Решение системы дробно рациональных уравнений. Как решать уравнения с дробями. Показательное решение уравнений с дробями

Соблюдение Вашей конфиденциальности важно для нас. По этой причине, мы разработали Политику Конфиденциальности, которая описывает, как мы используем и храним Вашу информацию. Пожалуйста, ознакомьтесь с нашими правилами соблюдения конфиденциальности и сообщите нам, если у вас возникнут какие-либо вопросы.

Сбор и использование персональной информации

Под персональной информацией понимаются данные, которые могут быть использованы для идентификации определенного лица либо связи с ним.

От вас может быть запрошено предоставление вашей персональной информации в любой момент, когда вы связываетесь с нами.

Ниже приведены некоторые примеры типов персональной информации, которую мы можем собирать, и как мы можем использовать такую информацию.

Какую персональную информацию мы собираем:

  • Когда вы оставляете заявку на сайте, мы можем собирать различную информацию, включая ваши имя, номер телефона, адрес электронной почты и т.д.

Как мы используем вашу персональную информацию:

  • Собираемая нами персональная информация позволяет нам связываться с вами и сообщать об уникальных предложениях, акциях и других мероприятиях и ближайших событиях.
  • Время от времени, мы можем использовать вашу персональную информацию для отправки важных уведомлений и сообщений.
  • Мы также можем использовать персональную информацию для внутренних целей, таких как проведения аудита, анализа данных и различных исследований в целях улучшения услуг предоставляемых нами и предоставления Вам рекомендаций относительно наших услуг.
  • Если вы принимаете участие в розыгрыше призов, конкурсе или сходном стимулирующем мероприятии, мы можем использовать предоставляемую вами информацию для управления такими программами.

Раскрытие информации третьим лицам

Мы не раскрываем полученную от Вас информацию третьим лицам.

Исключения:

  • В случае если необходимо - в соответствии с законом, судебным порядком, в судебном разбирательстве, и/или на основании публичных запросов или запросов от государственных органов на территории РФ - раскрыть вашу персональную информацию. Мы также можем раскрывать информацию о вас если мы определим, что такое раскрытие необходимо или уместно в целях безопасности, поддержания правопорядка, или иных общественно важных случаях.
  • В случае реорганизации, слияния или продажи мы можем передать собираемую нами персональную информацию соответствующему третьему лицу – правопреемнику.

Защита персональной информации

Мы предпринимаем меры предосторожности - включая административные, технические и физические - для защиты вашей персональной информации от утраты, кражи, и недобросовестного использования, а также от несанкционированного доступа, раскрытия, изменения и уничтожения.

Соблюдение вашей конфиденциальности на уровне компании

Для того чтобы убедиться, что ваша персональная информация находится в безопасности, мы доводим нормы соблюдения конфиденциальности и безопасности до наших сотрудников, и строго следим за исполнением мер соблюдения конфиденциальности.

Уравнение» мы ввели выше в § 7. Сначала напомним, что такое рациональное выражение. Это - алгебраическое выражение, составленное из чисел и переменной х с помощью операций сложения, вычитания, умножения, деления и возведения в степень с натуральным показателем.

Если r(х) - рациональное выражение, то уравнение r(х) = 0 называют рациональным уравнением.

Впрочем, на практике удобнее пользоваться несколько более широким толкованием термина «рациональное уравнение»: это уравнение вида h(x) = q(x), где h(x) и q(x) - рациональные выражения.

До сих пор мы могли решить не любое рациональное уравнение, а только такое, которое в результате различных преобразований и рассуждений сводилось к линейному уравнению . Теперь наши возможности значительно больше: мы сумеем решить рациональное уравнение, которое сводится не только к линейно-
му, но и к квадратному уравнению.

Напомним, как мы решали рациональные уравнения раньше, и попробуем сформулировать алгоритм решения.

Пример 1. Решить уравнение

Решение. Перепишем уравнение в виде

При этом, как обычно, мы пользуемся тем, что равенства А = В и А - В = 0 выражают одну и ту же зависимость между А и В. Это и позволило нам перенести член в левую часть уравнения с противоположным знаком.

Выполним преобразования левой части уравнения. Имеем


Вспомним условия равенства дроби нулю: тогда, и только тогда, когда одновременно выполняются два соотношения:

1) числитель дроби равен нулю (а = 0); 2) знаменатель дроби отличен от нуля ).
Приравняв нулю числитель дроби в левой части уравнения (1), получим

Осталось проверить выполнение второго указанного выше условия. Соотношение означает для уравнения (1), что . Значения х 1 = 2 и х 2 = 0,6 указанным соотношениям удовлетворяют и потому служат корнями уравнения (1), а вместе с тем и корнями заданного уравнения.

1) Преобразуем уравнение к виду

2) Выполним преобразования левой части этого уравнения:

(одновременно изменили знаки в числителе и
дроби).
Таким образом, заданное уравнение принимает вид

3) Решим уравнение х 2 - 6x + 8 = 0. Находим

4) Для найденных значений проверим выполнение условия . Число 4 этому условию удовлетворяет, а число 2 - нет. Значит, 4 - корень заданного уравнения, а 2 - посторонний корень.
О т в е т: 4.

2. Решение рациональных уравнений методом введения новой переменной

Метод введения новой переменной вам знаком, мы не раз им пользовались. Покажем на примерах, как он применяется при решении рациональных уравнений.

Пример 3. Решить уравнение х 4 + х 2 - 20 = 0.

Решение. Введем новую переменную у = х 2 . Так как х 4 = (х 2) 2 = у 2 , то заданное уравнение можно переписать в виде

у 2 + у - 20 = 0.

Это - квадратное уравнение, корни которого найдем, используя известные формулы ; получим у 1 = 4, у 2 = - 5.
Но у = х 2 , значит, задача свелась к решению двух уравнений:
x 2 =4; х 2 =-5.

Из первого уравнения находим второе уравнение не имеет корней.
Ответ: .
Уравнение вида ах 4 + bx 2 +c = 0 называют биквадратным уравнением («би» - два, т. е. как бы «дважды квадратное» уравнение). Только что решенное уравнение было именно биквадратным. Любое биквадратное уравнение решается так же, как уравнение из примера 3: вводят новую переменную у = х 2 , решают полученное квадратное уравнение относительно переменной у, а затем возвращаются к переменной х.

