S орбиталь имеет форму. Атомные орбитали

Согласно принципу неопределенности Гейзенберга, положение и момент электрона не поддаются одновременному определению с абсолютной точностью. Однако, несмотря на невозможность точного определения положения электрона, можно указать вероятность нахождения электрона в определенном положении в любой момент времени. Область пространства, в которой высока вероятность обнаружения электрона, называется орбиталью. Понятие «орбиталь» не следует отождествлять с понятием орбита, которое используется в теории Бора. Под орбитой в теории Бора понимается траектория (путь) электрона вокруг ядра.

Электроны могут занимать орбитали четырех разных типов, которые называются s-, р-, d- и f-орбиталями. Эти орбитали могут быть представлены трехмерными ограничивающими их поверхностями. Области пространства, ограниченные этими поверхностями, обычно выбираются так, чтобы вероятность обнаружения внутри них одного электрона составляла 95%. На рис. 1.18 схематически изображена форма s- и -орбиталей. s-Орбиталь имеет сферическую форму, а -орбитали - форму гантелей.

Поскольку электрон имеет отрицательный заряд, его орбиталь может рассматриваться как некоторое распределение заряда. Такое распределение принято называть электронным облаком (рис. 1.19).

Рис. 1.18. Форма s- и p-орбиталей.

Рис. 1.19. Электронное облако в поперечном разрезе. Окружностью представлена область вокруг ядра, в пределах которой вероятность нахождения электрона равна 95%.

Общее аналитическое выражение для функций R(r), 0(0) и Ф(ф) записываются с помощью специальных математических функций. Их можно найти в специализированной литературе по квантовой механике и квантовой химии. В этом разделе на примере s-, р- и «/-электронов будут рассмотрены основные положения, принятые для описания электронных орбиталей, являющихся основой теории химической связи.

Из полученных ранее результатов следует, что описание состояния электрона в атоме оказывается намного более сложным, чем это предполагалось теорией Бора. Квантовая механика показывает, что атомный электрон может находиться в различных областях пространства, окружающего ядро, и вероятность его пребывания меняется при переходе от точки к точке. Отсюда возникло понятие электронных орбита- лей, выражающее более общее понятие электронного облака. Физики под электронной орбиталью понимают саму волновую функцию, соответствующую определенным квантовым числам. В химии под орбиталью понимается совокупность положений электрона в атоме с учетом вероятности его пребывания в тех или иных областях пространства в окрестности ядра. Эта вероятность и определяется функциями R, 0, Ф. В таблице 8.2 приведены в сферической системе координат выражения для волновых функций s-,p- и «/-электронов.

На рисунке 8.21 представлены графики функций R(r) (рис. 8.21, а) и плотности вероятности обнаружить электрон в шаровом слое толщиной dr|^^ = 4nr 2 i? 2 (r)j - (рис. 8.21, б) в зависимости от г. Следует

обратить внимание на то обстоятельство, что для j-состояний радиальная часть волновой функции при г = 0 (т.е. на ядре) (см. графики функций R{r) на рис. 8.21, а) имеют максимум. Никакого противоречия со здравым смыслом (электрон в ядре) при этом не возникает, так как функция R{r) определяет плотность вероятности, а сама вероятность

Таблица 8.2

Волновые функции для S-, р- и «/-электронов

Окончание


Примечание. В таблице приняты обозначения: а = (Z/a^rvL а 0 = Й 2 /(те 2) = = 0,5292 1(7 10 м - боровский радиус электронной орбиты атома водорода.

при т -> 0 (см. график функции 4лг 2 /? 2 (г) на рис. 8.21, б) в окрестности ядра стремится к нулю .

На рисунке 8.22 приведена схема построения графиков угловой части волновой функции 7(0, а) и ее квадрата 7 2 (0, б) на примере р г -орбитали. Значение 7(0, ф) для угла 0 изображается длиной отрезка ОМ. Целесообразно обратить внимание на то, что график функции 7(0) представляется сферами, тогда как график 7 2 (0) - вытянутыми «гантелями». Так, в табл. 8.2 были представлены волновые функции атома водорода для п = 1, 2 и 3. В первой строке этой таблицы приведены данные для 15- состояния электрона. В этом случае функция R{r) имеет максимум при г = 0 и спадает экспоненциально с увеличением г. Функция же 7(0, ф) не зависит ни от 0, ни от ф, поэтому распределение плотности вероятности | у| 2 сферически симметрично. Это же справедливо и для 25- и 35-СОСТОЯНИЙ.


