Переменные Звезды. Взрыв сверхновой звезды

Сверхновые звёзды - одно из самых грандиозных космических явлений. Коротко говоря, сверхновая - это настоящий взрыв звезды, когда большая часть её массы (а иногда и вся) разлетается со скоростью до 10 000 км/с, а остаток сжимается (коллапсирует) в сверхплотную нейтронную звезду или в чёрную дыру. Сверхновые играют важную роль в эволюции звёзд. Они являются финалом жизни звёзд массой более 8-10 солнечных, рождая нейтронные звёзды и чёрные дыры и обогащая межзвёздную среду тяжёлыми химическими элементами. Все элементы тяжелее железа образовались в результате взаимодействия ядер более лёгких элементов и элементарных частиц при взрывах массивных звёзд. Не здесь ли кроется разгадка извечной тяги человечества к звёздам? Ведь в мельчайшей клеточке живой материи есть атомы железа, синтезированные при гибели какой-нибудь массивной звезды. И в этом смысле люди сродни снеговику из сказки Андерсена: он испытывал странную любовь к жаркой печке, потому что каркасом ему послужила кочерга...

По наблюдаемым характеристикам сверхновые принято разделять на две большие группы - сверхновые 1-го и 2-го типа. В спектрах сверхновых 1-го типа нет линий водорода; зависимость их блеска от времени (так называемая кривая блеска) примерно одинакова у всех звёзд, как и светимость в максимуме блеска. Сверхновые 2-го типа, напротив, имеют богатый водородными линиями оптический спектр, формы их кривых блеска весьма разнообразны; блеск в максимуме сильно различается у разных сверхновых.

Учёные заметили, что в эллиптических галактиках (т. е. галактиках без спиральной структуры, с очень низким темпом звездообразования, состоящих в основном из маломассивных красных звёзд) вспыхивают только сверхновые 1-го типа. В спиральных же галактиках, к числу которых принадлежит и наша Галактика - Млечный Путь, встречаются оба типа сверхновых. При этом представители 2-го типа концентрируются к спиральным рукавам, где идёт активный процесс звездообразования и много молодых массивных звезд. Эти особенности наводят на мысль о различной природе двух типов сверхновых.

Сейчас надёжно установлено, что при взрыве любой сверхновой освобождается огромное количество энергии - порядка 10 46 Дж! Основная энергия взрыва уносится не фотонами, а нейтрино - быстрыми частицами с очень малой или вообще нулевой массой покоя. Нейтрино чрезвычайно слабо взаимодействуют с веществом, и для них недра звезды вполне прозрачны.

Законченной теории взрыва сверхновых с формированием компактного остатка и сбросом внешней оболочки пока не создано ввиду крайней сложности учёта всех протекающих при этом физических процессов. Однако все данные говорят о том, что сверхновые 2-го типа вспыхивают в результате коллапса ядер массивных звёзд. На разных этапах жизни звезды в ядре происходили термоядерные реакции, при которых сначала водород превращался в гелий, затем гелий в углерод и так далее до образования элементов «железного пика» - железа, кобальта и никеля. Атомные ядра этих элементов имеют максимальную энергию связи в расчёте на одну частицу. Ясно, что присоединение новых частиц к атомному ядру, например, железа будет требовать значительных затрат энергии, а потому термоядерное горение и «останавливается» на элементах железного пика.

Что же заставляет центральные части звезды терять устойчивость и коллапсировать, как только железное ядро станет достаточно массивным (около 1,5 массы Солнца)? В настоящее время известны два основных фактора, приводящих к потере устойчивости и коллапсу. Во-первых, это «развал» ядер железа на 13 альфа-частиц (ядер гелия) с поглощением фотонов - так называемая фотодиссоциация железа. Во-вторых, нейтронизация вещества - захват электронов протонами с образованием нейтронов. Оба процесса становятся возможными при больших плотностях (свыше 1 т/см 3), устанавливающихся в центре звёзды в конце эволюции, и оба они эффективно снижают «упругость» вещества, которая фактически и противостоит сдавливающему действию сил тяготения. Как следствие, ядро теряет устойчивость и сжимается. При этом в ходе нейтронизации вещества выделяется большое количество нейтрино, уносящих основную энергию, запасённую в коллапсирующем ядре.

