Презентация на тему: ФизикиА. Ф. Иоффе и Р. Э. Милликен. Их жизненный путь. Опыт Иоффе - Милликена. Новая мысль

На рисунке 1 изображена схема установки, использованной в опыте А. Ф. Иоффе. В закрытом сосуде, воздух из которого откачан до высокого вакуума, находились две металлические пластины П , расположенные горизонтально. Из камеры А через отверстие О в пространство между пластинами попала ли мелкие заряженные пылинки цинка. Эти пылинки наблюдали в микроскоп.

Предположим, что пылинка заряжена отрицательно. Под действием силы тяжести она начинает падать вниз. Но ее падение можно задержать, если нижнюю пластину зарядить отрицательным зарядом, а верхнюю - положительным. В электростатическом поле между пластинами на пылинку станет действовать сила \(~\vec F_{el}\), которая пропорциональна заряду пылинки. Если mg = F el , то пылинка будет находиться в равновесии сколь угодно долго. Затем отрицательный заряд пылинки уменьшали, действуя на нее ультрафиолетовым светом. Пылинка начинала падать, так как сила \(~\vec F_{el}\), действовавшая на нее, уменьшалась. Сообщая пластинам дополнительный заряд и этим усиливая электрическое поле между пластинами, пылинку снова останавливали. Так поступали несколько раз.

Опыты показали, что заряд пылинки изменялся всегда скачкообразно, кратно заряду электрона. Из этого опыта А. Ф. Иоффе сделал следующий вывод: заряд пылинки всегда выражается целыми кратными значениями элементарного заряда е . Меньших "порций" электрического заряда, способных переходить от одного тела к другому, в природе нет. Но заряд пылинки уходит вместе с частицей вещества. Следовательно, в природе существует такая частица вещества, которая имеет самый маленький заряд, далее уже неделимый. Эту частицу назвали электроном .

Значение заряда электрона впервые определил американский физик Р. Милликен. В своих опытах он пользовался мелкими капельками масла, наблюдая за их движением в электростатическом поле (рис. 2). В этих опытах измерялась скорость движения капель масла в однородном электростатическом поле между двумя металлическими пластинками. Капля масла, не имеющая электрического заряда из-за сопротивления воздуха и выталкивающей силы, падает с некоторой постоянной скоростью, так как \(~m \vec g + \vec F_A + \vec F_c = 0\).

Если на своем пути капля встречается с ионом и приобретает электрический заряд q , то на нее, кроме силы тяжести \(~m \vec g\), \(~\vec F_c\) и \(~\vec F_A\), действует со стороны электростатического поля сила \(~\vec F_{el}\). Тогда при установившемся движении \(~m \vec g + \vec F_A + \vec F_c + \vec F_{el} = 0\). Измеряя скорость капли, Милликен смог определить ее заряд.

Литература

Аксенович Л. А. Физика в средней школе: Теория. Задания. Тесты: Учеб. пособие для учреждений, обеспечивающих получение общ. сред, образования / Л. А. Аксенович, Н.Н.Ракина, К. С. Фарино; Под ред. К. С. Фарино. - Мн.: Адукацыя i выхаванне, 2004. - C. 210-211.

К концу ХIХ века в ряде самых разнообразных опытов было установлено, что существует некий носитель отрицательного заряда, который назвали электроном.

Однако это была фактически гипотетическая единица, поскольку, несмотря на обилие практического материала, не было проведено ни одного эксперимента с участием одиночного электрона.

Не было известно, существуют ли разновидности электронов для разных веществ или он одинаков всегда, какой заряд несет на себе электрон, может ли заряд существовать отдельно от частицы.

В общем, в научной среде по поводу электрона ходили горячие споры, а достаточной практической базы, которая бы однозначно прекратила все дебаты, не было.

Исследование электрона Иоффе и Милликеном: как это было

Чтобы найти ответы на вопросы независимо друг от друга два ученых в 1910-1911 годах провели эксперименты по исследованию поведения одиночных электронов. Это были русский физик Абрам Иоффе и американский ученый Роберт Милликен.