Пример 4. Решить уравнение

Решение. Заметим, что здесь дважды встречается одно и то же выражение х 2 + Зх. Значит, имеет смысл ввести новую переменную у = х 2 + Зх. Это позволит переписать уравнение в более простом и приятном виде (что, собственно говоря, и составляет цель введения новой переменной - и запись упроща
ется, и структура уравнения становится более ясной):

А теперь воспользуемся алгоритмом решения рационального уравнения.

1) Перенесем все члены уравнения в одну часть:

= 0
2) Преобразуем левую часть уравнения

Итак, мы преобразовали заданное уравнение к виду


3) Из уравнения - 7у 2 + 29у -4 = 0 находим (мы с вами уже решили довольно много квадратных уравнений, так что всегда приводить в учебнике подробные выкладки, наверное, не стоит).

4) Выполним проверку найденных корней с помощью условия 5 (у - 3) (у + 1). Оба корня этому условию удовлетворяют.
Итак, квадратное уравнение относительно новой переменной у решено:
Поскольку у = х 2 + Зх, а у, как мы установили, принимает два значения: 4 и , - нам еще предстоит решить два уравнения: х 2 + Зх = 4; х 2 + Зх = . Корнями первого уравнения являются числа 1 и - 4, корнями второго уравнения - числа

В рассмотренных примерах метод введения новой переменной был, как любят выражаться математики, адекватен ситуации, т. е. хорошо ей соответствовал. Почему? Да потому, что одно и то же выражение явно встречалось в записи уравнения несколько раз и был резон обозначить это выражение новой буквой. Но так бывает не всегда, иногда новая переменная «проявляется» только в процессе преобразований. Именно так будет обстоять дело в следующем примере.

Пример 5. Решить уравнение
х(х- 1)(x-2)(x-3) = 24.
Решение. Имеем
х(х - 3) = х 2 - 3х;
(х - 1)(x - 2) = x 2 -Зx+2.

Значит, заданное уравнение можно переписать в виде

(x 2 - 3x)(x 2 + 3x + 2) = 24

Вот теперь новая переменная «проявилась»: у = х 2 - Зх.

С ее помощью уравнение можно переписать в виде у (у + 2) = 24 и далее у 2 + 2у - 24 = 0. Корнями этого уравнения служат числа 4 и -6.

Возвращаясь к исходной переменной х, получаем два уравнения х 2 - Зх = 4 и х 2 - Зх = - 6. Из первого уравнения находим х 1 = 4, х 2 = - 1; второе уравнение не имеет корней.

О т в е т: 4, - 1.

Содержание урока конспект урока опорный каркас презентация урока акселеративные методы интерактивные технологии Практика задачи и упражнения самопроверка практикумы, тренинги, кейсы, квесты домашние задания дискуссионные вопросы риторические вопросы от учеников Иллюстрации аудио-, видеоклипы и мультимедиа фотографии, картинки графики, таблицы, схемы юмор, анекдоты, приколы, комиксы притчи, поговорки, кроссворды, цитаты Дополнения рефераты статьи фишки для любознательных шпаргалки учебники основные и дополнительные словарь терминов прочие Совершенствование учебников и уроков исправление ошибок в учебнике обновление фрагмента в учебнике элементы новаторства на уроке замена устаревших знаний новыми Только для учителей идеальные уроки календарный план на год методические рекомендации программы обсуждения Интегрированные уроки

Давайте познакомимся с рациональными и дробными рациональными уравнениями, дадим их определение, приведем примеры, а также разберем наиболее распространенные типы задач.

Yandex.RTB R-A-339285-1

Рациональное уравнение: определение и примеры

Знакомство с рациональными выражениями начинается в 8 классе школы. В это время на уроках алгебры учащиеся все чаще начинают встречать задания с уравнениями, которые содержат рациональные выражения в своих записях. Давайте освежим в памяти, что это такое.

Определение 1

Рациональное уравнение – это такое уравнение, в обеих частях которого содержатся рациональные выражения.

В различных пособиях можно встретить еще одну формулировку.

Определение 2

Рациональное уравнение – это такое уравнение, запись левой части которого содержит рациональное выражение, а правая – нуль.

Определения, которые мы привели для рациональных уравнений, являются равнозначными, так как говорят об одно и том же. Подтверждает правильность наших слов тот факт, что для любых рациональных выражений P и Q уравнения P = Q и P − Q = 0 будут равносильными выражениями.

А теперь обратимся к примерам.

Пример 1

Рациональные уравнения:

x = 1 , 2 · x − 12 · x 2 · y · z 3 = 0 , x x 2 + 3 · x - 1 = 2 + 2 7 · x - a · (x + 2) , 1 2 + 3 4 - 12 x - 1 = 3 .

Рациональные уравнения точно также, как и уравнения других видов, могут содержать любое количество переменных от 1 до нескольких. Для начала мы рассмотрим простые примеры, в которых уравнения будут содержать только одну переменную. А затем начнем постепенно усложнять задачу.

Рациональные уравнения делятся на две большие группы: целые и дробные. Посмотрим, какие уравнения будут относиться к каждой из групп.

Определение 3

Рациональное уравнение будет являться целым в том случае, если в записи левой и правой его частей содержатся целые рациональные выражения.

Определение 4

Рациональное уравнение будет являться дробным в том случае, если одна или обе его части содержат дробь.

Дробно рациональные уравнения в обязательном порядке содержат деление на переменную или же переменная имеется в знаменателе. В записи целых уравнений такого деления нет.

Пример 2

3 · x + 2 = 0 и (x + y) · (3 · x 2 − 1) + x = − y + 0 , 5 – целые рациональные уравнения. Здесь обе части уравнения представлены целыми выражениями.

1 x - 1 = x 3 и x: (5 · x 3 + y 2) = 3: (x − 1) : 5 – это дробно рациональные уравнения.

К числу целых рациональных уравнений можно отнести линейные и квадратные уравнения.

Решение целых уравнений

Решение таких уравнений обычно сводится к преобразованию их в равносильные алгебраические уравнения. Достичь этого можно путем проведения равносильных преобразований уравнений в соответствии со следующим алгоритмом:

  • сначала получим ноль в правой части уравнения, для этого на необходимо перенести выражение, которое находится в правой части уравнения, в его левую часть и поменять знак;
  • затем преобразуем выражение в левой части уравнения в многочлен стандартного вида.

