2.

Запишем элементарную функцию центробежной силы, действующей на точечный отрезок массой m и длиной ℓ:

F=m ω 2 R. (3.1)

Масса точечного элемента равна плотности потока, умноженной на его объём

m=ρV. (3.2)

Длина половины тора по средней линии

где π – число пи.

Объём половины тора

V = π 2 Rr 2 = πR π r 2 = ℓ π r 2 ,

где r – радиус трубки тора.

Для элементарного объёма запишем

V = ℓ π r 2 .

Известно, что для окружности

ℓ= RΨ,

V = π r 2 RΨ. (3.3)

Подставим выражение (3.3) в (3.2) получим:

m=ρ π r 2 RΨ. (3.4)

Теперь подставим (3.4) в (3.1), тогда

F= ρ π r 2 ω 2 R 2 Ψ.

Центробежная сила, действующая в перпендикулярном направлении (рис.2)

F ┴ = ∆ Fcos((π/2)- Ψ).

Известно, чтоcos((π/2)- Ψ)=sin Ψ, тогда

F ┴ = ∆ F sin Ψ.

Подставим значение для F получим

F ┴ = ρ π r 2 ω 2 R 2 sin ΨΨ.

Найдём суммарную центробежную силу, действующую в перпендикулярном направлении в интервале от 0 до Ψ

F ┴ = ∫ ρ π r 2 ω 2 R 2 sin ΨdΨ.

Проинтегрируем это выражение, тогда получим

F ┴ = - ρ π r 2 ω 2 R 2 cosΨ│. (3.5)

Положим, что ускорение w циркулирующей среды в десять раз больше ускорения системы w с, то есть

В этом случае, согласно формуле (2.5) получим

Вычислим угол действия сил инерции в радианах

Ψ ≈ 0,467 π,

что соответствует углу в 84 градуса.

Таким образом, угловой интервал действия сил инерции составляет

0 £ Ψ £ 84° в левой половине контура и симметрично 96°£ Ψ £ 180° в правой половине контура. То есть интервал отсутствия действующих сил инерции во всём контуре составляет около 6,7% (реально, ускорение циркулирующей среды значительно больше ускорения системы, поэтому интервал отсутствия действующих сил инерции будет менее 1% и его можно не учитывать). Для определения суммарной центробежной силы, в этих интервалах углов, достаточно подставить первый интервал в формулу (3.5) и, вследствие симметрии, умножить на 2 получим

F ┴ = - 2ρ π r 2 ω 2 R 2 cosΨ│. (3.6)

После несложных вычислений получаем

F ┴ = 1,8 ρ π r 2 ω 2 R 2 .

Известно, что угловая скорость

F ┴ = 1,8 ρ π r 2 v 2 .

Так как циркулирующая среда должна двигаться с ускорением, чтобы действовала сила инерции, поэтому выразим линейную скорость через ускорение, полагая начальную скорость равной нулю

F ┴ = 1,8 ρ π r 2 (w t) 2 . (3.8)

Среднее значение за время действия положительного ускорения, которое считаем постоянным, будет

F ┴СР = ((1,8ρ π r 2 w 2)/t) ∫t 2 dt.

После вычислений получаем

F ┴СР = 0,6ρ π r 2 w 2 t 2 . (3.9).

Таким образом, был выделен контур циркулирующей среды, из которых можно составить замкнутую цепь и просуммировать их центробежные силы.

Составим замкнутую цепь из четырёх контуров разных сечений (рис.3.3): два верхних контура радиусом R. сечением S и два нижних контура радиусом R 1 сечением S 1 , пренебрегая краевыми эффектами при переходе циркулирующей среды с одного сечения на другое. Пусть S < S 1 и радиус

R 1 < R. Плотность циркулирующей среды одинакова. Тогда согласно уравнению неразрывности отношение скоростей потока в разных сечениях обратно пропорционально их сечениям, то есть

v/v 1 = S 1 /S = r 1 2 /r 2 , (3.10)

где r 1 и r радиусы потока циркулирующей среды соответствующего сечения.

Кроме того, запишем очевидное отношение для скоростей и ускорений

v/v 1 = w / w 1 . (3.11)

Найдём ускорение среды нижнего контура, используя для вычислений уравнение (3.10) и (3.11)

w 1 = w r 2 / r 1 2 . (3.12)

Теперь, согласно уравнению (3.9), определим центробежную силу для нижнего контура, учитывая уравнение (3.12) и после вычислений получим

F ┴СР1 = 0,6 ρ π r 1 2 w 1 2 = 0,6ρ π r 2 w 2 t 2 (r 2 / r 1 2) = F ┴СР (r 2 / r 1 2) (3.13)

При сравнении выражения для центробежной силы верхнего контура (3.9) и нижнего контура (3.13) вытекает, что они отличаются на величину (r 2 / r 1 2).

То есть при r < r 1 центробежная сила верхнего контура больше, чем нижнего.

Рис. 3.3.