В отличие от процесса катастрофического коллапса ядра, теоретически разработанного достаточно детально, сброс оболочки звезды (собственно взрыв) не так-то просто объяснить. Скорее всего, существенную роль в этом процессе играют нейтрино

Как свидетельствуют компьютерные расчёты, плотность вблизи ядра настолько высока, что даже слабо взаимодействующие с веществом нейтрино оказываются на какое-то время «запертыми» внешними слоями звезды. Но гравитационные силы притягивают оболочку к ядру, и складывается ситуация, похожая на ту, которая возникает при попытке налить более плотную жидкость, например воду, поверх менее плотной, скажем керосина или масла. (Из опыта хорошо известно, что лёгкая жидкость стремится «всплыть» из-под тяжёлой - здесь проявляется так называемая неустойчивость Рэлея-Тэйлора.) Этот механизм вызывает гигантские конвективные движения, и когда в конце концов импульс нейтрино передаётся внешней оболочке, она сбрасывается в окружающее пространство.

Возможно, именно нейтринные конвективные движения приводят к нарушению сферической симметрии взрыва сверхновой. Иными словами, появляется направление, вдоль которого преимущественно выбрасывается вещество, и тогда образующийся остаток получает импульс отдачи и начинает двигаться в пространстве по инерции со скоростью до 1000 км/с. Столь большие пространственные скорости отмечены у молодых нейтронных звёзд - радиопульсаров.

Описанная схематическая картина взрыва сверхновой 2-го типа позволяет понять основные наблюдательные особенности этого явления. А теоретические предсказания, основанные на данной модели (особенно касающиеся полной энергии и спектра нейтринной вспышки), оказались в полном согласии с зарегистрированным 23 февраля 1987 г. нейтринным импульсом, пришедшим от сверхновой в Большом Магеллановом Облаке.

Теперь несколько слов о сверхновых 1-го типа. Отсутствие свечения водорода в их спектрах говорит о том, что взрыв происходит в звёздах, лишённых водородной оболочки. Как сейчас полагают, это может быть взрыв белого карлика или результат коллапса звезды типа Вольфа -Райе (фактически это ядра массивных звёзд, богатые гелием, углеродом и кислородом).

Как может взорваться белый карлик? Ведь в этой очень плотной звезде не идут ядерные реакции, а силам гравитации противодействует давление плотного газа, состоящего из электронов и ионов (так называемый вырожденный электронный газ). Причина здесь та же, что и при коллапсе ядер массивных звёзд, - уменьшение упругости вещества звезды при повышении её плотности. Это опять-таки связано с «вдавливанием» электронов в протоны с образованием нейтронов, а также с некоторыми релятивистскими эффектами.

Почему же повышается плотность белого карлика? Это невозможно, если он одиночный. Но если белый карлик входит в состав достаточно тесной двойной системы, то под действием гравитационных сил газ с соседней звезды способен перетекать на белый карлик (так в случае новой звезды). При этом масса и плотность его будут постепенно возрастать, что в конечном счёте приведёт к коллапсу и взрыву.

Другой возможный вариант более экзотичен, но не менее реален – это столкновение двух белых карликов. Как такое может быть, ведь вероятность столкнуться двум белым карликам в пространстве ничтожна, поскольку ничтожно число звёзд в единице объёма – от силы несколько звёзд в 100 пк3. И здесь (в который раз!) «виноваты» двойные звёзды, но теперь уже состоящие из двух белых карликов.