Мы должны получить алгебраическое уравнение. Это уравнение будет равносильным по отношению к исходному уравнению. Легкие случаи позволяют нам для решения задачи свести целое уравнение с линейному или квадратному. В общем случае мы решаем алгебраическое уравнение степени n .

Пример 3

Необходимо найти корни целого уравнения 3 · (x + 1) · (x − 3) = x · (2 · x − 1) − 3 .

Решение

Проведем преобразование исходного выражения с целью получить равносильное ему алгебраическое уравнение. Для этого произведем перенос выражения, содержащегося в правой части уравнения, в левую часть и заменим знак на противоположный. В итоге получим: 3 · (x + 1) · (x − 3) − x · (2 · x − 1) + 3 = 0 .

Теперь проведем преобразование выражения, которое находится в левой части в многочлен стандартного вида и произведем необходимые действия с этим многочленом:

3 · (x + 1) · (x − 3) − x · (2 · x − 1) + 3 = (3 · x + 3) · (x − 3) − 2 · x 2 + x + 3 = = 3 · x 2 − 9 · x + 3 · x − 9 − 2 · x 2 + x + 3 = x 2 − 5 · x − 6

У нас получилось свести решение исходного уравнения к решению квадратного уравнения вида x 2 − 5 · x − 6 = 0 . Дискриминант этого уравнения положительный: D = (− 5) 2 − 4 · 1 · (− 6) = 25 + 24 = 49 . Это значит, действительных корней будет два. Найдем их, воспользовавшись формулой корней квадратного уравнения:

x = - - 5 ± 49 2 · 1 ,

x 1 = 5 + 7 2 или x 2 = 5 - 7 2 ,

x 1 = 6 или x 2 = - 1

Проверим верность корней уравнения, которые мы нашли в ходе решения. Для этого числа, которые мы получили, подставим в исходное уравнение: 3 · (6 + 1) · (6 − 3) = 6 · (2 · 6 − 1) − 3 и 3 · (− 1 + 1) · (− 1 − 3) = (− 1) · (2 · (− 1) − 1) − 3 . В первом случае 63 = 63 , во втором 0 = 0 . Корни x = 6 и x = − 1 действительно являются корнями уравнения, данного в условии примера.

Ответ: 6 , − 1 .

Давайте разберем, что значит «степень целого уравнения». С этим термином мы будем часто встречаться в тех случаях, когда нам надо будет представить целое уравнение в виде алгебраического. Дадим определение понятию.

Определение 5

Степень целого уравнения – это степень алгебраического уравнения, равносильного исходному целому уравнению.

Если посмотреть на уравнения из примера, приведенного выше, можно установить: степень данного целого уравнения вторая.

Если бы наш курс ограничивался решением уравнений второй степени, то рассмотрение темы на этом можно было бы закончить. Но все не так просто. Решение уравнений третьей степени сопряжено с трудностями. А для уравнений выше четвертой степени и вовсе не существует общих формул корней. В связи с этим решение целых уравнений третьей, четвертой и других степеней требует от нас применения целого ряда других приемов и методов.

Чаще прочих используется подход к решению целых рациональных уравнений, который основан на методе разложения на множители. Алгоритм действий в этом случае следующий:

  • переносим выражение из правой части в левую с тем, чтобы в правой части записи остался нуль;
  • представляем выражение в левой части как произведение множителей, а затем переходим к совокупности нескольких более простых уравнений.
Пример 4

Найдите решение уравнения (x 2 − 1) · (x 2 − 10 · x + 13) = 2 · x · (x 2 − 10 · x + 13) .

Решение

Переносим выражение из правой части записи в левую с противоположным знаком: (x 2 − 1) · (x 2 − 10 · x + 13) − 2 · x · (x 2 − 10 · x + 13) = 0 . Преобразование левой части в многочлен стандартного вида нецелесообразно в связи с тем, что это даст нам алгебраическое уравнение четвертой степени: x 4 − 12 · x 3 + 32 · x 2 − 16 · x − 13 = 0 . Легкость преобразования не оправдывает всех сложностей с решением такого уравнения.

Намного проще пойти другим путем: вынесем за скобки общий множитель x 2 − 10 · x + 13 . Так мы придем к уравнению вида (x 2 − 10 · x + 13) · (x 2 − 2 · x − 1) = 0 . Теперь заменим полученное уравнение совокупностью двух квадратных уравнений x 2 − 10 · x + 13 = 0 и x 2 − 2 · x − 1 = 0 и найдем их корни через дискриминант: 5 + 2 · 3 , 5 - 2 · 3 , 1 + 2 , 1 - 2 .

Ответ: 5 + 2 · 3 , 5 - 2 · 3 , 1 + 2 , 1 - 2 .

Точно также мы можем использовать метод введения новой переменной. Этот метод позволяет нам переходить к равносильным уравнениям со степенями ниже, чем были степени в исходном целом уравнении.

Пример 5

Есть ли корни у уравнения (x 2 + 3 · x + 1) 2 + 10 = − 2 · (x 2 + 3 · x − 4) ?

Решение

Если мы сейчас попробуем свести целое рациональное уравнение к алгебраическому, то получим уравнение 4 степени, которое не имеет рациональных корней. Потому нам будет проще пойти другим путем: ввести новую переменную у, которая заменит в уравнении выражение x 2 + 3 · x .

Теперь мы будем работать с целым уравнением (y + 1) 2 + 10 = − 2 · (y − 4) . Перенесем правую часть уравнения в левую с противоположным знаком и проведем необходимые преобразования. Получим: y 2 + 4 · y + 3 = 0 . Найдем корни квадратного уравнения: y = − 1 и y = − 3 .

Теперь проведем обратную замену. Получим два уравнения x 2 + 3 · x = − 1 и x 2 + 3 · x = − 3 . Перепишем их как x 2 + 3 · x + 1 = 0 и x 2 + 3 · x + 3 = 0 . Используем формулу корней квадратного уравнения для того, чтобы найти корни первого уравнения из полученных: - 3 ± 5 2 . Дискриминант второго уравнения отрицательный. Это значит, что действительных корней у второго уравнения нет.

Ответ: - 3 ± 5 2

Целые уравнения высоких степеней попадаются в задачах достаточно часто. Пугаться их не нужно. Нужно быть готовым применить нестандартный метод их решения, в том числе и ряд искусственных преобразований.