Рис. 8.21. Радиальная часть волновых функций R(r ) (а) и величины 4лг 2 Л 2 (г) (б) для некоторых электронных состояний

Рис. 8.22. Схема построения графиков угловых частей волновой функции Y(0,

Решения для 2/ьсостояний ся = 2, / = 0и1и/Я/ = 0и±1 приведены в последующих строках табл. 8.2. Обращает на себя внимание факт, что решение для р г -орбитали имеет более простой вид, чем для орбиталей р х и Ру. Такое выделение оси z связано с природой сферической системы координат (см. рис 8.16). Для того, чтобы получить угловую часть волновой функции в действительной форме и найти общее аналитическое выражение для орбиталейр х ир у, надо воспользоваться тем свойством, что любая линейная комбинация решений уравнения Шредингера также является решением этого уравнения. Поэтому, воспользовавшись формулой Эйлера, надо составить линейные комбинации решений У, и У 1; _ 1, дающие действительные волновые функции:



В этом виде орбитали р х и р у представлены в табл. 8.2. Именно они широко используются в химии. Таким же образом получены угловые части в действительной форме для ^/-состояний электронов. Определив значения всех частей волновой функции в точке с г(г, 0,

В случае отсутствия какого-либо внешнего воздействия, когда нет оснований для выбора выделенной оси Oz, все решения уравнения Шредингера и все их линейные комбинации могут иметь место. Однако физического смысла они не имеют, потому что нет возможности проверить это: любая попытка установить характер орбитали внесет возмущение в систему и выделит ось Oz. В этом также проявляется особенность квантовой механики (как оказывается, прибор для исследования состояния нарушает само состояние объекта исследования).

Если же рассматриваемый атом попадает в окружение других атомов, то возникновение взаимодействий вносит существенные изменения в его энергетическое состояние. При этом в разных обстоятельствах энергетически более выгодными могут стать другие линейные комбинации решений (например, хорошо известные s-p и s-д-^-гибридные состояния, представляющие собой суперпозицию - линейную комбинацию, приведенных в табл. 8.2 орбиталей).

Вероятность пребывания электронов в одинаковых по объему областях пространства, но в разных его точках для изображенных орбиталей разная. Представить в графической, наглядной форме атомные орбитали в общем виде чрезвычайно сложно. Вместе с тем существуют разные способы сделать это.

Все усложняется еще больше при попытке изобразить полную волновую функцию электрона в атоме, представляющую собой произвеЭтим методом, в частности, в научной литературе представляются результаты рентгеновского исследования структуры молекул химических соединений.

дение трех функций, и ее квадрат модуля |у(г, 0, q в виде изолиний, т.е. линий, соединяющих точки с одинаковыми значениями --- (по примеру широко известных географических карт). dV

В квантовой химии также иногда используются графики орбиталей в виде замкнутых поверхностей, внутри которых заключено определенное количество (чаще всего 90%) полного электронного заряда. На рисунке 8.23 изображены орбитали для разных состояний электрона в атоме водорода. Обращает на себя внимание тот факт, что орби-

Рис. 8.23.

тали не касаются нулевой точки (положения ядра). Это происходит от того, что в этой области из-за радиальной части волновой функции плотность вероятности обнаружить электрон очень мала (практически нулевая вероятность нахождения электрона в ядре).

Уже для водородоподобных атомов, не говоря о более сложных системах, атомные орбитали оказываются значительно более сложными. К сожалению, получить точные аналитические решения для таких случаев не представляется возможным. Поэтому в квантовой химии используются разного рода модификации (приближения), более-менее приемлемо описывающие ту или иную систему, ту или иную область атома. Например, в показатель степени экспоненты, характеризующей радиальную часть волновой функции, вводится некоторый постоянный множитель, описывающий сжатие-расширение атома (множитель Слейтера). Иногда для радиальной функции используется не одна, а сумма двух или нескольких экспонент, каждая из которых по отдельности более точно описывает распределение электронной плотности вблизи ядра и вдали от него. Эти и другие эмпирические модификации решения для разных атомов рассматриваются в квантово-химических приложениях.