Равнодействующая центробежных сил, действующая на два контура в верхней полуплоскости (граница верхней и нижней полуплоскости показана тонкой линией) противоположно направлена равнодействующей центробежных сил, действующей на два контура в нижней полуплоскости. Очевидно, что суммарная F Ц центробежная сила будет действовать в направлении,как показано на рисунке 3.3, примем это направление за положительное. Вычислим суммарную F Ц центробежную силу

F Ц = 2 F ┴СР - 2F ┴СР1 = 1,2ρ π r 2 w 2 t 2 (1- (r 2 / r 1 2)) (3.14)

Как видим, суммарная центробежная сила зависит от плотности потока, сечений противоположных контуров и ускорения потока. От радиуса контуров суммарная центробежная сила не зависит. Для системы, циркулирующая среда в которой движется равномерно или с замедлением по окружности, центробежная сила не вызовет поступательного ускоренного движения системы.

Таким образом, был выделен базисный контур циркулирующей среды, показана возможность использования контуров циркулирующей среды разных сечений для суммирования центробежной силы в определённом направлении и изменения общего импульса замкнутой системы тел под действием внешних сил инерции, вызванных внутренними силами.

Пусть r = 0,025м; r 1 = 0,05м; ρ = 1000 кг/м 3 ; w = 5м/с 2 , t = 1с, тогда за время действия положительного ускорения среднее значение суммарной центробежной силы F Ц.≈ 44Н.

§4. Контур циркулирующей среды кориолисовой силы инерции.

Известно, что кориолисова сила инерции возникает при вращении тела массой m по окружности и одновременном радиальном перемещении его, причём она перпендикулярна угловой скорости ω и скорости радиального перемещения v . Направление кориолисовой силы F совпадает с направлением векторного произведения в формуле F = 2m[v w ].

Рис. 4.1.

На рис.4.1 показано направление кориолисовой силы при вращении тела по окружности против часовой стрелки и радиальном перемещении его к центру окружности за первый полупериод,. а на рис.4.2 показано направление кориолисовой силы при вращении тела по окружности также против часовой стрелке и радиальном перемещение его от центра окружности за второй полупериод.

Рис. 4.2.

Совместим левую часть движения тела на рис.4.1 и правую часть на рис.4.2. тогда получим на рис. 4.3 вариант траектории движения тела за период.

Рис. 4.3.

Рассмотрим движение циркулирующей среды (жидкости) по трубам изогнутым соответственно траектории. Кориолисовы силы левой и правой кривой действуют в секторе 180 градусов в радиальном направлении при движении от точки В к точке О влево и вправо соответственно относительно оси Х. Составляющие кориолисовой силы левой и правой кривой F| | параллельные прямой АС компенсируют друг друга, так как одинаковы, противоположно направлены и симметричны относительно оси Х. Симметричные составляющие кориолисовой силы левой и правой кривой F^ перпендикулярные прямой АС складываются, так как направлены в одну сторону.

Вычислим величину кориолисовой силы, действующей по оси Х на левой половине траектории. Так как составление уравнения траектории представляет сложную задачу, то решение по нахождению кориолисовой силы ищем приближённым методом. Пусть v - это скорость жидкости постоянная по всей траектории. Радиальную скорость v р и линейную скорость вращения v л, согласно теореме параллелограмма скоростей, выразим (рис.3) через скорость v и угол α

v р = v cosα, v л = v sinα.

Траектория движения (рис.4.3) построена с учётом того, что в точке В радиальная скорость v р равна нулю, а линейная v л равна v. В центре окружности О, радиусом Rо, радиальная скорость v р равна v, а линейная v л равна нулю, причём касательная траектории в центре окружности перпендикулярна касательной траектории в начале (точка В). Радиус монотонно уменьшается от Rо до нуля. Угол α меняется от 90° в точке В до 0° в центре окружности. Тогда, из графических построений, выбираем длину траектории 1/4 длины окружности радиусом R 0 . Теперь можно вычислить массу жидкости, используя формулу объёма тора. То есть масса циркулирующей среды будет равна 1/4 массы тора со средним радиусом R 0 и внутренним радиусом трубы r

m = ρπ 2 r 2 R 0 /2, (4.1)

где ρ – плотность жидкости.

Модуль проекции кориолисовой силы в каждой точке траектории на ось Х находим по формуле

F^ = 2m v р ср ω ср cos b , (4.2)

где v р ср – среднее значение радиальной скорости; ω ср – среднее значение угловой скорости; b – угол между кориолисовой силой F и осью Х (-90° £ b £ 90° ).

Для технических расчётов можно не учитывать интервал отсутствия действия сил инерции, так как ускорение циркулирующей среды значительно больше ускорения системы. То есть выбираем интервал углов между кориолисовой силой F и осью Х (-90° £ b £ 90° ). Угол α меняется от 90° в точке В до 0° в центре окружности, тогда среднее значение радиальной скорости

v р ср = 1 / (0 - π/2) ∫ v cos α dα = 2 v / π. (4.3)

Среднее значение угловой скорости будет равно

ω ср = (1/ ((v π /2Rо) - v Rо))) ∫ ω dω = (v /2Rо) ((π /2.) +1). (4.4)

Нижний предел угловой скорости интеграла в формуле (4.4) определяем в начальной точке В. Он, очевидно, равен v /Rо. Верхнее значение интеграла определяем как предел отношения

ℓim (v л /R) = ℓim (v sinα /R), (4.5)

v л ® 0 α ® 0

R ® 0 R ® 0

где R – текущий радиус.