Решение дробно рациональных уравнений

Начнем рассмотрение этой подтемы мы с алгоритма решения дробно рациональных уравнений вида p (x) q (x) = 0 , где p (x) и q (x) – целые рациональные выражения. Решение остальных дробно рациональных уравнений всегда можно свести к решению уравнений указанного вида.

В основу наиболее употребимого метода решения уравнений p (x) q (x) = 0 положено следующее утверждение: числовая дробь u v , где v – это число, которое отлично от нуля, равна нулю только в тех случаях, когда числитель дроби равен нулю. Следуя логике приведенного утверждения мы можем утверждать, что решение уравнения p (x) q (x) = 0 может быть сведено в выполнению двух условий: p (x) = 0 и q (x) ≠ 0 . На этом построен алгоритм решения дробных рациональных уравнений вида p (x) q (x) = 0:

  • находим решение целого рационального уравнения p (x) = 0 ;
  • проверяем, выполняется ли для корней, найденных в ходе решения, условие q (x) ≠ 0 .

Если это условие выполняется, то найденный корень Если нет, то корень не является решением задачи.

Пример 6

Найдем корни уравнения 3 · x - 2 5 · x 2 - 2 = 0 .

Решение

Мы имеем дело с дробным рациональным уравнением вида p (x) q (x) = 0 , в котором p (x) = 3 · x − 2 , q (x) = 5 · x 2 − 2 = 0 . Приступим к решению линейного уравнения 3 · x − 2 = 0 . Корнем этого уравнения будет x = 2 3 .

Проведем проверку найденного корня, удовлетворяет ли он условию 5 · x 2 − 2 ≠ 0 . Для этого подставим числовое значение в выражение. Получим: 5 · 2 3 2 - 2 = 5 · 4 9 - 2 = 20 9 - 2 = 2 9 ≠ 0 .

Условие выполняется. Это значит, что x = 2 3 является корнем исходного уравнения.

Ответ: 2 3 .

Есть еще один вариант решения дробных рациональных уравнений p (x) q (x) = 0 . Вспомним, что это уравнение равносильно целому уравнению p (x) = 0 на области допустимых значений переменной x исходного уравнения. Это позволяет нам использовать следующий алгоритм в решении уравнений p (x) q (x) = 0:

  • решаем уравнение p (x) = 0 ;
  • находим область допустимых значений переменной x ;
  • берем корни, которые лежат в области допустимых значений переменной x , в качестве искомых корней исходного дробного рационального уравнения.
Пример 7

Решите уравнение x 2 - 2 · x - 11 x 2 + 3 · x = 0 .

Решение

Для начала решим квадратное уравнение x 2 − 2 · x − 11 = 0 . Для вычисления его корней мы используем формулу корней для четного второго коэффициента. Получаем D 1 = (− 1) 2 − 1 · (− 11) = 12 , и x = 1 ± 2 3 .

Теперь мы можем найти ОДЗ переменной x для исходного уравнения. Это все числа, для которых x 2 + 3 · x ≠ 0 . Это то же самое, что x · (x + 3) ≠ 0 , откуда x ≠ 0 , x ≠ − 3 .

Теперь проверим, входят ли полученные на первом этапе решения корни x = 1 ± 2 3 в область допустимых значений переменной x . Мы видим, что входят. Это значит, что исходное дробное рациональное уравнение имеет два корня x = 1 ± 2 3 .

Ответ​​: x = 1 ± 2 3

Второй описанный метод решения проще первого в случаях, когда легко находится область допустимых значений переменной x , а корни уравнения p (x) = 0 иррациональные. Например, 7 ± 4 · 26 9 . Корни могут быть и рациональными, но с большим числителем или знаменателем. Например, 127 1101 и − 31 59 . Это позволяет сэкономить время на проведении проверки условия q (x) ≠ 0 : намного проще исключить корни, которые не подходят, по ОДЗ.

В тех случаях, когда корни уравнения p (x) = 0 целые, целесообразнее использовать первый из описанных алгоритмов решения уравнений вида p (x) q (x) = 0 . Быстрее сразу находить корни целого уравнения p (x) = 0 , после чего проверять, выполняется ли для них условие q (x) ≠ 0 , а не находить ОДЗ, после чего решать уравнение p (x) = 0 на этой ОДЗ. Это связано с тем, что в таких случаях сделать проверку обычно проще, чем найти ОДЗ.

Пример 8

Найдите корни уравнения (2 · x - 1) · (x - 6) · (x 2 - 5 · x + 14) · (x + 1) x 5 - 15 · x 4 + 57 · x 3 - 13 · x 2 + 26 · x + 112 = 0 .

Решение

Начнем с рассмотрения целого уравнения (2 · x − 1) · (x − 6) · (x 2 − 5 · x + 14) · (x + 1) = 0 и нахождения его корней. Для этого применим метод решения уравнений через разложение на множители. Получается, что исходное уравнение равносильно совокупности четырех уравнений 2 · x − 1 = 0 , x − 6 = 0 , x 2 − 5 · x + 14 = 0 , x + 1 = 0 , из которых три линейных и одно квадратное. Находим корни: из первого уравнения x = 1 2 , из второго – x = 6 , из третьего – x = 7 , x = − 2 , из четвертого – x = − 1 .

Проведем проверку полученных корней. Определить ОДЗ в данном случае нам сложно, так как для этого придется провести решение алгебраического уравнения пятой степени. Проще будет проверить условие, по которому знаменатель дроби, которая находится в левой части уравнения, не должен обращаться в нуль.

По очереди подставим корни на место переменной х в выражение x 5 − 15 · x 4 + 57 · x 3 − 13 · x 2 + 26 · x + 112 и вычислим его значение:

1 2 5 − 15 · 1 2 4 + 57 · 1 2 3 − 13 · 1 2 2 + 26 · 1 2 + 112 = = 1 32 − 15 16 + 57 8 − 13 4 + 13 + 112 = 122 + 1 32 ≠ 0 ;

6 5 − 15 · 6 4 + 57 · 6 3 − 13 · 6 2 + 26 · 6 + 112 = 448 ≠ 0 ;

7 5 − 15 · 7 4 + 57 · 7 3 − 13 · 7 2 + 26 · 7 + 112 = 0 ;

(− 2) 5 − 15 · (− 2) 4 + 57 · (− 2) 3 − 13 · (− 2) 2 + 26 · (− 2) + 112 = − 720 ≠ 0 ;

(− 1) 5 − 15 · (− 1) 4 + 57 · (− 1) 3 − 13 · (− 1) 2 + 26 · (− 1) + 112 = 0 .