В своих опытах они применяли немного отличающиеся установки, но суть и принцип были одинаковыми. Итак, они взяли закрытый сосуд, из которого откачали воздух до состояния вакуума.

Внутри сосуда находились две металлические пластины, которым можно было сообщать некий заряд, а также облако капелек масла или пылинок, заряженных отрицательно, за которыми можно было наблюдать через специально подведенный микроскоп.

Итак, заряженные пылинки и капельки в вакууме будут падать с верхней пластины на нижнюю, однако этот процесс можно остановить, если зарядить верхнюю пластину положительно, а нижнюю отрицательно.

Возникшее электрическое поле будет действовать кулоновскими силами на заряженные частички, препятствуя их падению. Регулируя величину заряда, добивались того, что пылинки парили посередине между пластинами.

Далее уменьшали заряд пылинок или капель, облучая их рентгеном или ультрафиолетом. Теряя заряд, пылинки начинали падать вновь, их вновь останавливали, регулируя заряд пластин. Такой процесс повторяли несколько раз, вычисляя заряд капель и пылинок по специальным формулам.

В результате этих исследований удалось установить, что заряд пылинок или капель всегда изменялся скачками, на строго определенную величину, либо же на размер, кратный это величине.

Суть эксперимента минимальный отрицательный заряд

Эта минимальная величина минимальный или элементарный отрицательный электрический заряд. Этот заряд всегда уходил не сам по себе, а вместе с частицей вещества.

Так и был сделан вывод о существовании маленькой частицы вещества, несущей на себе неделимый электрический заряд, заряд электрона.

Гипотетическое существование электрона получило практическое подтверждение, прекратив все споры, так как теперь даже самые ярые скептики не могли отрицать существования электрона со строго определенным зарядом, одинаковым для разных веществ, так как это было доказано экспериментально независимыми исследованиями.

Явление взаимодействия заряженного те-ла с электрическим полем было использо-вано американским физиком Робертом Мил-ликеном для подтверждения дискретности электрического заряда и измерения наиме-ньшего его значения. На протяжении 1906— 1916 лет он провел серию опытов, которые отмечались оригинальностью и большой точ-ностью. В соответствии с целью и страте-гией исследования нужно было найти спо-соб измерения сил порядка 10 -13 Н, дейст-вующих на частички массой 10 -15 кг.

Схема исследовательской установки Р. Милликена показана на рис. 4.17.

Роберт Эндрус Милликен (1868 — 1953) — американский физик, исследовал свой-ства электрона, первый измерил заряд электрона, изучал явления фотоэффек-та, ультрафиолетовое излучение, кос-мическое излучение, строение атома.

В герметически закрытой камере, защи-щающей установку от внешних влияний, разместили круглые латунные пластинки A и B диаметром 22 см. Расстояние между ними было 1,6 см. В состав установки вхо-дила система C, впрыскивающая в про-странство между пластинами минеральное масло, которое образовывало облачко из капелек диаметром 10 -4 см. Специальная си-стема в нужный момент создавала между пластинами электрическое поле напряжен-ностью около 10 6 Н/Кл.

Капли масла, попадающие в простран-ство между пластинами, освещались силь-ным источником света. Перпендикулярно направлению лучей в микроскоп Д можно было наблюдать движение масляных капе-лек. Шкала, размещенная в поле зрения микроскопа, позволяла отсчитывать путь, пройденный каплей за определенный ин-тервал времени.

Минеральное масло было выбрано по-тому, что оно очень медленно испаряется и масса капельки продолжительное время ос-тается практически неизменной.

Идею исследования Р. Милликена кратко можно сформулировать так:

измерить боль-шое количество изменений электрического за-ряда капельки и найти определенную законо-мерность в этих изменениях.

Для решения поставленной задачи рас-сматривалось движение выделенной в поле зрения микроскопа капельки.

