Распределение максвелла. Функция распределения максвелла

Распределение Максвелла

В равновесном состоянии в системе, состоящей из огромного числа частиц, к примеру в некотором объёме газа, при отсутствии внешних воздействий не происходит макроскопических изменений: параметры системы остаются постоянными. Постоянным остается и среднее значение скорости молекул. Ответ на вопрос, сколько молекул, или какая их часть движется с определœенной скоростью в данный момент, был теоретически получен Максвеллом.

Введем понятие пространства скоростей. Для каждой молекулы откладываем компоненты ее скорости по трем взаимно перпендикулярным осям (рис. 1.3.1).

Каждая точка в пространстве скоростей соответствует одной молекуле с определœенной скоростью. Вектор скорости идет от начала координат к рассматриваемой точке.

Рассмотрим, как будут распределœены молекулы, содержащиеся в единичном объёме газа по скоростям.

Эти молекулы будут изображаться совокупностью из n точек. Из-за столкновений молекул какие-то точки будут выходить из элемента объёма, а другие входить в него. При этом среднее число точек в данном элементе объёма сохраняется.

Закон Максвелла описывается некоторой функцией f(v), которая принято называть функция распределœения молекул по скоростям. Функция f(v) определяет относительное число молекул dN(v)/N, скорости которых лежат в интервале от v до v+dv, ᴛ.ᴇ.

Откуда .

Применяя методы теории вероятностей, Максвелл нашел эту функцию:

(1.3.1)

Из формулы видно, что конкретный вид функции зависит от рода газа (от массы молекулы m 0) и от параметра состояния (температуры T).

График функции f(v) приведен на рис.1.3.2. Функция f(v) начинается от нуля, достигает максимума при v в и затем асимптотически стремится к нулю. Кривая не симметрична относительно v в.

Распределœение Максвелла - это распределœение по скоростям молекул идеального газа, находящегося в состоянии термодинамического равновесия.

Интегрируя распределœение Максвелла, можно рассчитать средние величины. Средний квадрат скорости (средняя квадратичная скорость)

1.3.2)

v в
Скорость, при которой функция распределœения молекул идеального газа по скоростям максимальна, принято называть наиболее вероятной скоростью. Значение наиболее вероятной скорости можно определить, используя условие максимума функции откуда следует, что

Для того, чтобы найти число молекул, обладающих скоростями в интервале от v 1 до v 2 , крайне важно определить площадь под соответствующим участком кривой (рис.1.3.2.)

При увеличении температуры максимум кривой Максвелла смещается в сторону больших скоростей и вид кривой изменяется. Распределœения для двух разных температур приведены на рис.1.3.3. Поскольку площадь, ограниченная кривой, остается неизменной, следовательно, при повышении температуры кривая распределœения молекул по скоростям будет растягиваться и понижаться.

Рис.1.3.3 Т 1 < Т.

Среднее значение абсолютной величины скорости (среднее значение скорости равно нулю, так как отрицательное и положительное значения компонент равноправны) определяется по формуле

(1.3.4)

Τᴀᴋᴎᴍ ᴏϬᴩᴀᴈᴏᴍ, скорости, характеризующие состояние газа:

1) наиболее вероятная ;

2) средняя скорость ;

3) средняя квадратичная .

Эти скорости связаны соотношением

v В: ávñ: áv кв ñ @1:1,13:1,22,

то есть средняя квадратичная скорость имеет наибольшую величину.

Исходя их распределœения молекул по скоростям, перейдя к новой переменной Е=m 0 v 2 /2, можно получить функцию распределœения молекул по энергиям

(1.3.5)

Тогда средняя кинœетическая энергия молекулы идеального газа равна

(1.3.6)

Для того, чтобы рассчитать количество молекул DN, скорости которых находятся в промежутке от v до v+Dv, удобно ввести относительную скорость u=v/v В, где v В - наиболее вероятная скорость. Тогда DN - число молекул, относительные скорости которых находятся в интервале u, u+Du, ᴛ.ᴇ. v/v в, v+Dv/v В, где должно быть Dv†v. Τᴀᴋᴎᴍ ᴏϬᴩᴀᴈᴏᴍ, имеем

где N - полное число молекул газа, DN/N - относительное число (доля) молекул, имеющих скорости в интервале u, u+Du. График этой зависимости соответствует рис.1.3.2, в случае если по оси абсцисс отложить u, а по оси ординат величину DN/(NDu) - функцию распределœения.

Пример7. Определить среднеквадратичную скорость молекул азота при температуре 27°С. Как зависит средне квадратичная скорость от молекулярной массы и температуры?

Т=300°К, m=28 кг/кмоль, k=1,38×10 -23 Дж/град.

Решение. где ;

Таким образом

Средняя квадратичная скорость прямо пропорциональна корню квадратному из температуры и обратно пропорциональна корню квадратному из молекулярной массы.

Распределение Максвелла - понятие и виды. Классификация и особенности категории "Распределение Максвелла" 2017, 2018.