Как следует из общей теории относительности Эйнштейна, любые две массы, обращающиеся по орбите вокруг друг друга, рано или поздно должны столкнуться из-за постоянного, хотя и весьма незначительного, уноса энергии из такой системы волнами тяготения - гравитационными волнами. Например, Земля и Солнце, живи последнее бесконечно долго, столкнулись бы вследствие этого эффекта, правда через колоссальное время, на много порядков превосходящее возраст Вселенной. Подсчитано, что в случае тесных двойных систем с массами звёзд около солнечной (2 10 30 кг) их слияние должно произойти за время меньше возраста Вселенной – примерно за 10 млрд. лет. Как показывают оценки, в типичной галактике такие события случаются раз в несколько сот лет. Гигантской энергии, освобождаемой при этом катастрофическом процессе вполне достаточно для объяснения явления сверхновой.

Кстати, примерное равенство масс белых карликов делает их слияния «похожими» друг на друга, а значит, сверхновые 1-го типа по своим характеристикам должны выглядеть одинаково не зависимо от того, когда и в какой галактике произошла вспышка. Поэтому видимая яркость сверхновых отражает расстояния до галактик, в которых они наблюдаются. Это свойство сверхновых 1-го типа в настоящее время используемся учёными для получения независимой оценки важнейшего космологического параметра - постоянной Хаббла, которая служит количественной мерой скорости расширения Вселенной. Мы рассказали лишь о наиболее мощных взрывах звёзд, происходящих во Вселенной и наблюдаемых в оптическом диапазоне. Поскольку в случае сверхновых звёзд основная энергия взрыва уносится нейтрино, а не светом, исследование неба методами нейтринной астрономии имеет интереснейшие перспективы. Оно позволит в будущем «заглянуть» в самое «пекло» сверхновой, скрытое огромными толщами непрозрачного для света вещества. Ещё более удивительные открытия сулит гравитационно-волновая астрономия, которая в недалёком будущем поведает нам о грандиозных явлениях слияния двойных белых карликов, нейтронных звёзд и чёрных дыр.


СВЕРХНОВАЯ ЗВЕЗДА, взрыв, которым ознаменована смерть звезды. Иногда вспышка сверхновой превышает по яркости галактику, в которой она произошла.

Сверхновые делят на два основных типа. Тип I отличается дефицитом водорода в оптическом спектре; поэтому считают, что это взрыв белого карлика – звезды, по массе близкой к Солнцу, но меньшей по размеру и более плотной. В составе белого карлика почти нет водорода, поскольку это конечный продукт эволюции нормальной звезды. В 1930-х годах С.Чандрасекар показал, что масса белого карлика не может быть выше определенного предела. Если он находится в двойной системе с нормальной звездой, то ее вещество может перетекать на поверхность белого карлика. Когда его масса превысит предел Чандрасекара, белый карлик коллапсирует (сжимается), нагревается и взрывается. См. также ЗВЕЗДЫ.

Сверхновая II типа вспыхнула 23 февраля 1987 в соседней с нами галактике Большое Магелланово Облако. Ей дали имя Яна Шелтона, первым заметившего вспышку сверхновой с помощью телескопа, а затем и невооруженным глазом. (Последнее подобное открытие принадлежит Кеплеру, увидевшему вспышку сверхновой в нашей Галактике в 1604, незадолго до изобретения телескопа.) Одновременно с оптической вспышкой сверхновой 1987 специальные детекторы в Японии и в шт. Огайо (США) зарегистрировали поток нейтрино – элементарных частиц, рождающихся при очень высоких температурах в процессе коллапса ядра звезды и легко проникающих сквозь ее оболочку. Хотя поток нейтрино был испущен звездой вместе с оптической вспышкой примерно 150 тыс. лет назад, он достиг Земли практически одновременно с фотонами, доказав тем самым, что нейтрино не обладает массой и движется со скоростью света. Эти наблюдения подтвердили также предположение, что около 10% массы коллапсирующего ядра звезды излучается в виде нейтрино, когда само ядро сжимается в нейтронную звезду. У очень массивных звезд при вспышке сверхновой ядра сжимаются до еще больших плотностей и, вероятно, превращаются в черные дыры, но сброс внешних слоев звезды все же происходит. См . также ЧЕРНАЯ ДЫРА.