Проведенная проверка позволяет нам установить, что корнями исходного дробного рацинального уравнения являются 1 2 , 6 и − 2 .

Ответ: 1 2 , 6 , - 2

Пример 9

Найдите корни дробного рационального уравнения 5 · x 2 - 7 · x - 1 · x - 2 x 2 + 5 · x - 14 = 0 .

Решение

Начнем работу с уравнением (5 · x 2 − 7 · x − 1) · (x − 2) = 0 . Найдем его корни. Нам проще представить это уравнение как совокупность квадратного и линейного уравнений 5 · x 2 − 7 · x − 1 = 0 и x − 2 = 0 .

Используем формулу корней квадратного уравнения для поиска корней. Получаем из первого уравнения два корня x = 7 ± 69 10 , а из второго x = 2 .

Подставлять значение корней в исходное уравнение для проверки условий нам будет достаточно сложно. Проще будет определить ОДЗ переменной x . В данном случае ОДЗ переменной x – это все числа, кроме тех, для которых выполняется условие x 2 + 5 · x − 14 = 0 . Получаем: x ∈ - ∞ , - 7 ∪ - 7 , 2 ∪ 2 , + ∞ .

Теперь проверим, принадлежат ли найденные нами корни к области допустимых значений переменной x .

Корни x = 7 ± 69 10 - принадлежат, поэтому, они являются корнями исходного уравнения, а x = 2 – не принадлежит, поэтому, это посторонний корень.

Ответ: x = 7 ± 69 10 .

Разберем отдельно случаи, когда в числителе дробного рационального уравнения вида p (x) q (x) = 0 находится число. В таких случаях, если в числителе находится число, отличное от нуля, то уравнение не будет иметь корней. Если это число будет равно нулю, то корнем уравнения будет любое число из ОДЗ.

Пример 10

Решите дробное рациональное уравнение - 3 , 2 x 3 + 27 = 0 .

Решение

Данное уравнение не будет иметь корней, так как в числителе дроби из левой части уравнения находится отличное от нуля число. Это значит, что ни при каких значениях x значение приведенной в условии задачи дроби не будет равняться нулю.

Ответ: нет корней.

Пример 11

Решите уравнение 0 x 4 + 5 · x 3 = 0 .

Решение

Так как в числителе дроби находится нуль, решением уравнения будет любое значение x из ОДЗ переменной x .

Теперь определим ОДЗ. Оно будет включать все значения x , при которых x 4 + 5 · x 3 ≠ 0 . Решениями уравнения x 4 + 5 · x 3 = 0 являются 0 и − 5 , так как, это уравнение равносильно уравнению x 3 · (x + 5) = 0 , а оно в свою очередь равносильно совокупности двух уравнений x 3 = 0 и x + 5 = 0 , откуда и видны эти корни. Мы приходим к тому, что искомой областью допустимых значений являются любые x , кроме x = 0 и x = − 5 .

Получается, что дробное рациональное уравнение 0 x 4 + 5 · x 3 = 0 имеет бесконечное множество решений, которыми являются любые числа кроме нуля и - 5 .

Ответ: - ∞ , - 5 ∪ (- 5 , 0 ∪ 0 , + ∞

Теперь поговорим о дробных рациональных уравнениях произвольного вида и методах их решения. Их можно записать как r (x) = s (x) , где r (x) и s (x) – рациональные выражения, причем хотя бы одно из них дробное. Решение таких уравнений сводится к решению уравнений вида p (x) q (x) = 0 .

Мы уже знаем, что мы можем получить равносильное уравнение при переносе выражения из правой части уравнения в левое с противоположным знаком. Это значит, что уравнение r (x) = s (x) равносильно уравнение r (x) − s (x) = 0 . Также мы уже разобрали способы преобразования рационального выражения в рациональную дробь. Благодаря этому мы без труда можем преобразовать уравнение r (x) − s (x) = 0 в тождественную ему рациональную дробь вида p (x) q (x) .

Так мы переходим от исходного дробного рационального уравнения r (x) = s (x) к уравнению вида p (x) q (x) = 0 , решать которые мы уже научились.

Следует учитывать, что при проведении переходов от r (x) − s (x) = 0 к p (x) q (x) = 0 , а затем к p (x) = 0 мы можем не учесть расширения области допустимых значений переменной x .

Вполне реальна ситуация, когда исходное уравнение r (x) = s (x) и уравнение p (x) = 0 в результате преобразований перестанут быть равносильными. Тогда решение уравнения p (x) = 0 может дать нам корни, которые будут посторонними для r (x) = s (x) . В связи с этим в каждом случае необходимо проводить проверку любым из описанных выше способов.

Чтобы облегчить вам работу по изучению темы, мы обобщили всю информацию в алгритм решения дробного рационального уравнения вида r (x) = s (x) :

  • переносим выражение из правой части с противоположным знаком и получаем справа нуль;
  • преобразуем исходное выражение в рациональную дробь p (x) q (x) , последовательно выполняя действия с дробями и многочленами;
  • решаем уравнение p (x) = 0 ;
  • выявляем посторонние корни путем проверки их принадлежности ОДЗ или методом подстановки в исходное уравнение.

Визуально цепочка действий будет выглядеть следующим образом:

r (x) = s (x) → r (x) - s (x) = 0 → p (x) q (x) = 0 → p (x) = 0 → о т с е и в а н и е п о с т о р о н н и х к о р н е й

Пример 12

Решите дробное рациональное уравнение x x + 1 = 1 x + 1 .

Решение

Перейдем к уравнению x x + 1 - 1 x + 1 = 0 . Преобразуем дробное рациональное выражение в левой части уравнения к виду p (x) q (x) .

Для этого нам придется привести рациональные дроби к общему знаменателю и упростить выражение:

x x + 1 - 1 x - 1 = x · x - 1 · (x + 1) - 1 · x · (x + 1) x · (x + 1) = = x 2 - x - 1 - x 2 - x x · (x + 1) = - 2 · x - 1 x · (x + 1)

Для того, чтобы найти корни уравнения - 2 · x - 1 x · (x + 1) = 0 , нам необходимо решить уравнение − 2 · x − 1 = 0 . Получаем один корень x = - 1 2 .

Нам осталось выполнить проверку любым из методов. Рассмотрим их оба.