Воспользуемся известным методом [ 7, с.410] отыскания пределов для функций нескольких переменных: функция vsinα /R в точке (R= 0, α = 0) на любой прямой R = kα , проходящей через начало координат имеет предел. В данном случае предел не существует, но существует предел для определённой прямой. Найдём коэффициент к в уравнении прямой, проходящей через начало координат.

При α = 0 ® R= 0, при α = π /2 ® R= Rо (рис.3), отсюда к = 2Rо/π , тогда формула (5) преобразуется к виду, включающем первый замечательный предел

ℓim (v π sinα /2Rо α) = (v π/2Rо) ℓim sinα/α = v π/2Rо. (4.6)

α ® 0 α ® 0

Теперь подставим полученное значение из формул (4.1), (4.3) и (4.4) в (4.2) получим

F^ = ρ π r 2 v 2 ((π /2.) +1) cos b .

Найдём сумму проекций кориолисовой силы в интервале (-90° £ b £ 90° ) для левой кривой.

90°

F^ = ρ π r 2 v 2 ((π /2.) +1) ∫ cos b db = 2 ρ π r 2 v 2 ((π /2.) +1).

90°

Окончательно сумма проекций кориолисовой силы для левой и правой кривой

∑F^ = 4ρ r 2 v 2 ((π /2.) +1). (4.7)

Согласно соотношению (3.7), уравнение (4.7) перепишем в виде

∑F^ = 4ρ r 2 (w t) 2 ((π /2.) +1). (4.8)

Вычислим среднее значение кориолисовой силы по времени, считая ускорение постоянным

Fк = ∑F^ ср = 4ρ r 2 w 2 ((π /2.) +1) / t) ∫t 2 dt.

После вычислений получаем

Fк ≈ 1,3ρ r 2 w 2 ((π /2.) +1)t 2 . (4.9)

Пусть r = 0,02м; w = 5м/с 2 ; ρ = 1000кг/м 3 ; t = 1c, тогда суммарная средняя кориолисова сила инерции за время действия положительного ускорения циркулирующей среды будет Fк ≈ 33Н.

В центре окружности в траектории имеется перегиб (рис.4.3), который можно интерпретировать, для упрощения расчётов, как полуокружность с малым радиусом. Для наглядности разделим траекторию на две половины и вставим в нижнюю часть полуокружность, а в верхнюю часть прямую, как показано на рис.4.4 и направим циркулирующую среду по трубе радиусом r, изогнутой по форме траектории.

Рис. 4.4.

В формуле (3.5) положим угол Ψ = 180° , тогда суммарная центробежная сила Fц, действующая в перпендикулярном направлении для контура циркулирующей среды

Fц = 2 ρπ r 2 v 2 . (4.10)

Таким образом, центробежная сила не зависит от радиуса R, а зависит только от угла интегрирования (см. формулу (3.5)) при постоянной плотности потока ρ, радиуса r и скорости циркулирующей среды v в каждой точке траектории. Так как радиус R может быть любым, то можно заключить, что для любой выпуклой кривой с краями перпендикулярными прямой АОБ (рис.3.2) центробежная сила будет определяться выражением (4.10). Следует отметить, как следствие, что каждый край выпуклой кривой может быть перпендикулярен своей прямой, которые параллельны и не лежат на одной линии.

Сумма проекций центробежных сил (рис.4), действующих против направления оси Х, возникающих в полуокружности и двух половинках выпуклой кривой (прямая не вносит вклад в центробежную силу) над ломаной линией и проекций, действующих по оси Х, возникающих в двух выпуклых кривых под ломаной линией компенсируются, так как они одинаковы и направлены в противоположные стороны. Таким образом. центробежная сила не вносит вклад в поступательное движение.

§5. Твёрдотельные вращательные системы. Центробежные силы инерции.

1. Вектор собственной угловой скорости стержней перпендикулярен вектору угловой скорости центра масс стержня и радиусу общей оси вращения стержней.

Энергия поступательного движения может переходить в энергию вращательного движения и наоборот . Рассмотрим пару противоположных стержней длиной ℓ с точечными грузами одинаковой массы на концах, равномерно вращающихся вокруг собственного центра масс и вокруг общего центра О радиусом R с угловой скоростью ω (рис. 5.1): полуоборот стержня за один оборот вокруг общей оси. Пусть R ³ ℓ/2. Для полного описания процесса достаточно рассмотреть вращение в интервале углов 0 £ α £ π/2. Расставим силы, действующие параллельно оси Х, проходящей через общий центр О и положение стержней под углом α = 45 градусов, в плоскости оси Х и общей оси вращения, как показано на рисунке 5.1.


Рис. 5.1.

