Определение резистора по маркировке. Цветная маркировка резисторов: определение сопротивления по полоскам. Маркировка резисторов фирмы "BOURNS"

Резисторы относятся к наиболее простым, с точки зрения понимания и конструктивного исполнения, радиоэлектронным элементам. Однако при этом они занимают лидирующее место по применению в схемах различных электронных устройств. Поэтому очень важно научится применять их в практических целях, уметь самостоятельно рассчитать необходимые параметры и правильно выбрать резистор с соответствующими характеристиками. Этим и другим вопросам посвящена данная статья.

Основное назначение резисторов – ограничивать величину тока и напряжения в электрической цепи с целью обеспечения нормального режима работы остальных электронных компонентов электрической схемы, таких как транзисторы, диоды, светодиоды, микросхемы и т.п.

Первооткрывателей такого свойства электрической цепи, как сопротивление является выдающийся немецкий ученый Георг Симон Ом, поэтому за единицу измерения электрического сопротивления приняли Ом . Наиболее практическое применение получили килоомы , мегаомы и гигаомы .

Расширенный список сокращений и приставок системы СИ физических величин, используемых в радиоэлектронике. Максимальное значение 1018 – экса, а минимальное – 10-18 – атто. Надеюсь, приведенная таблица станет полезной.

Условно резисторы подразделяются на два больших подвида: постоянные и переменные.

Постоянные резисторы

Постоянные резисторы могут иметь различное конструктивное исполнение, в основном отличающееся внешним видом и размерами. Характерной особенностью постоянных резисторов является постоянное значение сопротивления, которое не предусматривается изменять в процессе эксплуатации радиоэлектронной аппаратуры.

Подстроечные резисторы

Подстроечные резисторы применяются для тонкой настройки отдельных узлов радиоэлектронной аппаратуры на этапе ее окончательной регулировки перед выдачей в эксплуатацию. Чаще всего подстроечные резисторы не имеют специальной регулировочной рукоятки, а изменение сопротивления выполняется с помощью отвертки, что предотвращает самопроизвольное изменение положения регулировочного узла, а соответственно и сопротивления.

В некоторых устройствах после окончательной их регулировки на корпус и поворотный винт подстроечного резистора наносится краска, которая предотвращает поворот винта при наличии вибраций. Также метка, нанесенная краской, служит одновременно и индикатором самопроизвольного поворота регулировочного винта, что можно визуально определить по срыву краски в месте поворотного и стационарного элементов корпуса.

В современных электронных устройствах получили широкое применение многооборотные подстроечные резисторы, позволяющие более тонко выполнять регулировку аппаратуры. Как правило, они имеют синий пластиковый корпус прямоугольной формы.

Переменные резисторы

Переменные резисторы применяются для изменения электрических параметров в схеме устройства непосредственно в процессе работы, например для изменения яркости света светодиодных ламп или громкости звука приемника. Часто, вместо «переменный резистор» говорят потенциометр или реостат .

Также к переменным резисторам относятся радиоэлементы, имеющие всего два вывода, а сопротивление их изменяется в зависимости от освещенности или температуры, например фоторезисторы или терморезисторы.
Потенциометры применяются для изменения величины силы тока или напряжения. Регулируемый параметр зависит от схемы включения.

Если переменный либо подстроечный резистор используется в качестве регулятора тока , но его называют реостатом .

Ниже приведены две схемы, в которых реостат применяется для регулировки величины тока, протекающего через светодиод VD. В конечном итоге изменяется яркость свечения светодиода.

Обратите внимание, в первой цепи задействованы все три вывода реостата, а во второй – только два – средний (регулирующий) и один крайний. Обе схемы полностью работоспособны и выполняют возлагаемые на них функции. Однако вторую цепь применять менее предпочтительно, поскольку свободный вывод реостата, как антенна, может «поймать» различные электромагнитные излучения, что повлечет за собой изменение параметров электрической цепи. Особенно не рекомендуется применять такую электрическую цепь в усилительных каскадах, где даже незначительная электромагнитная наводка приведет к непредсказуемой работе аппаратуры. Поэтому берем за основу первую схему.