Подставим полученное значение в исходное уравнение. Получим - 1 2 - 1 2 + 1 = 1 - 1 2 + 1 . Мы пришли к верному числовому равенству − 1 = − 1 . Это значит, что x = − 1 2 является корнем исходного уравнения.

Теперь проведем проверку через ОДЗ. Определим область допустимых значений переменной x . Это будет все множество чисел, за исключением − 1 и 0 (при x = − 1 и x = 0 обращаются в нуль знаменатели дробей). Полученный нами корень x = − 1 2 принадлежит ОДЗ. Это значит, что он является корнем исходного уравнения.

Ответ: − 1 2 .

Пример 13

Найдите корни уравнения x 1 x + 3 - 1 x = - 2 3 · x .

Решение

Мы имеем дело с дробным рациональным уравнением. Следовательно, будем действовать по алгоритму.

Перенесем выражение из правой части в левую с противоположным знаком: x 1 x + 3 - 1 x + 2 3 · x = 0

Проведем необходимые преобразования: x 1 x + 3 - 1 x + 2 3 · x = x 3 + 2 · x 3 = 3 · x 3 = x .

Приходим к уравнению x = 0 . Корень этого уравнения – нуль.

Проверим, не является ли этот корень посторонним для исходного уравнения. Подставим значение в исходное уравнение: 0 1 0 + 3 - 1 0 = - 2 3 · 0 . Как видите, полученное уравнение не имеет смысла. Это значит, что 0 – это посторонний корень, а исходное дробное рациональное уравнение корней не имеет.

Ответ: нет корней.

Если мы не включили в алгоритм другие равносильные преобразования, то это вовсе не значит, что ими нельзя пользоваться. Алгоритм универсален, но он создан для того, чтобы помогать, а не ограничивать.

Пример 14

Решите уравнение 7 + 1 3 + 1 2 + 1 5 - x 2 = 7 7 24

Решение

Проще всего будет решить приведенное дробное рациональное уравнение согласно алгоритму. Но есть и другой путь. Рассмотрим его.

Отнимем от правой и левой частей 7 , получаем: 1 3 + 1 2 + 1 5 - x 2 = 7 24 .

Отсюда можно заключить, что выражение в знаменателе левой части должно быть равно числу, обратному числу из правой части, то есть, 3 + 1 2 + 1 5 - x 2 = 24 7 .

Вычтем из обеих частей 3: 1 2 + 1 5 - x 2 = 3 7 . По аналогии 2 + 1 5 - x 2 = 7 3 , откуда 1 5 - x 2 = 1 3 , и дальше 5 - x 2 = 3 , x 2 = 2 , x = ± 2

Проведем проверку для того, чтобы установить, являются ли найденные корни корнями исходного уравнения.

Ответ: x = ± 2

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

"Решение дробных рациональных уравнений"

Цели урока:

Обучающая:

    формирование понятия дробных рационального уравнения; рассмотреть различные способы решения дробных рациональных уравнений; рассмотреть алгоритм решения дробных рациональных уравнений, включающий условие равенства дроби нулю; обучить решению дробных рациональных уравнений по алгоритму; проверка уровня усвоения темы путем проведения тестовой работы.

Развивающая:

    развитие умения правильно оперировать полученными знаниями, логически мыслить; развитие интеллектуальных умений и мыслительных операций - анализ, синтез, сравнение и обобщение; развитие инициативы, умения принимать решения, не останавливаться на достигнутом; развитие критического мышления; развитие навыков исследовательской работы.

Воспитывающая:

    воспитание познавательного интереса к предмету; воспитание самостоятельности при решении учебных задач; воспитание воли и упорства для достижения конечных результатов.

Тип урока : урок – объяснение нового материала.

Ход урока

1. Организационный момент.

Здравствуйте, ребята! На доске написаны уравнения посмотрите на них внимательно. Все ли из этих уравнений вы сможете решить? Какие нет и почему?

Уравнения, в которых левая и правя часть, являются дробно-рациональными выражениями, называются дробные рациональные уравнения. Как вы думаете, что мы будем изучать сегодня на уроке? Сформулируйте тему урока. Итак, открываем тетради и записываем тему урока «Решение дробных рациональных уравнений».

2. Актуализация знаний. Фронтальный опрос, устная работа с классом.

А сейчас мы повторим основной теоретический материл, который понадобиться нам для изучения новой темы. Ответьте, пожалуйста, на следующие вопросы:

1. Что такое уравнение? (Равенство с переменной или переменными .)

2. Как называется уравнение №1? (Линейное .) Способ решения линейных уравнений. (Все с неизвестным перенести в левую часть уравнения, все числа - в правую. Привести подобные слагаемые. Найти неизвестный множитель ).

3. Как называется уравнение №3? (Квадратное. ) Способы решения квадратных уравнений. (Выделение полного квадрата, по формулам, используя теорему Виета и ее следствия .)

4. Что такое пропорция? (Равенство двух отношений .) Основное свойство пропорции. (Если пропорция верна, то произведение ее крайних членов равно произведению средних членов .)

5. Какие свойства используются при решении уравнений? (1. Если в уравнении перенести слагаемое из одной части в другую, изменив его знак, то получится уравнение, равносильное данному. 2. Если обе части уравнения умножить или разделить на одно и то же отличное от нуля число, то получится уравнение, равносильное данному .)

6. Когда дробь равна нулю? (Дробь равна нулю, когда числитель равен нулю, а знаменатель не равен нулю .)

3. Объяснение нового материала.

Решить в тетрадях и на доске уравнение №2.

Ответ : 10.

Какое дробно-рациональное уравнение можно попробовать решить, используя основное свойство пропорции? (№5).

(х-2)(х-4) = (х+2)(х+3)

х2-4х-2х+8 = х2+3х+2х+6

х2-6х-х2-5х = 6-8

Решить в тетрадях и на доске уравнение №4.

Ответ : 1,5.

Какое дробно-рациональное уравнение можно попробовать решить, умножая обе части уравнения на знаменатель? (№6).

D=1›0, х1=3, х2=4.

Ответ : 3;4.

Теперь попытайтесь решить уравнение №7 одним из способов.

(х2-2х-5)х(х-5)=х(х-5)(х+5)

(х2-2х-5)х(х-5)-х(х-5)(х+5)=0

х(х-5)(х2-2х-5-(х+5))=0

х2-2х-5-х-5=0

х(х-5)(х2-3х-10)=0

х=0 х-5=0 х2-3х-10=0

х1=0 х2=5 D=49

Ответ : 0;5;-2.