  • Для тяжелых атомов вероятность нахождения электрона внутри ядра становится значительной. Именно она определяет ядерное превращение, называемое К-захватом - захватом ядром электрона К-оболочки, в результате которого протон превращается в нейтрон, и заряд ядра меняется.

В связи с тем, что при описании элементов их подразделяют на группы с разными орбиталями, очень кратко напомним сущность этого понятия.

Согласно модели атома Бора, электроны вращаются вокруг ядра по круговым орбиталям (оболочкам ). Каждая оболочка имеет строго определенный энергетический уровень и характеризуется некоторым квантовым числом. В природе возможны только определенные энергии электрона, то есть дискретные (квантованные) энергии орбиталей («разрешенные»). Теория Бора приписывает электронным оболочкам К, L, М, N и далее в порядке латинского алфавита, в соответствии с повышающимся энергетическим уровнем оболочек, главное квантовое число п , равное 1, 2, 3, 4 и т.д. В последующем оказалось, что электронные оболочки расщеплены на подоболочки, и каждой свойствен определенный квантовый энергетический уровень, характеризующийся орбитальным квантовым числом l .

Согласно принципу неопределенности Гейзенберга, точно определить местонахождение электрона в любой определенный момент времени невозможно. Однако можно указать вероятность этого. Область пространства, в которой вероятность нахождения электрона наиболее высока, называется орбиталью . Электроны могут занимать 4 орбитали разных типов, которые называются s- (sharp — резкая), р- (principal — главная), d- (diffuse — диффузная) и f- (fundamental — базовая) орбитали. Раньше этими буквами обозначали спектральные линии водорода, но в настоящее время их используют только в качестве символов, без расшифровки.

Орбитали можно представить в виде трехмерных поверхностей. Обычно области пространства, ограниченные этими поверхностями, выбирают так, чтобы вероятность обнаружения внутри них электрона составляла 95%. Схематическое изображение орбиталей представлено на рис. 1.

Рис. 1.

s-Орбиталь имеет сферическую форму, р-орбиталь — форму гантели, d-opбиталь — форму двух гантелей, перекрещивающихся в двух узловых взаимно перпендикулярных плоскостях, s-подоболочка состоит из одной s-орбитали, р-подоболочка — из 3 р-орбиталей, d-подоболочка — из 5 d-орбиталей.

Если не прикладывать магнитное поле, все орбитали одной подоболочки будут иметь одинаковую энергию; их в этом случае называют вырожденными . Однако во внешнем магнитном поле подоболочки расщепляются (эффект Зеемана ). Этот эффект возможен для всех орбиталей, кроме s-орбитали. Он характеризуется магнитным квантовым числом т . Эффект Зеемана используют в современных атомно-абсорбционных спектрофотометрах(ААСФ) для увеличения их чувствительности и снижения предела обнаружения при элементных анализах.

Для биологии и медицины существенно, что орбитали одной симметрии, то есть с одинаковыми числами l и т , но с разным значением главного квантового числа (например, орбитали 1s, 2s, 3s, 4s), различаются по своему относительному размеру. Объем внутреннего пространства электронных орбита-лей больше у атомов с большим значением п . Увеличение объема орбитали сопровождается ее разрыхлением. При комплексообразоваиии размер атома играет важную роль, поскольку определяет структуру координационных соединений. В табл. 1 приведено соотношение количества электронов и главного квантового числа.

Таблица 1. Количество электронов при разных значениях квантового числа п

Помимо трех названных квантовых чисел, характеризующих свойства электронов каждого атома, имеется еще одно — спиновое квантовое число s , характеризующее не только электроны, но и ядра атомов.