Сразу после распыления капелька под действием силы тяжести начинает ускорен-но падать вниз. При этом она приобретает определенный заряд, а сила сопротивления, пропорциональная скорости, постепенно воз-растает. При установлении равновесия меж-ду силой тяжести и силой сопротивления воздуха (рис. 4.18) капелька начинает двигаться равномерно, в соответствии с урав-нением mg — kv 1 = 0.

Здесь k — коэффициент пропорциональ-ности, который учитывает влияние воздуха на движение капельки. Материал с сайта

После приложения напряжения к плас-тинам появляется электрическая сила, дейст-вие которой приводит к изменению ско-рости движения капельки. Изменяя напряжен-ность электрического поля между пластина-ми, можно было достичь того, что капелька на-чинала равномерно двигаться вверх (рис. 4.19). Установившаяся скорость определялась из уравнения движения, которое учитывает и электрическую силу

mg — qE + kv 2 = 0.

Совместное решение двух уравнений да-вало значения заряда капельки:

q = k(v 1 + v 2) / E.

В ходе дальнейших опытов капелька ос-вещалась ультрафиолетовым или рентгенов-ским лучом. При этом заряд ее изменялся скачкообразно. Анализ измеренных значений зарядов позволил с определенной достовер-ностью установить, что изменение заряда капельки не было меньшим 1,6 . 10 -19 Кл. Такой заряд имеет электрон.

Результаты, полученные Милликеном , были подтверждены в экспериментальных исследованиях ученых Франции, Германии, Англии, России.

На этой странице материал по темам:

  • Гдз исследование явления фотоэффект

  • Установка милликена

  • Роберт милликен краткая физический закон

  • Милликен формуласы

  • Какой физический закон у роберта милликена

Вопросы по этому материалу:

Существование частиц, имеющих наименьший электрический заряд, доказано многими опытами. Рассмотрим опыты, проведенные советским ученым А. Ф. Иоффе и, независимо от него, американским ученым Р. Милликеном.

Ознакомимся сначала с физическим явлением, которое использовано в этих опытах. Это явление состоит в том, что под действием света (особенно ультрафиолетового 1 ) отрицательный: заряд тела уменьшается. Например, цинковая пластинка, заряженная отрицательно, разряжается под действием ультрафиолетового света (рис. 220).

На рисунке 221 изображена установка, использованная в опыте А. Ф. Иоффе. В закрытом сосуде находились две металлические пластины П, расположенные горизонтально. Из камеры A через отверстие 0 в пространство между пластинами попадали мелкие заряженные пылинки цинка. Эти пылинки наблюдали в микроскоп.

1. Ультрафиолетовое излучение - это то самое излучение, которое вызывает загар кожи человека; оно имеется не только в солнечном свете, но и в свете специальных электрических ламп.

Положим, что пылинка k заряжена отрицательно. Под действием силы тяжести F T она начнет падать вниз. Но ее падение можно задержать, если нижнюю пластину, зарядить отрицательным зарядом, а верхнюю - положительным. В электрическом поле между пластинами на пылинку станет действовать электрическая сила F эл. Эта сила пропорциональна заряду пылинки: чем больше заряд у пылинки, тем больше будет и сила F эл; действующая на нее. Можно так зарядить пластины, что эта сила уравновесит силу тяжести: F эл = F T . При этих условиях пылинка будет находиться в равновесии сколь угодно долго. Затем отрицательный заряд пылинки уменьшали, действуя на нее ультрафиолетовым светом. Пылинка начинала падать, так как сила F эл, действовавшая на нее, уменьшалась вследствие уменьшения заряда пылинки. Сообщая пластинам дополнительный заряд, и этим усиливая электрическое поле между пластинами, пылинку снова останавливали. Так поступали несколько раз.

Иоффе Абрам Федорович (1880- 1960) - советский физик, академик. Ему принадлежит ряд открытий в области учения о твердом теле, диэлектриках и полупроводниках. А. Ф, Иоффе является одним из крупных организаторов физических исследований в СССР.