В нашей Галактике Крабовидная туманность является остатком взрыва сверхновой, который наблюдали китайские ученые в 1054. Известный астроном Т.Браге также наблюдал в 1572 сверхновую, вспыхнувшую в нашей Галактике. Хотя сверхновая Шелтона стала первой близкой сверхновой, открытой после Кеплера, сотни сверхновых в других, более далеких галактиках были замечены при помощи телескопов за последние 100 лет.

В остатках взрыва сверхновой можно найти углерод, кислород, железо и более тяжелые элементы. Следовательно, эти взрывы играют важную роль в нуклеосинтезе – процессе образования химических элементов. Возможно, что 5 млрд. лет назад рождению Солнечной системы тоже предшествовал взрыв сверхновой, в результате которого возникли многие элементы, вошедшие в состав Солнца и планет. НУКЛЕОСИНТЕЗ.

Взрыв сверхновой звезды - это событие невероятных масштабов. Фактически, взрыв сверхновой означает конец ее существования или, что также имеет место, перерождение в виде черной дыры или нейтронной звезды. Конец жизни сверхновой всегда сопровождается взрывом огромной силы, во время которого вещество звезды выбрасывается в космос с невероятной скоростью и на огромные расстояния.

Взрыв сверхновой длится всего несколько секунд, но за этот кротчайший промежуток времени выделяется просто феноменальное количество энергии. Так к примеру, вспышка сверхновой может выделять в 13 раз больше света, чем целая галактика, состоящая из миллиардов звезд, а выделяемое за секунды количество радиации в виде гамма- и рентгеновских волн в разы больше чем за миллиарды лет жизни.

Поскольку вспышки сверхновых длятся совсем недолго, особенно с учетом космических масштабов и величин, узнают о них в основном по последствиям. Такими последствиями являются огромных размеров газовые туманности, которые еще очень долгое время после взрыва продолжают светиться и расширяться в пространстве.

Пожалуй, самой известной туманностью образованной в результате вспышки сверхновой является Крабовидная туманность . Благодаря хроникам древнекитайских астрономов известно, что возникла она после взрыва звезды в созвездии Тельца в 1054 году. Как можно догадаться, вспышка была настолько яркой, что наблюдать ее можно было невооруженным взглядом. Сейчас же, Крабовидную туманность можно увидеть в темную ночь при помощи обычного бинокля.

Крабовидная туманность до сих пор продолжает расширяться со скоростью 1500 км в секунду. На данный момент ее размер превышает 5 световых лет.

Фото выше скомпановано из трех снимков, сделанных в трех разных спектрах: рентгеновском (телескоп Чандра), инфракрасном (телескоп Спитцер) и обычном оптическом (). Рентгеновское излучение представлено голубым цветом, его источник - пульсар - невероятно плотная звезда, образованная после смерти сверхновой.

Туманность Симеиз 147 - одна из самых крупных известных на данный момент. Сверхновая взорвавшаяся приблизительно 40 000 лет назад, породила туманность размерами в 160 световых лет. Открыта была советскими учеными Г. Шайоном и В. Газе в 1952 году в одноименной Симеизской обсерватории.

На фото последняя вспышка сверхновой, которую можно было наблюдать невооруженным глазом. Произошла в 1987 в галактике Большое Магеланово Облако на расстоянии 160 000 световых лет от нас. Большой интерес представляют необычные кольца в виде цифры 8, о истинной природе которых ученые пока строят только предположения.

Туманность Медуза из созвездия Близнецы изучена не так хорошо, но весьма популярна из-за небывалой красоты и крупной звезды-компаньона, которая периодически изменяет свою яркость.