Медицинская бионеорганика. Г.К. Барашков

Орбитали существуют независимо от того, находится на них электрон (занятые орбитали), или отсутствует (вакантные орбитали). Атом каждого элемента, начиная с водорода и заканчивая последним полученным на сегодня элементом, имеет полный набор всех орбиталей на всех электронных уровнях. Их заполнение электронами происходит по мере увеличения порядкового номера, то есть, заряда ядра.

s -Орбитали, как было показано выше, имеют сферическую форму и, следовательно, одинаковую электронную плотность в направлении каждой оси трехмерных координат:

На первом электронном уровне каждого атома находится только одна s- орбиталь. Начиная со второго электронного уровня помимо s- орбитали появляются также три р -орбитали. Они имеют форму объемных восьмерок, именно так выглядит область наиболее вероятного местонахождения р -электрона в районе атомного ядра. Каждая р -орбиталь расположена вдоль одной из трех взаимоперпендикулярных осей, в соответствии с этим в названии р -орбитали указывают с помощью соответствующего индекса ту ось, вдоль которой располагается ее максимальная электронная плотность:

В современной химии орбиталь – определяющее понятие, позволяющее рассматривать процессы образования химических связей и анализировать их свойства, при этом внимание сосредотачивают на орбиталях тех электронов, которые участвуют в образовании химических связей, то есть, валентных электронов, обычно это электроны последнего уровня.

У атома углерода в исходном состоянии на втором (последнем) электронном уровне находится два электрона на s -орбитали (отмечены синим цветом) и по одному электрону на двух р -орбиталях (отмечены красным и желтым цветом), третья орбиталь – р z -вакантная:

Гибридизация.

В том случае, когда атом углерода участвует в образовании насыщенных соединений (не содержащих кратных связей), одна s- орбиталь и три р -орбитали объединяются, образуя новые орбитали, представляющие собой гибриды исходных орбиталей (процесс называют гибридизацией). Количество гибридных орбиталей всегда равно количеству исходных, в данном случае, четыре. Получившиеся орбитали-гибриды одинаковы по форме и внешне напоминают асимметричные объемные восьмерки:

Вся конструкция оказывается как бы вписанной в правильный тетраэдр – призма, собранная из правильных треугольников. При этом орбитали-гибриды располагаются вдоль осей такого тетраэдра, угол между любыми двумя осями – 109°. Четыре валентных электрона углерода располагаются на этих гибридных орбиталях:

Участие орбиталей в образовании простых химических связей.

Свойства электронов, разместившихся на четырех одинаковых орбиталях, эквивалентны, соответственно, будут эквивалентны химические связи, образованные с участием этих электронов при взаимодействии с атомами одного типа.

Взаимодействие атома углерода с четырьмя атомами водорода сопровождается взаимоперекрыванием вытянутых гибридных орбиталей углерода со сферическими орбиталями водородов. На каждой орбитали находится по одному электрону, в результате перекрывания каждая пара электронов начинает перемещаться по объединенной – молекулярной орбитали.

Гибридизация приводит лишь к изменению формы орбиталей внутри одного атома, а перекрывание орбиталей двух атомов(гибридных или обычных)приводит к образованию химической связи между ними. В данном случае (см . рисунок, помещенный ниже) максимальная электронная плотность располагается вдоль линии, связывающей два атома. Такую связь называют s -связью.

В традиционном написании структуры образовавшегося метана вместо перекрывающихся орбиталей используют символ валентной черты. Для объемного изображения структуры валентность, направленную от плоскости чертежа к зрителю показывают в виде сплошной клиновидной линии, а валентность, уходящую за плоскость рисунка – в виде штриховой клиновидной линии:

Таким образом, структура молекулы метана определяется геометрией гибридных орбиталей углерода:

Образование молекулы этана аналогично показанному выше процессу, отличие состоит в том, что при взаимоперекрывании гибридных орбиталей двух атомов углерода происходит образование С-С – связи:

Геометрия молекулы этана напоминает метан, валентные углы 109°, что определяется пространственным расположением гибридных орбиталей углерода:

Участие орбиталей в образовании кратных химических связей.

Молекула этилена образована также с участием орбиталей-гибридов, однако в гибридизации участвуют одна s -орбиталь и только две р -орбитали (р х и р у ), третья орбиталь – p z , направленная вдоль оси z , в образовании гибридов не участвует. Из исходных трех орбиталей возникают три гибридных орбитали, которые располагаются в одной плоскости, образуя трехлучевую звезду, углы между осями – 120°:

Два атома углерода присоединяют четыре атома водорода, а также соединяются между собой, образуя s -связь С-С:

Две орбитали p z , не участвовавшие в гибридизации, взаимоперекрываются, их геометрия такова, что перекрывание происходит не по линии связи С-С, а выше и ниже ее. В результате образуются две области с повышенной электронной плотностью, где помещаются два электрона (отмечены синим и красным цветом), участвующие в образовании этой связи. Таким образом, образуется одна молекулярная орбиталь, состоящая из двух областей, разделенных в пространстве. Связь, у которой максимальная электронная плотность расположена вне линии, связывающей два атома, называют p -связью:

Вторая валентная черта в обозначении двойной связи, широко используемая для изображения ненасыщенных соединений уже не одно столетие, в современном понимании подразумевает наличие двух областей с повышенной электронной плотностью, расположенных по разные стороны линии связи С-С.