  • - Распределение Максвелла

    В равновесном состоянии в системе, состоящей из огромного числа частиц, например в некотором объеме газа, при отсутствии внешних воздействий не происходит макроскопических изменений: параметры системы остаются постоянными. Постоянным остается и среднее значение... .


  • - Распределение Максвелла

    Молекулы газа вследствие теплового движения испытывают многочисленные соударения друг с другом. При каждом соударении скорости молекул изменяются как по величине, так и по направлению. В результате в сосуде, содержащем большое число молекул, устанавливается некоторое... .


  • - Распределение Максвелла по направлениям скоростей

    Теперь, когда мы определились, какую же величину будем искать, давайте воспользуемся довольно часто используемым в физике приёмом. Мы попытаемся “угадать” искомое распределение. А проверку того, что мы угадали правильно, мы получим, сравнивая результаты нашей... .


  • -

    В состоянии теплового равновесия частицы идеального газа имеют различные скорости, которые меняются и результате столкновений. На вопрос какова вероятность того, что частица обладает определенной скоростью, отвечает распределение Максвелла. Оно является частным... .


  • - Семинары 5, 6. Распределение Максвелла

    О т в е т ы 4.1. а) 4 % б) 4.2. 1.4× 4.3. а) . б) г) 4.4. а) б) г) В состоянии теплового равновесия частицы идеального газа имеют различные скорости, которые меняются и результате столкновений. На вопрос какова вероятность того, что частица обладает определенной...

    Распределение Максвелла может быть получено при помощи статистической механики (см. происхождение статсуммы). Как распределение энергии, оно соответствует самому вероятному распределению энергии, в столкновительно-доминируемой системе, состоящей из большого... .


  • - Распределение Максвелла (для модуля скорости)

    Обычно, более интересно распределение по абсолютному значению, а не по проекциям скоростей молекул. Модуль скорости, v определяется как: поэтому модуль скорости всегда будет больше или равен нулю. Так как все распределены нормально, то будет иметь хи-квадрат... .


  • - Распределение молекул по скоростям (распределение Максвелла)

    Предположим, что нам удалось измерить скорости всех молекул газа в некоторый момент времени, т.е. получить v1, v2, ... ,vN. Нанесем их на ось скоростей в виде точек. Как видно из рис. 8.3, распределение точек на оси не будет равномерным – в области больших и малых скоростей они... .


  • Лекция 5

    В результате многочисленных соударений молекул газа между собой (~10 9 столкновений за 1 секунду) и со стенками сосуда, устанавливается некоторое статистическое распределение молекул по скоростям. При этом все направления векторов скоростей молекул оказываются равновероятными, а модули скоростей и их проекции на координатные оси подчиняются определенным закономерностям.

    При столкновениях скорости молекул изменяются случайным образом. Может оказаться, что одна из молекул в ряде столкновений будет получать энергию от других молекул и ее энергия будет значительно больше среднего значения энергии при данной температуре. Скорость такой молекулы будет большая, но, все-таки она будет иметь конечное значение, так как максимально возможная скорость – скорость света - 3·10 8 м/с. Следовательно, скорость молекулы вообще может иметь значения от 0 до некоторой υ max . Можно утверждать, что очень большие скорости по сравнению со средними значениями, встречаются редко, также как и очень малые.

    Как показывают теория и опыты распределение молекул по скоростям не случайное, а вполне определенное. Определим сколько молекул, или какая часть молекул обладает скоростями, лежащими в некотором интервале вблизи заданной скорости.

    Пусть в данной массе газа содержится N молекул, при этом dN молекул обладают скоростями, заключенными в интервале от υ до υ +. Очевидно, что это число молекул dN пропорционально общему числу молекул N и величине заданного интервала скорости

    где a - коэффициент пропорциональности.

    Также очевидно, что dN зависит и от величины скорости υ , так как в одинаковых по величине интервалах, но при разных абсолютных значениях скорости число молекул будет различным (пример: сравните число живущих в возрасте 20 – 21 год и 99 – 100 лет). Это значит, что коэффициент a в формуле (1) должен быть функцией скорости.

    С учетом этого перепишем (1) в виде

    (2)

    Из (2) получим

    (3)

    Функция f (υ ) называется функцией распределения. Ее физический смысл следует из формулы (3)

    если (4)

    Следовательно, f (υ ) равна относительной доле молекул, скорости которых заключены в единичном интервале скоростей вблизи скорости υ . Более точно функция распределения имеет смысл вероятности любой молекуле газа иметь скорость, заключенную в единичном интервале вблизи скорости υ . Поэтому ее называют плотностью вероятности .

    Проинтегрировав (2) по всем значениям скоростей от 0 до получим

    (5)

    Из (5) следует, что

    (6)

    Уравнение (6) называется условием нормировки функции. Оно определяет вероятность того, что молекула имеет одно из значений скорости от 0 до . Скорость молекулы имеет какое-нибудь значение: это событие достоверное и его вероятность равна единице.