Угол α связан с частотой ω и временем t соотношением

α = ωt/2, (5.1.1)

так как полуоборот стержня происходит за один оборот вокруг общей оси. Очевидно, что центробежные силы инерции удалённых грузов от центра будут больше, чем ближних. Проекции центробежных сил инерции на ось Х будут

Fц1 = mω 2 (R - (ℓ/2) cos α) sin 2α (5.1.2)

Fц2 = mω 2 (R + (ℓ/2) cos α) sin 2α (5.1.3)

Fц3 = - mω 2 (R + (ℓ/2) sin α) sin 2α (5.1.4)

Fц4 = - mω 2 (R - (ℓ/2) sin α) sin 2α (5.1.5)

Запишем разностную центробежную силу инерции, действующую на удалённые грузы. Разностная центробежная сила инерции на второй груз

Fц2-1 = mω 2 ℓ cosα sin2α. (5.1.6)

Разностная центробежная сила инерции на третий груз

Fц3-4 = - mω 2 ℓ sinα sin2α. (5.1.7)

Среднее значение разностных центробежных сил инерции за полуоборот будет

Fср ц2-1 = (1/(π/2))∫mω 2 ℓ cosα sin2αdα = 4mω 2 ℓ/3 π » 0,4mω 2 ℓ, (5.1.8)

Fср ц3-4 = (1/(π/2))∫mω 2 ℓ sinα sin2αdα = -4mω 2 ℓ/3 π » -0,4mω 2 ℓ. (5.1.9)

Получили две противоположные и равные по модулю центробежные силы инерции, которые являются внешними. Поэтому их можно представить в виде двух одинаковых бесконечно удалённых тел (не входящих в систему), одновременно взаимодействующих с системой: к первому телу второй груз подтягивает систему, а от второго тела третий груз отталкивает систему.

Среднее значение силы принудительного воздействия на систему за полуоборот по оси Х равно сумме сил подтягивания Fср ц2-1 и отталкивания Fср ц3-4 от внешних тел

Fп = | Fср ц2-1 | + | Fср ц3-4 | = 0,8 mω 2 ℓ. (5.1.10)

Для устранения вращающего момента системы из двух стержней в вертикальной плоскости (рис.5.2) необходимо применить ещё пару противоположных стержней, вращающихся синхронно в одной плоскости в противоположную сторону.

Рис. 5.2.

Для устранения вращающего момента системы по общей оси с центром О применяем такую же пару из четырёх стержней, но вращающихся в противоположную сторону относительно общей оси (рис.5.3).

Рис. 5.3.

Окончательно, для системы из четырёх пар вращающихся стержней (рис.5.3) сила тяги будет

Fт = 4Fп = 3,2mω 2 ℓ . (5.1.11)

Пусть m = 0,1кг; ω =2 πf, где f = 10об/с; ℓ = 0,5м, тогда Fт ≈ 632Н.

2. Вектор собственной угловой скорости стержней перпендикулярен вектору угловой скорости центра масс стержня и параллелен радиусу общей оси вращения стержней.

Рассмотрим пару противоположных перпендикулярных друг другу стержней длиной ℓ с точечными грузами одинаковой массы на концах, равномерно вращающихся вокруг собственного центра масс и вокруг общего центра О радиусом R с угловой скоростью ω (рис. 5.4): полуоборот стержня за один оборот вокруг общей оси.


Рис. 5.4.

Для вычисления выбираем только m1 и m2, так как для m3 и m4 решение аналогичное. Определим угловые скорости грузов относительно общего центра О. Модули проекций линейной скорости грузов относительно собственного центра масс параллельно плоскости вращения относительно общего центра О будут (рис.5.5)

v1 = v2 = (ωℓ/4) sin (Ψ/2), (5.2.1)

где Ψ = ωt.

Выделим по модулю проекции касательной этих скоростей перпендикулярных радиусам r1 и r2 соответственно относительно центра О получим

v1R = v2R = (ω ℓ/4) sin ( Ψ/2) cos b , (5.2.2)

cos b = R /r1 = R /r2 =R/ Ö (R 2 +(ℓ 2 /4) cos 2 ( Ψ/2)), (5.2.3)

R – расстояние от центра О до центра масс грузов, r1, r2 – расстояние от грузов до центра О, причём r1 = r2.


Рис. 5.5.

Модули линейной скорости грузов относительно общего центра О без учёта их линейной скорости относительно собственного центра масс будут

vR1 = ω r1, (5.2.4)

vR2 = ω r2. (5.2.5)

Найдём суммарную угловую скорость каждого груза относительно общей оси вращения, учитывая, что линейные скорости противоположно направлены у первого груза и одинаково у второго, тогда

ω 1 = (vR1 - v1R)/r1 = ω [ 1– (ℓR sin (Ψ/2))/4(R 2 +(ℓ 2 /4)cos 2 (Ψ/2)) ] , (5.2.6)

ω 2 = (vR2 + v2R)/r2 = ω [ 1+ (ℓR ] . (5.2.7)

Соответственно центробежные силы составят

F 1 = mω 1 2 r1

F 2 = mω 2 2 r2

Или подробно

F 1 = mω 2 [ (1– (ℓR sin(Ψ/2))/4(R 2 +(ℓ 2 /4)cos 2 (Ψ/2)) ] 2 Ö (R 2 +(ℓ 2 /4)cos 2 (Ψ/2)), (5.2.8)

F 2 = mω 2 [ (1+ (ℓR sin(Ψ/2))/4(R 2 +(ℓ 2 /4)cos 2 (Ψ/2)) ] 2 Ö (R 2 +(ℓ 2 /4)cos 2 (Ψ/2)). (5.2.9)

Рассмотрим вариант, когда ℓ= 4R. В этом случае, при Ψ=180° угловая частота первого груза ω 1 = 0 и она не меняет направление, у второго груза ω 2 = 2ω (рис.5.6).