Их возникновение - это довольно редкое космическое явление. В среднем в доступных наблюдению просторах Вселенной вспыхивает три сверхновых в столетие. Каждая такая вспышка представляет собой гигантскую космическую катастрофу, при которой выделяется невероятно много энергии. По самой грубой оценке такое количество энергии могло бы образоваться при одновременном взрыве многих миллиардов водородных бомб.

Достаточно строгая теория вспышек сверхновых пока отсутствует, но ученые выдвинули любопытную гипотезу. Они предположили, на основании сложнейших расчетов, что в ходе альфа-синтеза элементов ядро продолжает сжиматься. Температура в нем достигает фантастической цифры - 3 миллиарда градусов. При таких условиях в ядре значительно ускоряются различные ; в результате выделяется много энергии. Быстрое сжатие ядра влечет за собой столь же быстрое сжатие оболочки звезды.

Она тоже сильно разогревается, и протекающие в ней ядерные реакции, в свою очередь, сильно ускоряются. Таким образом буквально в считанные секунды выделяется громадное количество энергии. Это приводит к взрыву. Конечно, такие условия достигаются далеко не всегда, и потому сверхновые вспыхивают довольно редко.

Такова гипотеза. Насколько ученые правы в своих предположениях, покажет будущее. Но и настоящее привело исследователей к совершенно поразительным догадкам. Астрофизические методы позволили проследить, как уменьшается светимость сверхновых. И вот что выяснилось: в первые несколько дней после взрыва светимость уменьшается очень быстро, а затем это уменьшение (в течение 600 дней) замедляется. Причем каждые 55 дней светимость ослабевает ровно вдвое. С точки зрения математики, это уменьшение происходит по так называемому экспоненциальному закону. Хорошим примером такого закона является закон радиоактивного распада. Ученые высказали смелое предположение: выделение энергии после взрыва сверхновой обусловлено радиоактивным распадом изотопа какого-то элемента с периодом полураспада 55 дней.

Но какого изотопа и какого элемента? Эти поиски продолжались несколько лет. «Кандидатами» на роль подобных «генераторов» энергии выступили бериллий-7 и стронций-89. Они распадались наполовину как раз за 55 дней. Но выдержать экзамен им не довелось: расчеты показали, что энергия, выделяющаяся при их бета-распаде, слишком мала. А другие известные радиоактивные изотопы подобным периодом полураспада не обладали.

Новый претендент обнаружился среди элементов, которые на Земле не существуют. Он оказался представителем трансурановых элементов, синтезированных учеными искусственно. Имя претендента - калифорний, его порядковый номер - девяносто восемь. Его изотоп калифорний-254 удалось приготовить в количестве всего лишь около 30 миллиардных долей грамма. Но и этого поистине невесомого количества вполне хватило, чтобы измерить период полураспада изотопа. Он оказался равным 55 дням.

А отсюда возникла любопытная гипотеза: именно энергия распада калифорния-254 обеспечивает в течение двух лет необычайно высокую светимость сверхновой звезды. Распад калифорния происходит путем самопроизвольного деления его ядер; при таком виде распада ядро как бы раскалывается на два осколка - ядра элементов середины периодической системы.

Но каким образом синтезируется сам калифорний? Ученые и здесь дают логичное объяснение. В ходе сжатия ядра, предшествующего взрыву сверхновой, необычайно ускоряется ядерная реакция взаимодействия уже знакомого нам неона-21 с альфа-частицами. Следствием этого оказывается появление в течение довольно короткого промежутка времени чрезвычайно мощного потока нейтронов. Снова возникает процесс нейтронного захвата, но на сей раз уже быстрого. Ядра успевают поглотить очередные нейтроны раньше, чем подвернутся бета-распаду. Для этого процесса неустойчивость трансвисмутовых элементов уже не препятствие. Цепь превращений не порвется, и конец периодической таблицы тоже будет заполнен. При этом, видимо, образуются даже такие трансурановые элементы, которые в искусственных условиях еще не получены.