    Функция f (υ ) была найдена Максвеллом в 1859 году. Она была названа распределением Максвелла :

    (7)

    где A – коэффициент, который не зависит от скорости, m – масса молекулы, T – температура газа. Используя условие нормировки (6) можно определить коэффициент A :

    Взяв этот интеграл, получим A :

    С учетом коэффициента А функция распределения Максвелла имеет вид:

    (8)

    При возрастании υ множитель в (8) изменяется быстрее, чем растет υ 2 . Поэтому функция распределения (8) начинается в начале координат, достигает максимума при некотором значении скорости, затем уменьшается, асимптотически приближаясь к нулю (рис.1).

    Рис.1. Максвелловское распределение молекул

    по скоростям. T 2 > T 1

    Используя кривую распределения Максвелла можно графически найти относительное число молекул, скорости которых лежат в заданном интервале скоростей от υ до (рис.1, площадь заштрихованной полоски).

    Очевидно, что вся площадь, находящаяся под кривой дает общее число молекул N . Из уравнения (2) с учетом (8) найдем число молекул, скорости которых лежат в интервале от υ до

    (9)

    Из (8) также видно, что конкретный вид функции распределения зависит от рода газа (масса молекулы m ) и от температуры и не зависит от давления и объема газа.

    Если изолированную систему вывести из состояния равновесия и предоставить самой себе, то через некоторый промежуток времени она вернется в состояние равновесия. Этот промежуток времени называется временем релаксации . Для различных систем он различный. Если газ находится в равновесном состоянии, то распределение молекул по скоростям не изменяется с течением времени. Скорости отдельных молекул беспрерывно изменяются, однако число молекул dN , скорости которых лежат в интервале от υ до все время остается постоянным.

    Максвелловское распределение молекул по скоростям всегда устанавливается, когда система приходит в состояние равновесия. Движение молекул газа хаотичное. Точное определение хаотичности тепловых движений следующее: движение молекул полностью хаотично, если скорости молекул распределены по Максвеллу . Отсюда следует, что температура определяется средней кинетической энергией именно хаотичных движений . Как бы ни велика была бы скорость сильного ветра, она не сделает его «горячим». Ветер даже самый сильный, может быть и холодным и теплым, потому что температура газа определяется не направленной скоростью ветра, а скоростью хаотического движения молекул.

    Из графика функции распределения (рис.1) видно, что число молекул, скорости которых лежат в одинаковых интервалах dυ , но вблизи различных скоростей υ , больше в том случае если скорость υ приближается к скорости, которая соответствует максимуму функции f (υ ). Эта скорость υ н называется наивероятнейшей (наиболее вероятной).

    Продифференцируем (8) и приравняем производную к нулю:

    Так как ,

    то последнее равенство выполняется когда:

    (10)

    Уравнение (10) выполняется при:

    И

    Первые два корня соответствуют минимальным значениям функции. Тогда скорость, которая соответствует максимуму функции распределения, найдем из условия:

    Из последнего уравнения:

    (11)

    где R – универсальная газовая постоянная, μ – молярная масса.

    С учетом (11) из (8) можно получить максимальное значение функции распределения

    (12)

    Из (11) и (12) следует, что при повышении T или при уменьшении m максимум кривой f (υ ) сдвигается вправо и становится меньше, однако площадь под кривой остается постоянной (рис.1).

    Для решения многих задач удобно пользоваться распределением Максвелла в приведенном виде. Введем относительную скорость:

    где υ – данная скорость, υ н – наивероятнейшая скорость. С учетом этого уравнение (9) принимает вид:

    (13)

    (13) – универсальное уравнение. В таком виде функция распределения не зависит ни от рода газа, ни от температуры.

    Кривая f (υ ) ассиметрична. Из графика (рис.1) видно, что большая часть молекул имеет скорости большие, чем υ н . Асимметрия кривой означает, что средняя арифметическая скорость молекул не равна υ н . Средняя арифметическая скорость равна сумме скоростей всех молекул, деленная на их число:

    Учтем, что согласно (2)

    (14)

    Подставив в (14) значение f (υ ) из (8) получим среднюю арифметическую скорость:

    (15)

    Средний квадрат скорости молекул получим, вычислив отношение суммы квадратов скоростей всех молекул к их числу:

    После подстановки f (υ ) из (8) получим:

    Из последнего выражения найдем среднюю квадратичную скорость:

    (16)

    Сопоставляя (11), (15) и (16) можно сделать вывод, что, и одинаково зависят от температуры и отличаются только численными значениями: (рис.2).

    Рис.2. Распределение Максвелла по абсолютным значениям скоростей

    Распределение Максвелла справедливо для газов находящихся в состоянии равновесия, рассматриваемое число молекул должно быть достаточно большим. Для малого числа молекул могут наблюдаться значительные отклонения от распределения Максвелла (флуктуации).

    Первое опытное определение скоростей молекул провел Штерн в 1920 году. Прибор Штерна состоял из двух цилиндров разных радиусов, закрепленных на одной оси. Воздух из цилиндров был откачен до глубокого вакуума. Вдоль оси натягивалась платиновая нить, покрытая тонким слоем серебра. При пропускании по нити электрического тока она нагревалась до высокой температуры (~1200 о С), что приводило к испарению атомов серебра.