Опыты показали, что при этом все изменения заряда пылинки были в целое число раз (т. е. в 2,3, 4, 5 и т. д.) больше начального заряда пылинки. Следовательно, заряд пылинки изменялся определенными порциями. Из этого опыта А. Ф. Иоффе сделал следующий вывод: «При освещении ультрафиолетовым светом пылинка теряет отрицательный заряд не непрерывно, а отдельными порциями. Заряд пылинки всегда выражается целыми кратными значениями элементарного заряда е 0 . Но заряд с пылинки уходит вместе с частицей вещества. Следовательно, в природе существует такая частица вещества, которая имеет самый маленький заряд, далее уже не делимый. Эту частицу назвали электроном».

Значение заряда электрона впервые определил Р. Милликен. В своих опытах он пользовался мелкими капельками масла, наблюдая за их движением в электрическом поле.

Масса электрона оказалась равной 9,1 10 -28 г, она в 3700 раз меньше массы молекулы водорода, наименьшей из всех молекул. Электрический заряд - одно из основных свойств электрона. Нельзя представить, что этот заряд можно «снять» с электрона, он является неотделимым свойством электрона. Электрон - частица с наименьшим отрицательным зарядом.

Упражнение. В описанном опыте нижнюю пластину зарядили отрицательно. Находящаяся ранее в равновесии капля стала двигаться вверх. Как изменился ее заряд? Увеличилось или уменьшилось число электронов на ней?

Презентацию на тему ФизикиА. Ф. Иоффе и Р. Э. Милликен. Их жизненный путь. Опыт Иоффе - Милликена можно скачать абсолютно бесплатно на нашем сайте. Предмет презентации: Физика. Красочные слайды и илюстрации помогут вам заинтересовать своих одноклассников или аудиторию. Для просмотра содержимого презентации воспользуйтесь плеером, или если вы хотите скачать презентацию - нажмите на соответствующий текст под плеером. Презентация содержит 18 слайдов.

Слайды презентации

Физики А. Ф. Иоффе и Р. Э. Милликен Их жизненный путь Опыт Иоффе - Милликена

Подготовила Ученица 11-А класса КОШ № 125 Коновалова Кристина

Опыт Иоффе - Милликена

К концу ХIХ века в ряде самых разнообразных опытов было установлено, что существует некий носитель отрицательного заряда, который назвали электроном. Однако это была фактически гипотетическая единица, поскольку, несмотря на обилие практического материала, не было проведено ни одного эксперимента с участием одиночного электрона. Не было известно, существуют ли разновидности электронов для разных веществ или он одинаков всегда, какой заряд несет на себе электрон, может ли заряд существовать отдельно от частицы. В общем, в научной среде по поводу электрона ходили горячие споры, а достаточной практической базы, которая бы однозначно прекратила все дебаты, не было.

На рисунке изображена схема установки, использованной в опыте А. Ф. Иоффе. В закрытом сосуде, воздух из которого откачан до высокого вакуума, находились две металлические пластины П, расположенные горизонтально. Из камеры А через отверстие О в пространство между пластинами попала ли мелкие заряженные пылинки цинка. Эти пылинки наблюдали в микроскоп.

Итак, заряженные пылинки и капельки в вакууме будут падать с верхней пластины на нижнюю, однако этот процесс можно остановить, если зарядить верхнюю пластину положительно, а нижнюю отрицательно. Возникшее электрическое поле будет действовать кулоновскими силами на заряженные частички, препятствуя их падению. Регулируя величину заряда, добивались того, что пылинки парили посередине между пластинами. Далее уменьшали заряд пылинок или капель, облучая их рентгеном или ультрафиолетом. Теряя заряд, пылинки начинали падать вновь, их вновь останавливали, регулируя заряд пластин. Такой процесс повторяли несколько раз, вычисляя заряд капель и пылинок по специальным формулам. В результате этих исследований удалось установить, что заряд пылинок или капель всегда изменялся скачками, на строго определенную величину, либо же на размер, кратный это величине.