Ученые подсчитали, что при каждом взрыве сверхновой только калифорния-254 образуется фантастическое количество. Из такого количества можно было бы изготовить 20 шаров, каждый из которых весил бы столько, сколько наша Земля. Какова же дальнейшая судьба сверхновой? Она погибает довольно быстро. На месте ее вспышки остается лишь маленькая очень тусклая звездочка. Она отличается, правда, необычайно высокой плотностью вещества: наполненный им спичечный коробок весил бы десятки тонн. Такие звезды называют « ». Что происходит с ними дальше, мы пока не знаем.

Материя, которая выбрасывается в мировое пространство, может сгуститься и образовать новые звезды; они начнут новый долгий путь развития. Ученые сделали пока лишь общие грубые мазки картины происхождения элементов, картины работы звезд - грандиозных фабрик атомов. Быть может, это сравнение в общем передает суть дела: художник набрасывает на холсте лишь первые контуры будущего произведения искусства. Уже ясен основной замысел, но многие, в том числе и существенные, детали еще приходится лишь угадывать.

Окончательное решение проблемы происхождения элементов потребует колоссального труда ученых различных специальностей. Вероятно, многое, что сейчас нам представляется несомненным, на самом деле окажется грубо приблизительным, а то и вовсе неверным. Наверное, ученым придется столкнуться с закономерностями, до сих пор нам неизвестными. Ведь для того чтобы разобраться в сложнейших процессах, протекающих во Вселенной, бесспорно, понадобится новый качественный скачок в развитии наших представлений о ней.

Когда заканчивается звёздное топливо, поддерживающее термоядерную реакцию, температура внутренних областей звезды начинает понижаться и они не могут противостоять гравитационному сжатию. Звезда коллапсирует, т.е. её вещество падает внутрь. При этом иногда наблюдаются вспышка сверхновой звезды или другие бурные явления. Сверхновая звезда может засиять ярче миллиардов обычных звёзд и выделить примерно столько же световой энергии, сколько наше Солнце выделяет за миллиард лет..

За последнее тысячелетие в Нашей Галактике вспыхнули только пять сверхновых (1006, 1054, 1181, 1572, 1604). По крайней мере, столько их отмечено в письменных источниках (ещё какие-то могли быть не отмечены или взорваться за густыми газопылевыми облаками). Но сейчас астрономам каждый год удаётся наблюдать до 10 вспышек сверхновых в других галактиках. Тем не менее, такие вспышки - это всё равно редкое явление. Чаще внешние оболочки звезды сбрасываются без столь мощного взрыва. Или звезда "умирает" ещё спокойнее. Итак, возможны несколько сценариев звёздного коллапса. Рассмотрим их по отдельности.

Тихое угасание свойственно звёздам с массой менее 0,8 солнечной. Тихо угасают карликовые звёзды (все красные и коричневые карлики, а также, наверное, часть оранжевых карликов). Они превращаются в "прохладные" гелиево-водородные шары вроде Юпитера, но всё-таки во много раз больше его (в чёрные карлики). Разумеется, этот процесс происходит очень медленно, так как звезда после исчерпания термоядерного топлива ещё очень долго светит за счёт постепенного гравитационного сжатия. Наша область Вселенной столь молода, что, наверное, тихо угасших звёзд пока ещё нет.