Ответ : 5;-2.

Объясните, почему так получилось? Почему в одном случае три корня, в другом – два? Какие же числа являются корнями данного дробно-рационального уравнения?

До сих пор учащиеся с понятием посторонний корень не встречались, им действительно очень трудно понять, почему так получилось. Если в классе никто не может дать четкого объяснения этой ситуации, тогда учитель задает наводящие вопросы.

    Чем отличаются уравнения № 2 и 4 от уравнений № 5,6,7? (В уравнениях № 2 и 4 в знаменателе числа, № 5-7 – выражения с переменной .) Что такое корень уравнения? (Значение переменной, при котором уравнение обращается в верное равенство .) Как выяснить является ли число корнем уравнения? (Сделать проверку .)

При выполнении проверки некоторые ученики замечают, что приходится делить на нуль. Они делают вывод, что числа 0 и 5 не являются корнями данного уравнения. Возникает вопрос: существует ли способ решения дробных рациональных уравнений, позволяющий исключить данную ошибку? Да, это способ основан на условие равенства дроби нулю.

х2-3х-10=0 , D=49 , х1=5 , х2=-2.

Если х=5, то х(х-5)=0, значит 5- посторонний корень.

Если х=-2, то х(х-5)≠0.

Ответ : -2.

Давайте попробуем сформулировать алгоритм решения дробных рациональных уравнений данным способом. Дети сами формулируют алгоритм.

Алгоритм решения дробных рациональных уравнений:

1. Перенести все в левую часть.

2. Привести дроби к общему знаменателю.

3. Составить систему: дробь равна нулю, когда числитель равен нулю, а знаменатель не равен нулю.

4. Решить уравнение.

5. Проверить неравенство, чтобы исключить посторонние корни.

6. Записать ответ.

Обсуждение: как оформить решение, если используется основное свойство пропорции и умножение обеих частей уравнения на общий знаменатель. (Дополнить решение: исключить из его корней те, которые обращают в нуль общий знаменатель).

4. Первичное осмысление нового материала.

Работа в парах. Учащиеся выбирают способ решения уравнения самостоятельно в зависимости от вида уравнения. Задания из учебника «Алгебра 8»,2007: № 000(б, в,и); № 000(а, д,ж). Учитель контролирует выполнение задания, отвечает на возникшие вопросы, оказывает помощь слабоуспевающим ученикам. Самопроверка: ответы записаны на доске.

б) 2 – посторонний корень. Ответ:3.

в) 2 – посторонний корень. Ответ: 1,5.

а) Ответ: -12,5.

ж) Ответ: 1;1,5.

5. Постановка домашнего задания.

2. Выучить алгоритм решения дробных рациональных уравнений.

3. Решить в тетрадях № 000(а, г,д); № 000(г, з).

4. Попробовать решить № 000(а)(по желанию).

6. Выполнение контролирующего задания по изученной теме.

Работа выполняется на листочках.

Пример задания:

А) Какие из уравнений являются дробными рациональными?

Б) Дробь равна нулю, когда числитель ______________________ , а знаменатель _______________________ .

В) Является ли число -3 корнем уравнения №6?

Г) Решить уравнение №7.

Критерии оценивания задания:

    «5» ставится, если ученик выполнил правильно более 90% задания. «4» - 75%-89% «3» - 50%-74% «2» ставится учащемуся, выполнившему менее 50% задания. Оценка 2 в журнал не ставится, 3 - по желанию.

7. Рефлексия.

На листочках с самостоятельной работой поставьте:

    1 – если на уроке вам было интересно и понятно; 2 – интересно, но не понятно; 3 – не интересно, но понятно; 4 – не интересно, не понятно.

8. Подведение итогов урока.

Итак, сегодня на уроке мы с вами познакомились с дробными рациональными уравнениями, научились решать эти уравнения различными способами, проверили свои знания с помощью обучающей самостоятельной работы. Результаты самостоятельной работы вы узнаете на следующем уроке, дома у вас будет возможность закрепить полученные знания.

Какой метод решения дробных рациональных уравнений, по Вашему мнению, является более легким, доступным, рациональным? Не зависимо от метода решения дробных рациональных уравнений, о чем необходимо не забывать? В чем «коварство» дробных рациональных уравнений?

Всем спасибо, урок окончен.

Презентация и урок на тему: "Рациональные уравнения. Алгоритм и примеры решения рациональных уравнений"

Дополнительные материалы
Уважаемые пользователи, не забывайте оставлять свои комментарии, отзывы, пожелания! Все материалы проверены антивирусной программой.

Обучающие пособия и тренажеры в интернет-магазине "Интеграл" для 8 класса
Пособие к учебнику Макарычева Ю.Н. Пособие к учебнику Мордковича А.Г.

Знакомство с иррациональными уравнениями

Ребята, мы научились решать квадратные уравнения. Но математика только ими не ограничивается. Сегодня мы научимся решать рациональные уравнения. Понятие рациональных уравнений во многом схоже с понятием рациональных чисел. Только помимо чисел теперь у нас введена некоторая переменная $х$. И таким образом мы получаем выражение, в котором присутствуют операции сложения, вычитания, умножения, деления и возведения в целую степень.

Пусть $r(x)$ – это рациональное выражение . Такое выражение может представлять из себя простой многочлен от переменной $х$ или отношение многочленов (вводится операция деления, как для рациональных чисел).
Уравнение $r(x)=0$ называется рациональным уравнением .
Любое уравнение вида $p(x)=q(x)$, где $p(x)$ и $q(x)$ – рациональные выражения, также будет являться рациональным уравнением .

Рассмотрим примеры решения рациональных уравнений.

Пример 1.
Решить уравнение: $\frac{5x-3}{x-3}=\frac{2x-3}{x}$.

Решение.
Перенесем все выражения в левую часть: $\frac{5x-3}{x-3}-\frac{2x-3}{x}=0$.
Если бы в левой части уравнения были представлены обычные числа, то мы бы привели две дроби к общему знаменателю.
Давайте так и поступим: $\frac{(5x-3)*x}{(x-3)*x}-\frac{(2x-3)*(x-3)}{(x-3)*x}=\frac{5x^2-3x-(2x^2-6x-3x+9)}{(x-3)*x}=\frac{3x^2+6x-9}{(x-3)*x}=\frac{3(x^2+2x-3)}{(x-3)*x}$.
Получили уравнение: $\frac{3(x^2+2x-3)}{(x-3)*x}=0$.