    В стенке внутреннего цилиндра была сделана узкая продольная щель, через которую проходили движущиеся атомы серебра. Осаждаясь на внутренней поверхности внешнего цилиндра, они образовывали хорошо наблюдаемую тонкую полоску прямо напротив прорези.

    Цилиндры начинали вращать с постоянной угловой скоростью ω. Теперь атомы, прошедшие сквозь прорезь, оседали уже не прямо напротив щели, а смещались на некоторое расстояние, так как за время их полета внешний цилиндр успевал повернуться на некоторый угол. При вращении цилиндров с постоянной скоростью, положение полоски, образованной атомами на внешнем цилиндре, смещалось на некоторое расстояние l .

    В точке 1 оседают частицы, когда установка неподвижна, при вращении установки частицы оседают в точке 2.

    Полученные значения скоростей подтвердили теорию Максвелла. Однако о характере распределения молекул по скоростям этот метод давал приблизительные сведения.

    Более точно распределение Максвелла было проверено опытами Ламмерта, Истэрмана, Элдриджа и Коста . Эти опыты достаточно точно подтвердили теорию Максвелла.

    Прямые измерения скорости атомов ртути в пучке были выполнены в 1929 году Ламмертом . Упрощенная схема этого эксперимента показана на рис. 3.

    Рис.3. Схема опыта Ламмерта
    1 - быстро вращающиеся диски, 2 - узкие щели, 3 - печь, 4 - коллиматор, 5 - траектория молекул, 6 – детектор

    Два диска 1, насаженные на общую ось, имели радиальные прорези 2, сдвинутые друг относительно друга на угол φ . Напротив щелей находилась печь 3, в которой нагревался до высокой температуры легкоплавкий металл. Разогретые атомы металла, в данном случае ртути, вылетали из печи и с помощью коллиматора 4 направлялись в необходимом направлении. Наличие двух щелей в коллиматоре обеспечивало движение частиц между дисками по прямолинейной траектории 5. Далее атомы, прошедшие прорези в дисках, регистрировались с помощью детектора 6. Вся описанная установка помещалась в глубокий вакуум.

    При вращении дисков с постоянной угловой скоростью ω, через их прорези беспрепятственно проходили только атомы, имевшие некоторую скорость υ . Для атомов, проходящих обе щели должно выполняться равенство:

    где Δt 1 - время пролета молекул между дисками, Δt 2 - время поворота дисков на угол φ . Тогда:

    Изменяя угловую скорость вращения дисков можно было выделять из пучка молекулы, имеющие определенную скорость υ , и по регистрируемой детектором интенсивности судить об относительном содержании их в пучке.

    Таким способом удалось экспериментально проверить Максвелловский закон распределения молекул по скоростям.

    §4 Закон Максвелла о распределении по скоростям и энергиям

    Закон распределения молекул идеального газа по скоростям, теоретически полученный Максвеллом в 1860 г. определяет, какое число dN молекул однородного (p = const) одноатомного идеального газа из общего числа N его молекул в единице объёма имеет при данной температуре Т скорости, заключенные в интервале от v до v + dv .

    Для вывода функции распределения молекул по скоростям f ( v ) равной отношению числа молекул dN , скорости которых лежат в интервале v ÷v + dv к общему числу молекул N и величине интервала dv

    Максвелл использовал два предложения:

    а) все направления в пространстве равноправны и поэтому любое направление движения частицы, т.е. любое направление скорости одинаково вероятно. Это свойство иногда называют свойством изотропности функции распределения.

    б) движение по трем взаимно перпендикулярным осям независимы т.е. х-компоненты скорости не зависит от того каково значения ее компонент или . И тогда вывод f ( v ) делается сначала для одной компоненты , а затем обобщается на все координаты скорости.

    Считается также, что газ состоит из очень большого числа N тождественных молекул находящихся в состоянии беспорядочного теплового движения при одинаковой температуре. Силовые поля на газ не действуют.

    Функции f ( v ) определяет относительное число молекул dN ( v )/ N скорости которых лежат в интервале от v до v + dv (например: газ имеет N = 10 6 молекул, при этом dN = 100

    молекул имеют скорости от v =100 до v + dv =101 м/с (dv = 1 м ) тогда .

    Используя методы теории вероятностей, Максвелл нашел функцию f ( v ) - закон распределения молекул идеального газа по скоростям:

    f ( v ) зависит от рода газа (от массы молекулы) и от параметра состояния (от температуры Т )

    f ( v ) зависит от отношения кинетической энергии молекулы, отвечающей рассматриваемой скорости к величине kT характеризующей среднюю тепловую энергию молекул газа.

    При малых v и функция f ( v ) изменяется практически по параболе . П ри возрастании v множитель уменьшается быстрее, чем растет множитель , т.е. имеется max функции f ( v ) . Скорость, при которой функция распределения молекул идеального газа по скоростям максимальна, называется наиболее вероятной скоростью найдем из условия

    Следовательно, с ростом температуры наиболее вероятная скорость растёт, но площадь S , ограниченная кривой функции распределения остаётся неизменной, так как из условия нормировки (так как вероятность достоверного события равна 1), поэтому при повышении температуры кривая распределения f ( v ) будет растягиваться и понижаться.