Изменять величину напряжения потенциометром можно по такой схеме: параллельно источнику питания подключается два крайних вывода; между одним крайним и средним выводами можно плавно регулировать напряжение от 0 до напряжения источника питания. В данном случае, от нуля до 12 В. Потенциометр служит делителем напряжения, которому более подробно уделено внимание в отдельной статье.

Условное графическое обозначение (УГО) резисторов

На чертежах электрических схем в независимости от внешнего вида резистора его обозначают прямоугольником. Прямоугольник подписывается латинской буквой R с цифрой, обозначающей порядковый номер данного элемента на чертеже. Ниже указывается номинальное значение сопротивления.

В некоторых государствах УГО резистора имеет следующий вид.

Резистор, как и любой другой элемент, обладающий активным сопротивлением, подвержен нагреву при протекании через него тока. Природа нагрева заключается в том, что при движении электроны встречают на своем пути препятствия и ударяются об них. В результате столкновений кинетическая энергия электрона передается препятствиям, что вызывает нагрев последних. Аналогично нагревается гвоздь, когда по нему долго бьют молотком.

Мощность рассеивания нормируемый параметр для любого резистора и если ее не выдерживать, то он перегреется и сгорит.

Мощность рассеивания P линейно зависит от сопротивления R и в квадрате от тока I

P=I 2 R

Значение допустимой P показывает, какую мощность способен рассеять резистор не перегреваясь выше допустимой температуры в течение длительного времени.

Как правило, чем выше P , тем большие размеры имеет резистор, чтобы отвести и рассеять больше тепла.

На чертежах электрических схем этот параметр наносится в виде определенных меток.

Если прямоугольник пустой – значит мощность рассеивания не нормирована, поэтому можно применять самый «маленький» резистор.

Более наглядные примеры расчета P можно посмотреть здесь .

Классы точности и номиналы резисторов

Ни один радиоэлектронный элемент невозможно выполнить со сто процентным соблюдением требуемых характеристик, так как точность связана с рядом параметров и технологических процессов, которым присуща погрешность, в основном связана с точностью производственного оборудования. Поэтому любая деталь или отдельный элемент имеют отклонение от заданных размеров или характеристик. Причем, чем меньший разброс характеристик, тем точнее производственное оборудование и выше конечная стоимость изделия. Поэтому далеко не всегда оправдано применение изделий с минимальными отклонениями характеристик. В связи с этим введены классы точности. В радиолюбительской практике наибольшее применение находят резисторы трех классов точности: I, II и III. Последним временем резисторы второго и третьего классов точности встречаются довольно редко, но мы их рассмотрим в качестве примера.

К I-му классу относится допуск отклонения сопротивления от номинального значения ±5%, II –му – ±10%, III –му – ±20%. Например, при номинальном значении сопротивления 100 Ом резистора I класса, допустимое отклонение может находиться в диапазоне 95…105 Ом; для II-го – 90…110 Ом; для III -го – 80…120 Ом.
Резисторы более высокого класса точности, с допуском 1% и менее, относятся к прецизионным. Они имеют более высокую стоимость, поэтому их применение оправдано только в измерительной и высокоточной технике.

Все стандартные значения сопротивлений I…III классов точности приведены выше в таблице, значения из которой могут умножаться на 0,1; 1, 10, 100, 1000 и т.д. Например, резисторы I-го класса изготавливаются со значениями 1,3; 13; 130; 1300; 13000; 130000 Ом и т.п.

В зависимости от класса точности, номинальные значения выпускаемых промышленностью резисторов строго стандартизированы. Например, если потребуется сопротивление 17 Ом I-го класса, то вы его не найдете, поскольку данный номинал не изготавливается в соответствующем классе точности. Вместо него следует выбрать ближайший номинал – 16 Ом или 18 Ом.

Маркировка резисторов служит для визуального восприятия ряда параметров, характерных для данных электронных элементов. Среди прочих параметров следует выделить три основных: номинальное значение сопротивления, и . Именно на эти параметры в первую очередь обращают внимание при выборе рассматриваемых радиоэлементов.

На протяжении долгих лет существовало много типов маркировки, однако постепенно, по мере развития технологических процессов, пару типов маркировки вытеснили все остальные.