Структура молекулы этилена задана геометрией гибридных орбиталей, валентный угол Н-С-Н – 120°:

При образовании ацетилена в гибридизации участвует одна одна s -орбиталь и одна р x -орбиталь (орбитали p y и p z , в образовании гибридов не участвуют). Две образовавшиеся гибридные орбитали располагаются на одной линии, вдоль оси х :

Взаимоперекрывание орбиталей-гибридов друг с другом и с орбиталями атомов водорода приводит к образованию s -связей С-С и С-Н, изображаемых с помощью простой валентной черты:

Две пары оставшихся орбиталей p y и p z взаимоперекрываются. На рисунке, приведенном ниже, цветными стрелками показано, что из чисто пространственных соображений наиболее вероятно перекрывание орбиталей с одинаковыми индексами х-х и у-у . В результате образуются две p -связи, окружающие простую s -связь С-С:

В итоге молекула ацетилена имеет палочкообразную форму:

У бензола остов молекулы собран из атомов углерода, имеющих гибридные орбитали, составленные из одной s - и двух р -орбиталей, расположенные в форме трехлучевой звезды (как у этилена), р -орбитали, не участвующие в гибридизации, показаны полупрозрачными:

В образовании химических связей могут также участвовать вакантные, то есть, не содержащие электронов орбитали ().

Орбитали высоких уровней.

Начиная с четвертого электронного уровня, у атомов появляются пять d -орбиталей, их заполнение электронами происходит у переходных элементов, начиная со скандия. Четыре d -орбитали имеют форму объемных четырехлистников, называемых иногда «клеверным листом», они отличаются лишь ориентацией в пространстве, пятая d -орбиталь представляет собой объемную восьмерку, продетую в кольцо:

d -Орбитали могут образовывать гибриды с s- и p- орбиталями. Параметры d -орбиталей обычно используют при анализе строения и спектральных свойств в комплексах переходных металлов.

Начиная с шестого электронного уровня, у атомов появляются семь f -орбиталей, их заполнение электронами происходит в атомах лантаноидов и актиноидов. f -Орбитали имеют довольно сложную конфигурацию, ниже на рисунке показана форма трех из семи таких орбиталей, имеющих одинаковую форму и ориентированных в пространстве различным образом:

f -Орбитали весьма редко используют при обсуждении свойств различных соединений, поскольку расположенные на них электроны практически не принимают участия в химических превращениях..

Перспективы.

На восьмом электронном уровне находится девять g -орбиталей. Элементы, содержащие электроны на этих орбиталях, должны появится в восьмом периоде, пока они недоступны (в ближайшее время ожидается получение элемента № 118, последнего элемента седьмого периода Периодической системы, его синтез проводят в Объединенном институте ядерных исследований в Дубне).

Форма g -орбиталей, вычисленная методами квантовой химии, еще более сложная, чем у f -орбиталей, область наиболее вероятного местонахождения электрона в данном случае выглядит весьма причудливо. Ниже показан внешний вид одной из девяти таких орбиталей:

В современной химии представления об атомных и молекулярных орбиталях широко используют при описании строения и реакционных свойств соединений, также при анализе спектров различных молекул, в некоторых случаях – для прогнозирования возможности протекания реакций.

Михаил Левицкий

ОРБИТАЛЬ

ОРБИТАЛЬ , в ФИЗИКЕ ЭЛЕМЕНТАРНЫХ ЧАСТИЦ - поверхность пространства вокруг атомного ЯДРА, в которой могут двигаться ЭЛЕКТРОНЫ. Есть большая вероятность присутствия электрона на такой орбитали. Она может содержать один или два электрона. Орбиталь имеет форму и энергию, соответствующую КВАНТОВОМУ ЧИСЛУ атома. В молекулах электроны связи двигаются в объединенном электрическом поле всех ядер. В этом случае атомные орбитали становятся молекулярными орбиталями, областями, которые окружают два ядра, имеющих характерную энергию и содержащих два электрона. Эти молекулярные орбитали, образующиеся из атомных орбиталей, составляют ХИМИЧЕСКИЕ СВЯЗИ.