    В статистической физике среднее значение какой-либо величины определяется как интеграл от 0 до бесконечности произведения величины на плотность вероятности этой величины (статистический вес)

    < X >=

    Тогда средняя арифметическая скорость молекул

    И интегрируя по частям получили

    Скорости, характеризующие состояние газа

    §5 Экспериментальная проверка закона распределения Максвелла - опыт Штерна

    Вдоль оси внутреннего цилиндра с целью натянута платиновая проволока, покрытая слоем серебра, которая нагревается током. При нагревании серебро испаряется, атомы серебра вылетают через щель и попадают на внутреннюю поверхность второго цилиндра. Если оба цилиндра неподвижны, то все атомы независимо от их скорости попадают в одно и то же место В. При вращении цилиндров с угловой скоростью ω атома серебра попадут в точки В’, B ’’ и так далее. По величине ω, расстоянию? и смещению х = ВВ’ можно вычислить скорость атомов, попавших в точку В’.

    Изображение щели получается размытым. Исследуя толщину осаждённого слоя, можно оценить распределение молекул по скоростям, которое соответствует максвелловскому распределению.

    §6 Барометрическая формула

    Распределение Больцмана

    До сих пор рассматривалось поведение идеального газа, не подверженного воздействию внешних силовых полей. Из опыта хорошо известно, что при действии внешних сил равномерное распространение частиц в пространстве может нарушиться. Так под действием силы тяжести молекулы стремятся опуститься на дно сосуда. Интенсивное тепловое движение препятствует осаждению, и молекулы распространяются так, что их концентрация постепенно уменьшается по мере увеличения высоты.

    Выведем закон изменения давления с высотой предполагая, что поле тяготения однородно, температура постоянна и масса всех молекул одинакова. Если атмосферное давление на высоте h равно p , то на высоте h + dh оно равно p + dp (при dh > 0, dp < 0, так как p уменьшается с увеличением h ).

    Разность давления на высотах h и h + dh мы можем определить как вес молекул воздуха заключённого в объёме с площадью основания равного 1 и высотой dh .

    плотность на высоте h , и так как , то = const .

    Тогда

    Из уравнения Менделеева-Клапейрона.

    Тогда

    Или

    С изменением высоты от h 1 до h 2 давление изменяется от p 1 до p 2

    Пропотенцируем данное выражение (

    Барометрическая формула, показывает, как меняется давление с высотой

    Молекулы любого газа находятся в вечном хаотическом движении. Скорости молекул могут принимать самые различные значения. Молекулы сталкиваются, в результате столкновений происходит изменение скоростей молекул. В каждый данный момент времени скорость каждой отдельной молекулы является случайной и по величине и по направлению.

    Но, если газ предоставить самому себе, то различные скорости теплового движения распределяются между молекулами данной массы газа при данной температуре по вполне определённому закону, т.е. существует распределение молекул по скоростям.

    Закон распределения молекул по скоростям был теоретически выведен Максвеллом. Закон Максвелла выражается следующей формулой:

    где – число молекул, скорости которых лежат в интервале ; – общее число молекул данной массы газа; – основание натурального логарифма; – заданное значение скорости из интервала ; – наиболее вероятная скорость молекул газа при данной температуре.

    Наиболее вероятной скоростью называется скорость, близкой к которой обладает наибольшее число молекул данной массы газа. Значение зависит от температуры газа.

    Формула (10.6) даёт число молекул, скорости которых лежат в данном интервале скоростей независимо от направления скоростей.

    Если поставить более частный вопрос, а именно чему равно число молекул в газе, составляющие скоростей которых лежат в интервале между и , и , и , то

    или , (10.8)

    где – кинетическая энергия молекулы газа; – масса молекулы; – постоянная Больцмана; – абсолютная температура газа. Формулы (10.7) и (10.8) – тоже формулы распределения Максвелла . Кривая распределения молекул по скоростям, соответствующая закону распределения (10.6), изображена на рис. 10.1. По оси абсцисс откладываются значения скорости, которые может принимать отдельная молекула газа.

    Максимум кривой соответствует наиболее вероятной скорости . Кривая асимметрична относительно , т.к. в газе имеется сравнительно небольшое число молекул с очень большими скоростями.

    Рассмотрим какой-нибудь интервал , (рис. 10.1). Если мало, то площадь заштрихованной полоски близка к площади прямоугольника:

    т.е. площадь заштрихованной полоски представляет собою число молекул, скорости которых лежат в интервале , . А площадь под всей кривой пропорциональна общему числу молекул данной массы газа.

    Найдём, при каком значении кривая будет иметь максимум. Максимум находим по обычным правилам математики, приравнивая к нулю первую производную по :

    ,

    .

    Так как , то .

    Взяв производную, получим, что , т.е. максимум кривой соответствует наиболее вероятной скорости .

    Максвеллом были теоретически найдены формулы, по которым можно насчитывать и среднюю арифметическую скорость . Перечислим скорости, которыми можно характеризовать тепловое движение молекул газа.