На корпусах советских резисторов, которые все еще широко используются, наносится маркировка в виде цифр и букв. Латинские буквы «E» и «R», стоящие рядом с цифрами или только цифры, обозначают сопротивление в омах, например 21; 21E, 21R – 21 Ом. Буквы «k» и «M» означают соответственно килоомы и мегаомы. Например, если буква стоит перед цифрами или посреди них, то она одновременно служит десятичной точкой: 68к – 68 кОм; 6к8 – 6,8 кОм; к68 – 0,68 кОм.

Для большинства радиоэлектронных элементов сейчас применяется цветовая маркировка. Такой подход является вполне рациональный, поскольку цветные метки проще рассмотреть, чем цифры и буквы, поэтому хорошо распознаются даже на самых мелких корпусах.

Цветная маркировка резисторов наносится на корпус в виде четырех или пяти цветных колец или полос. В первом случае (4 полосы) первые две полосы обозначают мантису, а во втором (5 полос) – мантису обозначают три полосы. Третье или соответственно 4-е кольцо указывают множитель. Четвертое или пятое – допустимое отклонение в процентах от номинального сопротивления.

По моему мнению и личному опыту, гораздо удобней, проще и практичней измерять сопротивление мультиметром. Здесь наименьшая вероятность допустить ошибку, поскольку цвета колец не всегда четко различимы. Например, красный цвет можно принять за оранжевый и наоборот. Однако, выполняя измерения, следует избегать касания пальцами щупов мультиметра и выводов резистора. В противном случае тело человека зашунтирует резистор, и результаты измерений будут заниженные.

Характерной особенностью SMD резисторов по сравнению с выводными аналогами являются минимальные габариты при сохранении необходимых характеристик.

В SMD компонентах отсутствуют гибкие выводы, вместо них имеются контактные площадки, посредством которых производится пайка SMD детали на аналогичные поверхности, предусмотренные на печатной плате. По этой причине SMD компоненты называют компонентами для поверхностного монтажа.

Благодаря смене традиционного корпуса на SMD упростился процесс автоматизации изготовления печатных плат, что позволило значительно снизить затраты время на изготовление электронного изделия, его массы и габаритов.

Маркировка SMD резисторов чаще всего состоит из трех цифр. Первые две указывают мантису,а третья – множитель или количество нулей, следующих после двух предыдущих цифр. Например, маркировка 681 означает 68×101 = 680 Ом, то есть после числа 68 нужно прибавить один ноль.

Если все три цифры – нули, то это перемычка, сопротивление такого SMD резистора близкое к нулю.

Цветными полосками используется в радиоэлектронике для определения сопротивления постоянных резисторов. Большинство электронных компонентов, в частности резисторы, очень малы по размеру, вследствие чего достаточно трудно печатать маркировку прямо на корпус. Поэтому в 1920 году был разработан стандарт для идентификации значений электронных компонентов путем нанесения на них цветового кода.

Как определить сопротивление резистора по цветным полоскам

На рисунке ниже показано расположение полос значения, множитель и допуск для постоянного резистора. При маркировке с помощью 6 цветными полосками, дополнительная полоска указывает на температурный коэффициент.

Разрыв между цветными полосками множителя и допуска определяет левую и правую сторону резистора. Ключевые моменты определения сопротивления резистора по цветным полоскам:

4-х полосный резистор — имеет 3 цветовую полоску на левой стороне и одну цветную полоску на правой стороне. Первые две полосы слева представляют собой значение сопротивления, а третья является множителем. Крайняя справа полоса определяет допустимое отклонение в процентах.

5-и полосный резистор — имеет 4 цветные полосы на левой стороне и одну цветную полосу на правой стороне. Первые 3 цветных полос определяют величину сопротивления резистора, четвертый представляет собой множитель, а пятая полоса допустимое отклонение от номинала в процентах.

6-и полосный резистор — имеет 4 цветовые полосы на левой стороне и 2 цветные полосы на правой стороне. Первые 3 цветные полосы обозначают величину самого сопротивления резистора, 4-ая полоса множитель, 5-ая процент отклонения от номинального значения сопротивления и 6-ая полоса представляет собой обозначение температурного коэффициента сопротивления, который повышает точность сопротивления резистора.

Температурный коэффициент говорит нам о поведении резистора в различных температурных условиях эксплуатации.