Атомные орбитали описывают поверхность вокруг ядра атома, в которой скорее всего находятся электроны. Их можно также назвать «энергетическими облаками». Их существованием объясняются химические связи. Электроны содержатся внутри атомных или молекулярных структур, выстраивающихся в энергетические уровни. Для первого уровня характерен только один тип электронов: на нем имеется одна s-орбиталь (А), показанная относительно осей атома х, у и z. Максимальное количество электронов,которые могут находиться на этом энергетическом уровне, равно двум. У второго типа элек тронов орбиталь имеет форму двух соединенных сфер, расположенных симметрично относительно ядра. Такая орбиталь называется р-орбиталью (В) V атома три таких орбитали, и расположены они под прямым углом друг к другу (1,2, 3) Орбитали, которые имеют правильные сферические очертания, для большей ясности картины принято условно обозначать в виде грушевидных облаков. Кроме того, существует также пять d-орбиталей (C-G), каждая из которых состоит из четырех грушевидных долей на двух перпендикулярных осях, пересекающихся в ядре G - комбинация двух р-орбиталей.


Научно-технический энциклопедический словарь .

Смотреть что такое "ОРБИТАЛЬ" в других словарях:

    Орбиталь: Атомная орбиталь. Молекулярная орбиталь. Список значений слова или словосочетания со ссылками на соответствующие статьи. Если вы попали сюда из … Википедия

    орбиталь - – полный набор волновых функций электрона, находящегося в поле нуклидов и усредненном поле всех остальных электронов, взаимодействующих с теми же нуклидами. Атомная орбиталь – разрешенное состояние электрона в атоме, геометрический образ,… … Химические термины

    Ф ция пространственныхпеременных одного электрона, имеющая смысл волновой ф ции электрона, находящегосяв поле атомного или молекулярного остова. Если такая ф ция учитывает спинэлектрона, то она наз. спин О. Подробнее см. Молекулярная орбиталъ.… … Физическая энциклопедия

    орбиталь - orbitale. физ. Атомные и и молекулярные волновые функции электрона, находящегося в поле одного или нескольких атомных ядер и в усредненном поле всех остальных электронов рассматриваемого атома или молекулы. НЭС 2000 … Исторический словарь галлицизмов русского языка

    - (от лат. orbita путь, колея), волновая ф ция, описывающая состояние одного электрона в атоме, молекуле или др. квантовой системе. В общем случае квантовохим. термин О. используется для любой ф ции, зависящей от переменных х, у, z одного… … Химическая энциклопедия

    орбиталь - orbitalė statusas T sritis chemija apibrėžtis Banginė funkcija, apibūdinanti elektrono judėjimą atome arba molekulėje; erdvė, kurioje elektrono buvimas labiausiai tikėtinas. atitikmenys: angl. orbital rus. орбиталь … Chemijos terminų aiškinamasis žodynas

    орбиталь - orbitalė statusas T sritis fizika atitikmenys: angl. orbital vok. Orbital, n rus. орбиталь, f pranc. orbitale, f … Fizikos terminų žodynas

    орбиталь - орбит аль, и … Русский орфографический словарь

    орбиталь - с. Орбита буенча башкарыла торган. Орбита буенча хәрәкәт итә торган яки шуның өчен билгеләнгән … Татар теленең аңлатмалы сүзлеге

    орбиталь - Функция, пространственных переменных одного электрона, имеющая смысл волновой функции отдельного электрона в поле эффективного атомного или молекулярного остова … Политехнический терминологический толковый словарь

Книги

  • Комплект таблиц. Химия. Строение вещества (10 таблиц) , . Учебный альбом из 10 листов. Строение атома. Электронная орбиталь. Модели атомов некоторых элементов. Кристаллы. Химическая связь. Валентность. Степень окисления. Изометрия. Гомология. Арт.…


Просмотров