Коллапс с образованием белого карлика характерен для звёзд с массой от 0,8 до 8 солнечных. "Выгоревшие" звёзды сбрасывают свою оболочку, из которой образуется планетарная туманность из пыли и газа. Это происходит следующим образом. Пока в ядре "горел" гелий, который превращался в углерод, высокая температура ядра (т.е. большая скорость частиц) препятствовала гравитационному сжатию ядра. Когда гелий в ядре закончился, остывающее углеродное ядро стало постепенно сжиматься, увлекая за собой внутрь звезды гелий (а также водород) из наружных слоёв. Тогда этот новый гелий "загорелся" в оболочке, и оболочка стала с огромной скоростью расширяться. Оказалось, что сравнительно "лёгкая" звезда не может удержать разлетающуюся оболочку, и она превращается в так называемую планетарную туманность. Раньше считали, что из таких туманностей образуются планеты. Оказалось, что это не так: подобные туманности расширяются и рассеиваются в пространстве, но название сохранилось. Скорость расширения планетарных туманностей составляет от 5 до 100 км/с, а в среднем - 20 км/с. Ядро звезды продолжает сжиматься, т.е. коллапсирует с образованием бело-голубого карлика, который после некоторого остывания становится белым карликом. Молодые белые карлики скрыты в пылевом коконе, который ещё не успел превратиться в хорошо заметную планетарную туманность. Вспышки сверхновой при таком коллапсе не происходит, и этот сценарий окончания активной жизни звезды очень распространён. Белые карлики описаны выше, и можно только напомнить, что по объёму они соразмерны нашей планете, что атомы в них укомплектованы максимально плотно, что вещество сжато до плотностей в полтора миллиарда раз больше, чем у воды, и что в относительно стабильном состоянии эти звёзды удерживаются за счёт отталкивания тесно прижатых друг к другу электронов.

Если звезда изначально была чуть массивней, то термоядерная реакция заканчивается не на стадии горения гелия, а чуть позже (например, на стадии горения углерода), но это не принципиально меняет судьбу звезды.

Белые карлики "тлеют" неопределённо долгое время и светятся за счёт очень медленного гравитационного сжатия. Но в некоторых особых случаях они быстро коллапсируют и взрываются с полным разрушением.

Коллапс белого карлика с полным разрушением звезды бывает в том случае, если белый карлик перетянет со спутника вещество до критической массы, составляющей 1,44 солнечной. Эта масса называется чандрасекаровской по имени индийского математика Субраманьяна Чандрасекара, вычислившего её и открывшего возможность коллапса. При такой массе взаимное отталкивание электронов уже не может препятствовать гравитации. Это приводит к внезапному падению вещества внуть звезды, к резкому сжатию звезды и увеличению температуры, "вспыхиванию" углерода в центре звезды и его "сгоранию" в идущей наружу волне. И хотя термоядерное "горение" углерода не совсем взрывное (не детонация, а дефлаграция, т.е. дозвуковое "горение"), звезда полностью разрушается и её остатки разлетаются во все стороны со скоростью 10000 км/с. Этот механизм изучен в 1960 г. Хойлом и Фаулером и носит название взрыва сверхновой звезды I типа.

Все взрывы звёзд этого типа в первом приближении одинаковы: три недели светимость растёт, а потом постепенно падает в течение 6 месяцев или чуть более долгого времени. Поэтому по вспышкам сверхновых I типа можно определять расстояния до других галактик, т.к. такие вспышки видны издалека, а их истинную яркость мы знаем. Недавно, однако, выяснилось, что эти сверхновые взрываются несимметрично (хотя бы потому, что у них есть близкий спутник), и их яркость на 10% зависит от того, с какой стороны видеть вспышку. Для определения расстояний лучше измерять блеск этих сверхновых не в момент максимума яркости, а через одну-две недели спустя, когда видимая поверхность оболочки становится почти сферической.

Возможность наблюдать очень далёкие сверхновые I типа помогает изучать скорость расширения Вселенной в разные эпохи (светимость звезды говорит о расстоянии до неё и времени события, а цвет - о скорости её удаления). Так было открыто замедление расширения Вселенной в первые 8,7 млрд. лет и ускорение этого расширения в последние 5 млрд. лет, т.е. "Второй Большой взрыв".