Примеры определения маркировки резистора по цветным полоскам

Маркировка резистора 4 цветными полосками

Рассмотрим цветовой код резистор, имеющий 4 цветные полосы: коричневый-черный-красный-золотистый. Коричневый цвет соответствует значению «1» в диаграмме цвета. Черный представляет «0», Красный представляет собой множитель «100». Таким образом, величина сопротивления составит:

10 * 100 = 1000 Ом или 1 кОм с отклонением 5%, поскольку золотая полоска представляет собой допуск +/- 5%. Таким образом, фактическое значение 1 кОм может быть между 950 Ом и 1050 Ом.

Маркировка резистора 5 цветными полосками

Рассмотрим цветовой код для резистора с 5 полосками: желтый-фиолетовый-черный-коричневый-серый. Желтый цвет соответствует значению «4» в диаграмме цвета. Фиолетовый цвет представляет «7» и черный равен «0». Коричневая полоска определяет величину множителя «10». Таким образом, величина сопротивления составит:

470 * 10 = 4700 Ом или 4,7 кОм с отклонением 0,05%, поскольку серый цвет отклонения равен +/- 0,05%.

Маркировка резистора 6 цветными полосками

В данном случае маркировка подобна как и у резистора с 5 полосками, в дополнении лишь шестая цветная полоса температурного коэффициента, для примера это синяя полоса.

Результат — резистор имеет сопротивление 4,7 кОм, с допуском +/- 0,05% и с температурным коэффициентом 10 частей на миллион / K.

Содержание:

Естественно, что без сопротивления не обходится ни одна электронная схема. Где-то необходимо ограничение протекающего напряжения по той или иной дорожке, а иногда нужен обратный процесс - вообще, возможности подобных элементов очень велики. И если рассматривать эти компоненты, произведенные в советское время, то никаких вопросов по их характеристикам не возникало - номинал был прописан в обозначении на корпусе, все было предельно понятно.

А вот с приходом на радиорынок таких современных элементов, как резисторы, маркировка которых обозначается при помощи полосок, многие радиолюбители (даже лучше сказать основная их часть), схватились за голову - как определить сопротивление по этим цветным линиям? Ведь для того, чтобы определить номинал подобного элемента по его цветовой маркировке, необходимо пересмотреть огромное количество таблиц и прочей литературы. И это при том, что некоторые производители пытались ввести дополнительно еще и свои обозначения.

Сейчас, когда система производства и обозначений сопротивлений стандартизирована, конечно, цветная маркировка резисторов помогает определять номинал элементов, но все же без некоторых таблиц при этом не обойтись.

Нужно попробовать понять, как же определить номинал резистора, будь то элемент на 10 кОм или на 25, который находится перед глазами, без применения дополнительных устройств, обращая внимание только лишь на цветовую маркировку.

Цветовая маркировка

Если разобраться, то определение сопротивления резистора не так уж и проблематично. Согласно введенным стандартам, на подобные элементы наносится разное количество цветовых полос в зависимости от номинала. Их число может быть от четырех до шести, и каждая из них несет свою информацию.

Однако, мало знать цвета и их последовательность. Чтение обозначений тоже имеет свои нюансы. К примеру, для правильного определения номинала резистора по полоскам необходимо расположить его так, чтобы полоса с оттенком металлика, находилась по правую сторону. А при отсутствии подобной - группа полос по левую.

  • Три кольца - минимальное количество. Погрешность такого обозначения сопротивлений может составить 20 %. Первые два кольца будут означать значение, а третье - это показатель множителя маркировки резисторов.
  • Четыре кольца - расчет производится подобным предыдущему способом, только 4-е обозначит отклонение. При подобном обозначении возрастает точность определения номинала, и погрешность составит уже всего 5-10%.
  • Пять колец - здесь показателем являются уже три первых цифры, а далее, 4-е - множитель, а 5-е - отклонение. Погрешность при подобном обозначении составляет не более 0.005%.
  • Последний вариант является самым точным и маркируется шестью кольцами. Цветная маркировка читается аналогично предыдущему варианту, при этом последнее, 6-е кольцо обозначает коэффициент температуры, до которой нагревается корпус элемента.

Сложность может заключаться и в том, что некоторые таблицы для расшифровки цветовых маркировок резисторов вообще не содержат обозначений шестого кольца.