Рис. 5.6.

Перейдём к определению центробежных сил в направлении оси Х при ℓ= 4R

F 1 = mω 2 R [ (1+ 4cos 2 (Ψ/2)– sin(Ψ/2))/(1+4cos 2 (Ψ/2)) ] 2 Ö (1 + 4cos 2 (Ψ/2)), (5.2.10)

F 2 = mω 2 R [ (1+ 4cos 2 (Ψ/2)+ sin(Ψ/2))/(1+4cos 2 (Ψ/2)) ] 2 Ö (1 + 4cos 2 (Ψ/2)). (5.2.11)

Следует отметить, что с ростом угла Ψ от 0 до 180 ° в точке Ψ = b = 60 ° проекция центробежной силы F 2 меняет знак с отрицательного на положительный.

Сначала, сложим средние значения проекции на ось Х центробежной силы первого груза и среднее значение проекции второго в интервале угла

0 £ Ψ£ 60 ° , учитывая знаки, так как они противоположно направлены

F СР 1-2 = (1/(π /3))∫ (F 1 sin(b + Ψ) - F 2 sin(b - Ψ))dΨ ≈ 0,6mω 2 R, (5.2.12)

где b = arccos (1/ Ö (1 +4 cos 2 (Ψ/2))) определяется из формулы (5.2.3).

Центробежная сила F СР 1-2 в формуле (5.2.12) положительна, то есть направлена по оси Х. Теперь сложим одинаково направленные среднее значение проекции на ось Х центробежной силы первого груза и среднее значение проекции второго в интервале угла 60 ° £ Ψ£ 180 °

F СР 1+2 = (1/(π-(π/3)))∫(F 1 sin(Ψ + b )+ F 2 sin(Ψ- b ))dΨ ≈ 1,8mω 2 R, (5.2.13)

Среднее значение в интервале 0 ° £ Ψ£ 180 ° , очевидно, будет

F СР = (F СР 1-2 + 2F СР 1+2)/3 ≈ 1,4 mω 2 R. (5.2.14)

Для m3 и m4 среднее значение проекции на ось Х центробежной силы будет таким же, но действующей в противоположную сторону.

F Т = 4 F СР = 5,6mω 2 R. (5.2.15)

Пусть m = 0,1кг; ω =2 πf, где f = 10об/с; ℓ= 4R , где R = 0,1м, тогда F Т ≈ 220Н.

3. Вектор собственной угловой скорости стержней параллелен и одинаково направлен с вектором угловой скорости центра масс стержня, вращающегося относительно общей оси.

Рассмотрим пару противоположных, лежащих водной плоскости, стержней длиной ℓ с точечными грузами одинаковой массы на концах, равномерно вращающихся вокруг собственного центра масс и вокруг общего центра О радиусом R с угловой скоростью ω (рис. 5.7): полуоборот стержня за один оборот вокруг общей оси.

Рис. 5.7.

Аналогично предыдущему случаю для вычисления выбираем только m1 и m2, так как для m3 и m4 решение аналогичное. Приблизительную оценку действующих сил инерции произведём при ℓ = 2R с использованием средних значений угловой скорости относительно центра О, а также средних значений расстояния от грузов до центра О. Очевидно, угловая скорость первого груза в начале будет 1,5ω второго груза 0,5ω , а через полуоборот у обоих ω. Расстояние от первого груза до центра О в начале 2R от второго груза 0, а через полуоборот от каждого R Ö 2.

Рис. 5.8.

Причём в интервале 0 ° £ Ψ£ 36 ° (рис. 5.8) центробежные силы складываются в направлении оси Х, в интервале 36 ° £ Ψ£ 72 ° (рис. 5.8, рис. 5.9) из силы первого тела вычитается сила второго и их разность действует по оси Х, в интервале 72 ° £ Ψ£ 90 ° (рис. 5.9) силы складываются и действуют противоположно оси Х.

Рис. 5.9.

Определим средние значения угловой скорости и радиусов грузов за полуоборот.