    1. Наиболее вероятная скорость . (10.9)

    2. Средняя квадратичная скорость :

    ; . (10.10)

    3. Средняя арифметическая скорость . (10.11)

    Все скорости прямо пропорциональны и обратно пропорциональны , где – масса моля газа.

    На рис. 10.1 график I построен для температуры , а график II – для температуры . Видно, что с повышением температуры максимум кривой сдвигается вправо, т.к. с повышением температуры возрастают скорости молекул. Быстрых молекул стало больше, правая ветвь кривой приподнимается, медленных молекул стало меньше, левая ветвь идёт круче. А вся кривая понижается, т.к. площадь под кривой должна оставаться той же самой, потому что общее число молекул газа осталось тем же самым и, конечно, не могло измениться при нагревании газа.

    Закон Максвелла является статистическим законом , т.е. законом, справедливым для очень большого числа молекул.

    Кроме того, закон Максвелла не учитывает внешнее воздействие на газ, т.е. нет никаких силовых полей, действующих на газ.

    10.4. Идеальный газ во внешнем поле.
    Барометроическая формула. Распределение Больцмана

    Рассмотрим вертикальный столб воздуха у поверхности Земли (рис. 10.2). Если высота столба сравнительно невелика (не превышает нескольких сотен метров), плотность газа и количество молекул в единице объема (концентрация) будут приблизительно одинаковыми. Однако, если высота столба порядка километра и более, равномерность распределения молекул по высоте нарушаетсядействием силы тяжести , которая стремится сконцентрировать молекулы у поверхности Земли. Вследствие этого плотность воздуха и атмосферное давление будут убывать по мере удаления от поверхности Земли.

    Определим закон изменения давления с высотой (найдем барометрическую формулу).

    Барометрическая формула показывает, как зависит атмосферное давление P от высоты h над поверхностью Земли. Пусть около поверхности Земли на высоте давление . Давление известно. Требуется найти изменение давления с высотой .

    При выводе предполагаем, что температура газа остаётся постоянной. Выделим над поверхностью Земли цилиндрический столб газа (воздуха) с сечением . Рассмотрим слой газа бесконечно малой толщины , находящийся на высоте от основания столба.

    Разность сил , действующих на верхнее и нижнее основание слоя, равна весу газа, заключённого в данном слое, т.е.

    Бесконечно малая масса газа в слое вычисляется по формуле

    ,

    где – объём слоя газа.

    Тогда , где – плотность газа; – ускорение силы тяжести.

    Разность давлений на оба основания слоя:

    .

    И ещё надо поставить знак «минус»

    потому что знак «минус» имеет физический смысл. Он показывает, что давление газа убывает с высотой. Если подняться на высоту , то давление газа уменьшится на величину .

    Плотность газа находим из уравнения Менделеева – Клапейрона.

    Подставим выражение в (10.12), имеем

    Это дифференциальное уравнение с разделяющимися переменными:

    .

    Интегрируем:

    .

    Получим барометрическую формулу

    На рис. 10.3 показаны графики зависимости давления с высотой для двух значений температуры T 1 и T 2 (T 2 > T 1). С изменением температуры газа давление P 0 у поверхности Земли остается неизменным, т.к. оно равно весу расположенного над земной поверхностью вертикального столба газа единичной площади основания и неограниченного по высоте. Вес газа от температуры не зависит.

    Из барометрической формулы очень легко получить распределение Больцмана для случая, когда внешним воздействием на газ является сила земного тяготения.

    Давление газа на высоте прямо пропорционально числу молекул в единице объёма на этой высоте, , – концентрация молекул на высоте , а , – концентрация молекул газа на высоте .

    То или . (10.14)

    Формула (10.14) называется распределением Больцмана для молекул в поле силы тяжести.

    На рис. 10.4 показаны графики зависимости концентраций молекул с высотой для двух значений температуры T 1 и T 2 (T 2 >T 1) в поле силы тяжести. Концентрация молекул n 0 у поверхности Земли с увеличением температуры уменьшается (n 0 (T 2) < n 0 (T 1)) за счет перераспределения молекул внутри столба газа. Молекулы, обладающие большей кинетической энергией, поднимаются выше.

    Если , – потенциальная энергия молекулы на высоте , то

    Формула (10.15) справедлива не только для случая, когда молекулы движутся в поле силы тяжести. Эта формула, выражающая распределение Больцмана справедлива для любого силового поля с потенциальной функцией :

    Опыт Перрена (1870–1942 гг.).
    Определение числа Авогадро

    Французский физик Перрен воспользовался распределением Больцмана для экспериментального определения числа Авогадро.

    Микроскоп наводился на верхний слой эмульсии (рис. 10.5), делали через микроскоп мгновенную фотографию, подсчитывали число броуновских частиц на фотографии. Далее тубус микроскопа опускали на 0,01 мм, снова фотографировали и подсчитывали число броуновских частиц на фотографии. Оказалось, что на дне сосуда броуновских частиц больше, на поверхности эмульсии меньше, а в целом распределение броуновских частиц по высоте соответствует распределению Больцмана. Так как шарики гуммигута находятся в жидкости (эмульсии), то потенциальная энергия их с учетом выталкивающей силы Архимеда можно записать , где m 0 – масса шарика, m ж – масса объёма жидкости, вытесненной шариком. Тогда распределение Больцмана можно записать .