Дробь равна нулю, тогда и только тогда, когда числитель дроби равен нулю, а знаменатель отличен от нуля. Тогда отдельно приравняем числитель к нулю и найдем корни числителя.
$3(x^2+2x-3)=0$ или $x^2+2x-3=0$.
$x_{1,2}=\frac{-2±\sqrt{4-4*(-3)}}{2}=\frac{-2±4}{2}=1;-3$.
Теперь проверим знаменатель дроби: $(x-3)*x≠0$.
Произведение двух чисел равно нулю, когда хотя бы одно из этих чисел равно нулю. Тогда: $x≠0$ или $x-3≠0$.
$x≠0$ или $x≠3$.
Корни, полученные в числителе и знаменателе, не совпадают. Значит в ответ записываем оба корня числителя.
Ответ: $х=1$ или $х=-3$.

Если вдруг, один из корней числителя совпал с корнем знаменателя, то его следует исключить. Такие корни называются посторонними!

Алгоритм решения рациональных уравнений:

1. Все выражения, содержащиеся в уравнении, перенести в левую сторону от знака равно.
2. Преобразовать эту часть уравнения к алгебраической дроби: $\frac{p(x)}{q(x)}=0$.
3. Приравнять полученный числитель к нулю, то есть решить уравнение $p(x)=0$.
4. Приравнять знаменатель к нулю и решить полученное уравнение. Если корни знаменателя совпали с корнями числителя, то их следует исключить из ответа.

Пример 2.
Решите уравнение: $\frac{3x}{x-1}+\frac{4}{x+1}=\frac{6}{x^2-1}$.

Решение.
Решим согласно пунктам алгоритма.
1. $\frac{3x}{x-1}+\frac{4}{x+1}-\frac{6}{x^2-1}=0$.
2. $\frac{3x}{x-1}+\frac{4}{x+1}-\frac{6}{x^2-1}=\frac{3x}{x-1}+\frac{4}{x+1}-\frac{6}{(x-1)(x+1)}= \frac{3x(x+1)+4(x-1)-6}{(x-1)(x+1)}=$ $=\frac{3x^2+3x+4x-4-6}{(x-1)(x+1)}=\frac{3x^2+7x-10}{(x-1)(x+1)}$.
$\frac{3x^2+7x-10}{(x-1)(x+1)}=0$.
3. Приравняем числитель к нулю: $3x^2+7x-10=0$.
$x_{1,2}=\frac{-7±\sqrt{49-4*3*(-10)}}{6}=\frac{-7±13}{6}=-3\frac{1}{3};1$.
4. Приравняем знаменатель к нулю:
$(x-1)(x+1)=0$.
$x=1$ и $x=-1$.
Один из корней $х=1$ совпал с корнем из числителя, тогда мы его в ответ не записываем.
Ответ: $х=-1$.

Решать рациональные уравнения удобно с помощью метода замены переменных. Давайте это продемонстрируем.

Пример 3.
Решить уравнение: $x^4+12x^2-64=0$.

Решение.
Введем замену: $t=x^2$.
Тогда наше уравнение примет вид:
$t^2+12t-64=0$ - обычное квадратное уравнение.
$t_{1,2}=\frac{-12±\sqrt{12^2-4*(-64)}}{2}=\frac{-12±20}{2}=-16; 4$.
Введем обратную замену: $x^2=4$ или $x^2=-16$.
Корнями первого уравнения является пара чисел $х=±2$. Второе - не имеет корней.
Ответ: $х=±2$.

Пример 4.
Решить уравнение: $x^2+x+1=\frac{15}{x^2+x+3}$.
Решение.
Введем новую переменную: $t=x^2+x+1$.
Тогда уравнение примет вид: $t=\frac{15}{t+2}$.
Дальше будем действовать по алгоритму.
1. $t-\frac{15}{t+2}=0$.
2. $\frac{t^2+2t-15}{t+2}=0$.
3. $t^2+2t-15=0$.
$t_{1,2}=\frac{-2±\sqrt{4-4*(-15)}}{2}=\frac{-2±\sqrt{64}}{2}=\frac{-2±8}{2}=-5; 3$.
4. $t≠-2$ - корни не совпадают.
Введем обратную замену.
$x^2+x+1=-5$.
$x^2+x+1=3$.
Решим каждое уравнение по отдельности:
$x^2+x+6=0$.
$x_{1,2}=\frac{-1±\sqrt{1-4*(-6)}}{2}=\frac{-1±\sqrt{-23}}{2}$ - нет корней.
И второе уравнение: $x^2+x-2=0$.
Корнями данного уравнения будут числа $х=-2$ и $х=1$.
Ответ: $х=-2$ и $х=1$.

Пример 5.
Решить уравнение: $x^2+\frac{1}{x^2} +x+\frac{1}{x}=4$.

Решение.
Введем замену: $t=x+\frac{1}{x}$.
Тогда:
$t^2=x^2+2+\frac{1}{x^2}$ или $x^2+\frac{1}{x^2}=t^2-2$.
Получили уравнение: $t^2-2+t=4$.
$t^2+t-6=0$.
Корнями данного уравнения является пара:
$t=-3$ и $t=2$.
Введем обратную замену:
$x+\frac{1}{x}=-3$.
$x+\frac{1}{x}=2$.
Решим по отдельности.
$x+\frac{1}{x}+3=0$.
$\frac{x^2+3x+1}{x}=0$.
$x_{1,2}=\frac{-3±\sqrt{9-4}}{2}=\frac{-3±\sqrt{5}}{2}$.
Решим второе уравнение:
$x+\frac{1}{x}-2=0$.
$\frac{x^2-2x+1}{x}=0$.
$\frac{(x-1)^2}{x}=0$.
Корнем этого уравнения является число $х=1$.
Ответ: $x=\frac{-3±\sqrt{5}}{2}$, $x=1$.

Задачи для самостоятельного решения

Решить уравнения:

1. $\frac{3x+2}{x}=\frac{2x+3}{x+2}$.

2. $\frac{5x}{x+2}-\frac{20}{x^2+2x}=\frac{4}{x}$.
3. $x^4-7x^2-18=0$.
4. $2x^2+x+2=\frac{8}{2x^2+x+4}$.
5. $(x+2)(x+3)(x+4)(x+5)=3$.



Просмотров