Средняя угловая скорость первого груза

ω СР 1 = (ω + 0,5ω + ω)/2 = 1,25ω. (5.3.1)

Средняя угловая скорость второго груза

ω СР 2 = (ω - 0,5ω + ω)/2 = 0,75ω. (5.3.2)

Средний радиус первого груза

R СР 1 = (2R + R Ö 2)/2 = R (2 + Ö 2)/2. (5.3.3)

Средний радиус второго груза

R СР 2 =(0 + R Ö 2)/2 = (R Ö 2)/2. (5.3.4)

Проекция центробежной силы, действующей на первый груз в направлении оси Х, будет

F 1 = mω 2 СР 1 R СР 1 cos(Ψ /2)sin2Ψ » 2,67mω 2 R cos(Ψ /2)sin2Ψ. (5.3.5)

Проекция центробежной силы, действующей на второй груз в направлении оси Х, будет

F 2 = mω 2 СР 2 R СР 2 sin(Ψ /2)sin2Ψ » 0,4mω 2 R sin(Ψ /2)sin2Ψ. (5.3.6)

° £ Ψ£ 36 ° составит

0,2 π

F СР 1 + 2 = (1/0,2 π) ∫ (F 1 + F 2)dΨ » 1,47mω 2 R. (5.3.7)

Среднее значение разности проекций центробежных сил первого и второго грузов в интервале 36 ° £ Ψ£ 72 ° составит

0,4 π

F СР 1 - 2 = (1/0,2 π) ∫(F 1 - F 2) dΨ » 1,95mω 2 R. (5.3.8)

0,2 π

Среднее значение суммы проекций центробежных сил первого и второго грузов в интервале 72 ° £ Ψ£ 90 ° составит

0,5 π

F СР- (1 + 2) = - (1/0,1 π) ∫(F 1 + F 2)dΨ » -3,72mω 2 R. (5.3.9)

0,4 π

Среднее значение суммы проекций центробежных сил первого и второго грузов в интервале 0 ° £ Ψ£ 90 ° составит

F СР = (2F СР 1 + 2 + 2F СР 1 – 2 + F СР- (1 + 2))/5 » 0,62mω 2 R. (5.3.10)

Аналогично вычисляется сумма проекций центробежных сил для третьего и четвёртого грузов.

Для устранения вращающего момента необходимо применить ещё одну пару стержней, но вращающихся в противоположную сторону относительно собственного центра масс и относительно общей оси вращения, тогда окончательно сила тяги будет

F Т = 4F СР = 2,48mω 2 R. (5 .3.11)

Пусть m = 0,1кг; ω =2 πf, где f = 10об/с; R = 0,25м, тогда F Т ≈ 245Н.

§6. Фазовая сила инерции.

Для реализации фазовой силы инерции в качестве поступательной используем двухкривошипный шарнирный четырёхзвенник, чтобы преобразовать равномерное вращение двигателя в неравномерное вращение грузов по определённому режиму с оптимизацией характера движения грузов для эффективного использования сил инерции, а соответствующим выбором взаимного расположения грузов, компенсировать обратный импульс

Шарнирный четырёхзвенник будет двухкривошипным, если межцентровое расстояние АГ (Рис.6.1) будет меньше длины любого подвижного звена, а сумма межцентрового расстояния и длины наибольшего из подвижных звеньев будет меньше суммы длин двух других звеньев.

Рис. 6.1.

Звено ВГ (рычаг), на котором закреплён груз массой m, является ведомым кривошипом на неподвижном валу Г, а звено АБ ведущим. Звено А – это вал двигателя. Звено БВ является шатуном. Соотношение длин шатуна и ведущего кривошипа выбирается таким, чтобы при достижении грузом крайней точки Д был прямой угол между шатуном и ведущим кривошипом, что обеспечивает максимальный КПД. Тогда при равномерном вращении вала двигателя А с ведущим кривошипом АБ с угловой скоростью w шатун БВ передает движение ведомому кривошипу ВГ, замедляя его. Таким образом, груз замедляется от точки Е до точки Д по верхней полуокружности. В этом случае сила инерции действует по направлению движения груза. Рассмотрим движение груза в противоположной полуокружности (Рис. 6.2), где шатун, выпрямляясь, ускоряет груз.

Рис. 6.2.

В этом случае сила инерции действует против направления движения груза, совпадая с направлением силы инерции в первой полуокружности. Объединённая схема движителя показана на рисунке 6.3.

Рис. 6.3.

Ведущие кривошипы АБ и А¢ Б¢ жёстко соединены по прямой на валу двигателя, а ведомые кривошипы (рычаги) независимо друг от друга вращаются на неподвижном валу. Продольные составляющие сил инерции в направлении от точки Е до точки Д верхнего груза и нижнего складываются, обеспечивая поступательное движение. Обратный импульс отсутствует, так как грузы вращаются в одном направлении и, в среднем, симметрично противоположно расположены.

Проведём оценку действующей фазовой силы инерции.

Пусть АБ = БВ = r, ГВ = R.

Предположим, что в крайнем правом положении угол Ψ между радиусом R и средней линией ДЕ равен 0° (Рис.6.4) и

r + r – АГ = R, (6 .1)

а также в крайнем левом положении при Ψ =180° (Рис.6.5) угол

Ð АБВ = 90° . (6 .2)

Тогда, исходя из этих условий, легко определить, что предположения выполняются при следующих значениях

r = 2R/(2+Ö 2), (6 .3)

АГ = (3 - 2Ö 2)R. (6 .4)

Теперь определим угловые скорости в крайнем правом и левом положениях. Очевидно, в правом положении угловые скорости АГ и ГВ совпадают и равны w .

Рис. 6.4.