    Если n 1 и n 2 – измеренные концентрации частиц на высотах h 1 и h 2 , то ; , а .

    Тогда можно определить и .

    Величину

    где и – плотности материала шариков и эмульсии.

    Определив экспериментально постоянную Больцмана k Перрен получил из зависимости значение числа Авогадро . Точное значение:

    (10.17)

    Тема 11
    РАБОТА, ВНУТРЕННЯЯ ЭНЕРГИЯ И ТЕПЛОТА.
    ПЕРВОЕ НАЧАЛО ТЕРМОДИНАМИКИ

    Термодинамика – это наука, изучающая условия превращения различных видов энергии в тепловую и обратно, а также количественные соотношения, наблюдаемые при этом. Термодинамика охватывает большой круг явлений, наблюдаемых в природе и технике. Особое значение она имеет для теплотехники, т.к. даёт основу для разработки тепловых и холодильных машин. В термодинамике часто пользуются словом тело . В термодинамике телом можно назвать воздух, воду, ртуть, любой газ, т.е. любое вещество, занимающее определённый объём.

    Термодинамическая система может включать в себя несколько тел, но может состоять из одного тела, очень часто этим телом является идеальный газ.

    Термодинамической системой называется любая совокупность рассматриваемых тел, которые могут обмениваться энергией между собой и с другими телами. Например, термодинамической системой может быть идеальный газ.

    Состояние термодинамической системы характеризуется термодинамическими параметрами. Термодинамические параметры – это величины характеризующие состояние системы. К термодинамическим параметрам относятся такие величины, как давление, объём, температура, плотность вещества и т.д. Параметрами состояния идеального газа, например, являются давление P , объём V , температура T . Уравнение, связывающее между собой параметры состояния термодинамической системы, называется уравнением состояния. Например, уравнение Менделеева – Клапейрона: .

    Состояние термодинамической системы называется равновесным , если все его параметры имеют определенное значение и не изменяются со временем при неизменных внешних условиях.

    Если термодинамическая система выведена из состояния равновесия и предоставлена сама себе, то она возвращается в исходное состояние. Этот процесс называется релаксацией .

    В термодинамике изучают закономерности всевозможных переходов системы из одного состояния в другое. Переход системы из одного состояния в другое , который сопровождается изменением хотя бы одного параметра состояния , называется процессом. Уравнение, определяющее изменение параметров системы при переходе из одного состояния в другое, называется уравнением процесса.

    Термодинамика изучает только термодинамически равновесные состояния тел и медленные процессы, которые рассматриваются как равновесные состояния, непрерывно следующие друг за другом. Она изучает общие закономерности перехода систем в состояния термодинамического равновесия.

    Равновесные процессы – процессы, при которых скорость изменения термодинамических параметров бесконечно мала, т.е. изменение термодинамических параметров происходит за бесконечно большие времена. Это модель , т.к. все реальные процессы – неравновесные.

    Равновесный процесс – процесс, который проходит через последовательность равновесных состояний.

    Неравновесный процесс – процесс, при котором изменение термодинамических параметров на конечную величину происходит за конечное время.

    Неравновесный процесс графически изобразить нельзя.

    В термодинамике используется особый метод изучения явлений – термодинамический метод. Термодинамика рассматривает, как протекает процесс.

    В основу термодинамики положено два основных закона, являющиеся обобщением громадного фактического материала. Эти законы дали начало всей науке термодинамике и поэтому получили название начал.

    11.1. Внутренняя энергия идеального газа.
    Число степеней свободы

    Числом степеней свободы называется наименьшее число независимых координат, которое необходимо ввести, чтобы определить положение тела в пространстве. – число степеней свободы.

    Рассмотрим одноатомный газ . Молекулу такого газа можно считать материальной точкой, положение материальной точки (рис. 11.1) в пространстве определяется тремя координатами.

    Молекула может двигаться в трех направлениях (рис. 11.2).

    Следовательно, обладает тремя поступательными степенями свободы.

    Молекула – материальная точка.

    Энергии вращательного движения , т.к. момент инерции материальной точки относительно оси, проходящей через точку равен нулю

    Для молекулы одноатомного газа число степеней свободы .

    Рассмотрим двухатомный газ . В двухатомной молекуле каждый атом принимается за материальную точку и считается, что атомы жёстко связаны между собой, это гантельная модель двухатомной молекулы. Двухатомная жестко связанная молекула (совокупность двух материальных точек, связанных недеформируемой связью), рис. 11.3.

    Положение центра масс молекулы задаётся тремя координатами, (рис. 11.4) это три степени свободы, они определяют поступательное движение молекулы. Но молекула может совершать и вращательные движения вокруг осей и , это ещё две степени свободы, определяющие вращение молекулы . Вращение молекулы вокруг оси невозможно, т.к. материальные точки не могут вращаться вокруг оси, проходящей через эти точки.