Абрам Федорович Иоффе

Абрам Федорович Иоффе – российский физик, сделавший множество фундаментальных открытий и проведший огромное количество исследований, в том числе и в области электроники. Он провел исследования свойств полупроводниковых материалов, открыл выпрямляющее свойство перехода металл-диэлектрик, впоследствии объяснимое при помощи теории туннельного эффекта, предположил возможность преобразования света в электрический ток.

Родился Абрам Федорович 14 октября 1980 года в городе Ромны Полтавской губернии (сейчас Полтавская область, Украина) в семье купца. Поскольку отец Абрама был достаточно богатым человеком, он не поскупился дать хорошее образование своему сыну. В 1897 году Иоффе получает среднее образование в реальном училище родного города. В 1902 году он оканчивает Санкт-Петербургский технологический институт и поступает в Мюнхенский университет в Германии. В Мюнхене он работает под руководством самого Вильгельма Конрада Рентгена. Вильгельм Конрад, видя прилежность и не абы какой талант ученика пытается уговорить Абрама остаться в Мюнхене и продолжать научную деятельность, но Иоффе оказался патриотом своей страны. После окончания университета в 1906 году, получив ученую степень доктора философии, он возвращается в Россию.

В России Иоффе устраивается на роботу в Политехнический институт. В 1911 он экспериментально определяет величину заряда электрона по тому же методу, что и Роберт Милликен (в электрическом и гравитационном полях уравновешивались частицы металла). Из-за того, что Иоффе опубликовал свою работу лишь спустя два года – слава открытия измерения заряда электрона досталась американскому физику. Кроме определения заряда, Иоффе доказал реальность существования электронов независимо от материи, исследовал магнитное действие потока электронов, доказал статический характер вылета электронов при внешнем фотоэффекте.

В 1913 году Абрам Федорович защищает магистерскую, а через два года докторскую диссертацию по физике, которая представляла собой изучение упругих и электрических свойств кварца. В период с 1916 по 1923 годы он активно изучает механизм электрической проводимости различных кристаллов. В 1923 именно по инициативе Иоффе начинаются фундаментальные исследования и изучения свойств, совершенно новых на то время материалов – полупроводников. Первая работа в этой области проводилась при непосредственном участии российского физика и касалась анализа электрических явлений между полупроводником и металлом. Им было обнаружено выпрямляющее свойство перехода металл-полупроводник, которое лишь спустя 40 лет было обосновано при помощи теории туннельного эффекта.

Исследуя фотоэффект в полупроводниках, Иоффе высказал достаточно смелую на то время идею, что подобным способом можно будет преобразовывать энергию света в электрический ток. Это стало предпосылкой в дальнейшем к созданию фотоэлектрических генераторов, и в частности кремниевых преобразователей, в последствие используемых в составе солнечных батарей. Совместно со своими учениками Абрам Федорович создает систему классификации полупроводников, а также методику определения их основных электрических и физических свойств. В частности изучение их термоэлектрических свойств, в последствие стало основой для создания полупроводниковых термоэлектрических холодильников, широко применяемых во всем мире в областях радиоэлектроники, приборостроении и космической биологии.

Абрам Федорович Иоффе внес огромный вклад в становление и развитие физики и электроники. Он был членом многих Академий наук (Берлинской и Гётиннгенской, Американской, Итальянской), а также почетных членом множества университетов во всем мире. За свои достижения и исследования был удостоен множества наград. Умер Абрам Федорович 14 октября 1960 года.

Милликен Роберт Эндрус

Американский физик Роберт Милликен родился в Моррисоне (штат Иллинойс) 22 марта 1868 г. в семье священника. После окончания средней школы Роберт вступает в колледж Оберлин в Огайо. Там его интересы были сосредоточены на математике и древнегреческом языке. Ради заработка он на протяжении двух лет излагал физику в колледже. 1891 г. Милликен получил степень бакалавра, а 1893 г. - магистерскую степень по физики.

В Колумбийском университете Милликен учился под руководством известного физика М.І.Пьюпина. Одно лето он провел в Чикагском университете, где работал под руководством известного физика-экспериментатора Альберта Абрахама Майкельсона.



Просмотров