В левом положении угловая скорость w ГВ будет, очевидно, равна

w ГВ = (180° /225° )w . (6 .5)

Приращение угловой скорости ∆w за время ∆t = 225° /w = 5π/4w составит

∆w = w ГВ - w = - 0,2w . (6 .6)

Пусть угловое ускорение будет равнозамедленное, тогда

dω/dt = ∆w /∆t = - 0,16w 2 / π. (6 .7)

Воспользуемся формулой фазовой силы инерции (2.8) в скалярном виде

F ф = -m [(dω/dt)R] = 0,16mw 2 R/ π. (6.8)

Рис. 6.5.

Проекция фазовой силы инерции в направлении ЕД будет

F фЕД = 0,16mw 2 RsinΨ/π. (6.9)

Среднее значение проекции фазовой силы инерции за полупериод

F СР = 0,16mω 2 R/ π 2) ∫ sinΨdΨ = 0,32mω 2 R/ π 2 . (6.10)

Для двух грузов (рис.6.3) сила удваивается. Для устранения вращающего момента необходимо применить ещё одну пару грузов, но вращающихся в противоположную сторону. Окончательно, сила тяги для четырёх грузов составит

F Т = 4F СР = 1,28mω 2 R/ π 2 . (6.11)

Пусть m = 0,1кг; ω =2 πf, где f = 10об/с; R = 0,5м, тогда F Т = 25,6Н.

§7. Гироскоп. Кориолисова и центробежная сила инерции.

Рассмотрим колебательное движение груза массойm по полуокружности (рис.7.1) радиусом R с линейной скоростью v.Центробежная сила инерцииFц, действующая на груз массой mбудет равна m v 2 /R, направлена по радиусу от центра О. Проекция центробежной силы на ось Х будет равна

F ц׀׀ = (m v 2 /R) sin α. (7.1)

Груз должен двигаться с ускорением w по окружности, чтобы центробежная сила была действующей для поступательного движения системы, а так как v = wt, тогда

F ц׀׀ = (m w 2 t 2 /R) sin α, (7.2)

где t – время.

Рис. 7.1.

Из-за инертности груза на краях полуокружности появляется обратный импульс, который препятствует поступательному движению системы в направлении оси Х.

Известно, что при воздействии силы, изменяющей направление оси гироскопа, он прецессирует под воздействием кориолисовой силы, причём это движение безинерционно. То есть при мгновенном приложении силы, изменяющей направление оси вращения, гироскоп мгновенно начинает прецессировать и так же мгновенно останавливается при исчезновении этой силы . Вместо груза применяем гироскоп, вращающийся с угловой скоростьюω. Теперь приложим силу F перпендикулярно к оси вращения гироскопа (рис.7.2) и будем воздействовать на ось так, чтобы держатель с гироскопом совершал безинерционное колебательное движение (прецессировал) в определённом секторе (в оптимальном случае с конечным значением α = 180°). Мгновенная остановка прецессии держателя с гироскопом и возобновление её в обратную сторону происходит, когда направление силы F меняется на противоположное. Таким образом, происходит колебательное безинерционное движение держателя с гироскопом, что исключает обратный импульс, препятствующий поступательному движению по оси Х.

Рис. 7.2.

Угловая скорость прецессии

dα /dt = M / I Z ω, (7.3)

где: М – момент силы; I Z – момент инерции гироскопа; ω – угловая скорость гироскопа.

Момент силы (подразумевается, что ℓ перпендикулярно F)

М = ℓ F, (7.4)

где: ℓ – расстояние от точки приложения силы F до центра инерции гироскопа; F – сила, приложенная к оси гироскопа.

Подставим (7.4) в (7.3) получим

dα /dt = ℓ F / I Z ω, (7.5)

В правой части формулы (7.5) составляющие ℓ , I Z , ω считаем постоянными, а сила F, в зависимости от времени t, пусть меняется по кусочно-линейному закону (рис.7.3).

Рис. 7.3.

Известно, что линейная скорость связана с угловой скоростью следующим соотношением

v = R (dα /dt). (7.6)

Дифференцируя по времени формулу (7.6) получим ускорение

w = R (d 2 α /dt 2). (7.7)

Подставим формулу (7.5) в формулу (7.7) получим

w = (R ℓ / I Z ω ) (dF/dt) . (7.8)

Таким образом, ускорение зависит от скорости изменения силы F, что делает центробежную силу действующей для поступательного движения системы.

Следует отметить, что при большой угловой скорости ω и dα /dt << ω , возникающий гироскопический момент уравновешивает момент силы F, поэтому движения в направлении воздействия этой силы не происходит .

Для компенсации перпендикулярной проекции центробежной силы Fц ┴ применяем второй такой же гироскоп, совершающий колебательное движение синхронно в противофазе с первым гироскопом (рис.7.4). Проекция центробежной силы Fц ┴ у второго гироскопа будет направлена встречно проекции у первого. Очевидно, что перпендикулярные составляющие Fц ┴ скомпенсируются, а параллельные Fц׀׀ сложатся.


Рис. 7.4.

Если сектор колебаний гироскопов будет не более полуокружности, то не будет возникать противоположная центробежная сила, уменьшающая центробежную силу в направлении оси Х.