    Для молекулы двухатомного газа число степеней свободы .

    Рассмотрим трёхатомный газ. Модель молекулы – три атома (материальные точки), жёстко связанные между собой (рис. 11.5).

    Трёхатомная молекула – жестко связанная молекула.

    Для молекулы трёхатомного газа число степеней свободы .

    Пусть имеется n тождественных молекул, находящихся в состоянии беспорядочного теплового движения при определенной температуре. После каждого акта столкновения между молекулами, их скорости меняются случайным образом. В результате невообразимо большого числа столкновений устанавливается стационарное равновесное состояние, когда число молекул в заданном интервале скоростей сохраняется постоянным.

    В результате каждого столкновения проекции скорости молекулы испытывают случайное изменение на Δυ x , Δυ y , Δυ z , причем изменения каждой проекции скорости независимы друг от друга. Будем предполагать, что силовые поля на частицы не действуют. Найдем в этих условиях, каково число частиц dn из общего числа n имеет скорость в интервале от υ до υ+Δυ. При этом мы не можем ничего определенного сказать о точном значении скорости той или иной частицы υ i , поскольку за столкновениями и движениями каждой из молекул невозможно проследить ни в опыте, ни в теории. Такая детальная информация вряд ли имела бы практическую ценность.

    Распределение молекул идеального газа по скоростям впервые было получено знаменитым английским ученым Дж. Максвеллом в 1860 году с помощью методов теории вероятностей.


    Вывод формулы функции распределения молекул по скоростям есть в учебнике Ю.И Тюрина и др. (ч. 1) или И.В. Савельева (т. 1). Мы воспользуемся результатами этого вывода.

    Скорость – векторная величина. Для проекции скорости на ось х (x -й составляющей скорости) из (2.2.1) имеем

    Тогда

    (2.3.1)

    Где А 1 – постоянная, равная

    Графическое изображение функции показано на рисунке 2.2. Видно, что доля молекул со скоростью не равна нулю. При , (в этом физический смысл постоянной А1).


    Рис. 2.2

    Приведённое выражение и график справедливы для распределения молекул газа по x-компонентам скорости. Очевидно, что и по y - и z -компонентам скорости также можно получить:

    Где , или

    (2.3.2)

    Формуле (2.3.2) можно дать геометрическое истолкование: dn xyz – это число молекул в параллелепипеде со сторонами dυ x , dυ y , dυ z , то есть в объёме dV =dυ x dυ y dυ z (рис. 2.3), находящемся на расстоянии от начала координат в пространстве скоростей.

    Эта величина (dn xyz ) не может зависеть от направления вектора скорости . Поэтому надо получить функцию распределения молекул по скоростям независимо от их направления, то есть по абсолютному значению скорости.

    Если собрать вместе все молекулы в единице объёма, скорости которых заключены в интервале от υ до υ+dυ по всем направлениям, и выпустить их, то они окажутся через одну секунду в шаровом слое толщиной dυ и радиусом υ (рис. 2.4). Этот шаровой слой складывается из тех параллелепипедов, о которых говорилось выше.

    Общее число молекул в слое, как следует из (2.3.2)

    Где – доля всех частиц в шаровом слое объема dV , скорости которых лежат в интервале от υ до υ+dυ.

    При dυ = 1 получаем плотность вероятности , или функцию распределения молекул по скоростям:

    (2.3.4)

    Эта функция обозначает долю молекул единичного объёма газа, абсолютные скорости которых заключены в единичном интервале скоростей, включающем данную скорость.

    Обозначим: тогда из (2.3.4) получим:

    (2.3.5)

    График этой функции показан на рисунке 2.5.


    Рис. 2.5

    Выводы:

    Рассмотрим пределы применимости классического описания распределения частиц по скоростям. Для этого воспользуемся соотношением неопределенностей Гейзенберга. Согласно этому соотношению координаты и импульс частицы не могут одновременно иметь определенное значение. Классическое описание возможно, если выполнены условия:

    Здесь – постоянная Планка – фундаментальная константа, определяющая масштаб квантовых (микроскопических) процессов.

    Таким образом, если частица находится в объеме , то в этом случае возможно описание ее движения на основе законов классической механики.

    Наиболее вероятная, среднеквадратичная и средняя арифметическая скорости молекул газа

    Рассмотрим, как изменяется с абсолютной величиной скорости число частиц, приходящихся на единичный интервал скоростей, при единичной концентрации частиц.

    График функции распределения Максвелла

    ,

    Приведен на рисунке 2.6.


    Рис. 2.6

    Из графика видно, что при «малых» υ, т.е. при , имеем ; затем достигает максимума А и далее экспоненциально спадает .

    Величину скорости, на которую приходится максимум зависимости , называют наиболее вероятной скоростью.

    Найдем эту скорость из условия равенства производной .

    Среднюю квадратичную скорость найдем, используя соотношение : Средняя арифметическая скорость:
    . .

    Где – число молекул со скоростью от υ до υ+dυ. Если подставить сюда f (υ) и вычислить, то получим.



    Просмотров