Коллапс с образованием нейтронной звезды присущ звёздам, которые более чем в 8 раз массивнее Солнца. На заключительной стадии их развития внутри кремниевой оболочки начинает формироваться железное ядро. Такое ядро вырастает за сутки и коллапсирует менее, чем за 1 секунду, как только достигнет чандрасекаровского предела. Для ядра этот предел составляет от 1,2 до 1,5 массы Солнца. Вещество падает внутрь звезды, причём отталкивание электронов не может остановить падения. Вещество продолжает разгоняться, падать и сжиматься до тех пор, пока не начинает сказываться отталкивание между нуклонами атомного ядра (протонами, нейтронами). Строго говоря, сжатие происходит даже более этого предела: падающее вещество по инерции превосходит точку равновесия из-за упругости нуклонов на 50% ("максимальное стискивание"). После этого "сжатый резиновый мяч отдаёт назад", и ударная волна выходит во внешние слои звезды со скоростью от 30000 до 50000 км/с. Внешние части звезды разлетаются во все стороны, а в центре взорвавшейся области остаётся компактная нейтронная звезда. Это явление называется взрывом сверхновой II типа. Взрывы эти различны по мощности и другим параметрам, т.к. взрываются звёзды различной массы и различного химического состава [разные источники]. Есть указание, что при взрыве II типа энергии выделяется не больше, чем при взрыве I типа, т.к. часть энергии поглощается оболочкой, но, может быть, это устаревшие сведения.

В описанном сценарии имеется ряд неясностей. В ходе астрономических наблюдений установлено, что массивные звёзды действительно взрываются, в результате чего образуются расширяющиеся туманности, а в центре остаётся быстро вращающаяся нейтронная звезда, излучающая регулярные импульсы радиоволн (пульсар). Но теория показывает, что идущая наружу ударная волна должна расщеплять атомы на нуклоны (протоны, нейтроны). На это должна тратиться энергия, в результате чего ударная волна должна погаснуть. Но почему-то этого не происходит: ударная волна за несколько секунд достигает поверхности ядра, далее - поверхности звезды и сдувает вещество. Авторы рассматривают несколько гипотез для разных масс, но они не кажутся убедительными. Возможно, в состоянии "максимального стискивания" или в ходе взаимодействия ударной волны с продолжающим падать веществом в силу вступают какие-то принципиально новые и неизвестные нам физические законы.

В пределах Нашей Галактики связь остатков сверхновой звезды с пульсаром к середине 1980-х годов была известна только для Крабовидной туманности.

Коллапс с образованием черной дыры присущ наиболее массивным звёздам. Он тоже называется взрывом сверхновой II типа, происходит по сходному сценарию, но в результате него вместо нейтронной звезды возникает чёрная дыра. Это происходит в тех случаях, когда масса коллапсирующей звезды столь велика, что взаимное отталкивание между нуклонами (протонами, нейтронами) не может препятствовать гравитационному сжатию. Нужно отметить, что это явление в теоретическом плане менее понятно и почти не изучено методами наблюдательной астрономии. Почему, например, вещество не полностью проваливается в чёрную дыру? Имеется ли что-то аналогичное "максимальному стискиванию"? Имеется ли идущая наружу ударная волна? Почему она не тормозится?

Недавно произведены наблюдения, из которых следует, что ударная волна сверхновой рождает в расширяющейся оболочке прежней гигантской звезды гамма- вспышку или рентгеновскую вспышку (см. раздел о гамма-всплесках).

Каждая сверхновая II типа производит активного изотопа алюминия (26Al) около 0,0001 массы Солнца. Распад этого изотопа создаёт жёсткое излучение, которое длительно наблюдалось, и по его интенсивности рассчитано, что в Галактике менее трёх солнечных масс данного изотопа. Это означает, что сверхновые IIтипа должны взрываться в Галактике в среднем два раза в столетие, чего не наблюдается. Вероятно, в последние века многие подобные взрывы не замечались (например, были далеко или происходили за облаками космической пыли). В любом случае сверхновой звезде давно пора взрываться...



Просмотров