Для устранения вращающего момента устройства, возникающего из-за принудительного вращения оси гироскопов, необходимо установить ещё одну пару таких же гироскопов, оси которых вращаются в противоположную сторону. Секторы колебательного движения держателей с гироскопами в паре, оси гироскопов которых вращаются в одну сторону, должны быть симметрично направлены в одну сторону с секторами держателей с гироскопами, оси гироскопов которых вращаются в другую сторону (рис.7.5).


Рис. 7.5.

Вычислим среднее значение проекции Fц׀׀ центробежной силы для одного гироскопа (рис.7.2) на держателе, колеблющегося в секторе полуокружности от 0 до π и обозначим это значение через Fп

Fп = (1/ π) ∫ (m w 2 t 2 / R) sin α dα = 2m w 2 t 2 / Rπ. (7.9)

Для четырёх гироскопов на держателях среднее значение поступательной силы Fп за каждый полупериод будет:

Fп = 8m w 2 t 2 / Rπ. (7.10)

Пусть масса держателя намного меньше массы гироскопа, а масса гироскопа m = 1кг. Ускорение w = 5м/с 2 , причём ускорение гироскопа на порядок больше ускорения системы, тогда можно не учитывать небольшой интервал отсутствия действия центробежной силы в центре. Время нарастания скорости t = 1с. Радиус (длина) держателя R = 0,5м. Тогда по формуле (7.10) поступательная сила будет Fп = 8∙ 1∙ 5 2 ∙1 2 /0,5 π ≈ 127Н.

Литература

1. Выгодский М. Я. Справочник по высшей математике, 14-е изд., – М.: ООО «Большая медведица», АПП «Джангар», 2001, 864с.

2. Сивухин Д. В. Общий курс физики. Т.1. Механика. 5-е изд., стереот. – М.: ФИЗМАТЛИТ., 2010, 560с.

3. Шипов Г.И. Теория физического вакуума. Теория эксперименты и технологии. 2-е изд., – М.:Наука, 1996, 456с.

4.Ольховский И.И. Курс теоретической механики для физиков: Учебное пособие. 4-е изд., стер. – СПб.: Издательство «Лань», 2009, 576с.

5.Справочник по физике для инженеров и студентов вузов / Б.М.Яворский, А.А.Детлаф, А.К.Лебедев. – 8-е изд.,перераб. и испр. – М.: ООО «Издательство Оникс», «Издательство «Мир и Образование», 2008, 1056с.

6.Хайкин С.Э. Физические основы механики, 2-е изд., испр. и доп. Учебное пособие. Главная редакция физико-математической литературы. М.: Наука, 1971, 752с.

7.Зорич В.А. Математический анализ. Часть 1. Изд. 2-е, испр. и доп. М.: ФАЗИС, 1997, 554с.

8.Александров Н.В. и Яшкин А.Я. Курс общей физики. Механика. Учеб. пособие для студентов заочников физ.-мат. фак. пед. ин-тов. М., «Просвещение», 1978, 416с.

9. Геронимус Я. Л. Теоретическая механика (очерки об основных положениях): Главная редакция физико-математической литературы изд-ва «Наука», 1973г., 512с.

10.Курс теоретической механики: учебник / А.А.Яблонский, В.М.Никифорова. – 15-е изд., стер. – М.: КНОРУС, 2010, 608с.

11.Турышев М.В., О движении замкнутых систем, или при каких условиях не выполняется закон сохранения импульса, «Естественные и технические науки», №3(29), 2007, ISSN 1684-2626.

12. Айзерман М.А. Классическая механика: Учебное пособие. – 2-е изд., перераб. – М.: Наука. Главная редакция физико-математической литературы, 1980, 368с.

13. Яворский В.М., Пинский А.А. Основы физики: Учебн. В 2 т. Т.1. Механика, Молекулярная физика. Электродинамика / Под ред. Ю.И.Дика. – 5-е изд., стереот. – М.: ФИЗМАТЛИТ. 2003. – 576с.

14. Киттель Ч., Найт В., Рудерман М. Механика: Учебное руководство: Пер. с англ./Под ред. А.И.Шальникова и А.С.Ахматова. – 3-е изд., испр. – М.: Наука. Главная редакция физико-математической литературы. 1983. – (Берклеевский курс физики, Том 1). – 448с.

15.Толчин В. Н., Инерцоид, Силы инерции как источник поступательного движения. Пермь. Пермское книжное издательство, 1977, 99с.

16.Фролов А.В. Вихревой движитель, «Новая энергетика», №3 (18), 2004, ISSN 1684-7288.

17.Берников В.Р. Некоторые следствия из основного закона механики, «Журнал научных публикаций аспирантов и докторантов», №5 (71), 2012, ISSN 1991-3087.

18.Берников В.Р. Силы инерции и ускорение, «Научная перспектива», №4, 2012, ISSN 2077-3153.

19.Берников В.Р. Силы инерции и их применение, «Журнал научных публикаций аспирантов и докторантов», №11 (65), 2011, ISSN 1991-3087.



Просмотров