Также часто на корпус наносится и буквенная маркировка, при условии, что позволяют размеры. Тогда она может выглядеть так: 10 - 1 Ом, или 1К0 - 1 кОм.

Универсальные цвета

Существует таблица, с указанием универсальных цветов, при помощи которой читается маркировка резисторов по полоскам. Выписав отдельно числовое обозначение каждой из полос сопротивления, можно определить номинал элемента достаточно точно. Обозначения цветов выглядят следующим образом:

  • Черный - 0;
  • Коричневый - 1;
  • Красный - 2;
  • Оранжевый - 3;
  • Желтый - 4;
  • Зеленый - 5;
  • Синий - 6;
  • Фиолетовый - 7;
  • Серый - 8;
  • Белый - 9;
  • Серебристый - «-1»;
  • Золотистый - «-2».

Для того чтобы было более понятно чтение по цветовой маркировке, имеет смысл привести несколько примеров.

Примеры чтения по цветной маркировке

На данном изображении видно наличие полос зеленого, коричневого, красного и золотистого цвета. Согласно таблице и правилам, согласно которым читается маркировка сопротивлений, зеленая и коричневая полоса составляют значение 51. Далее идет красная полоса множителя, который обозначает число 2. И крайняя левая золотистая - «-2». Из всего этого делается вывод, что номинал этого сопротивления будет равен 5.1 кОм с допуском в 5%.

Также можно рассмотреть более сложный вариант цветовой маркировки с пятью цветными полосками. Для примера возьмем последовательность полос - зеленый, красный, черный, белый, серебристый. Три первых цифры, которые являются значением, это 520. Далее идет множитель 9 и отклонение «-1». Произведя несложные расчеты по цветному обозначению, получаем номинал сопротивления элемента, равный 502000 МОм, с допуском в 10%.

Конечно, намного удобнее и проще узнать размер номинального сопротивления в омах, если под рукой есть компьютер или любой гаджет, на который установлена специальная программа - калькулятор цветовых обозначений. Подобное программное обеспечение осуществляет необходимый подбор и избавляет от необходимости производить расчеты. Все, что нужно - это ввести последовательность цветов и количество полос, нанесенных на сопротивление, после чего программа сама рассчитает и выдаст на экран информацию по номиналу этого элемента.

Отклонения от стандартов в маркировках

Конечно, практически все производители наносят цветовую маркировку в соответствии с введенными стандартами. Однако есть и исключения.

К примеру, компания Phillips, которая специализируется на электронике, как бытового, так и промышленного применения, ввела отдельные нормы нанесения маркировок сопротивления по цветам. Дело в том, что полосы у данной компании обозначают не только номинал резистора, но также несут информацию и о технологии изготовления того или иного элемента, а также о некоторых свойствах компонентов. В подобных обозначениях смысл имеет не только нестандартное расположение колец, но и даже цвет резистора, а именно его корпуса.

Еще один пример изменения стандартных маркеров, обозначающих номиналы резисторов по цветам - CGW и Panasonic. Эти фирмы также наносят цветовые кольца в своей последовательности, не подчиняясь общепринятым нормам.

Конечно, для потребителя подобные изменения в нанесении маркеров очень неудобны, но фирмы, их использующие, объясняют это тем, что делается это для предотвращения подделок и установки на их оборудование неоригинальных элементов при выходе их из строя. Может быть, по-своему, они и правы.

Дополнительная информация

Как уже упоминалось, возможно нанесение информации на корпус сопротивления и в более понятном, буквенно-числовом виде. Подобное обозначение может быть лишь при условии наличия такой возможности, то есть, если корпус резистора имеет более крупный размер. Ведь довольно проблематично нанести читаемые числа на элемент размером в 2 мм. Именно по этой причине и были приняты стандарты цветовой маркировки.

Как, наверное, уже стало ясно, прочесть информацию, которую несут полоски на сопротивлении по цветам (то есть понять, как определить номинал резистора), не так уж и сложно. Главное, чтобы под рукой были необходимые таблицы. Ну а если же имеется возможность воспользоваться программой, такой как калькулятор цветовых маркировок резисторов, то тогда вообще любые вопросы, связанные с расшифровкой, отпадают.

В заключение можно добавить, что подобное обозначение имеет свои преимущества - оно никогда не стирается с корпуса, как это было в случаях с советскими резисторами, а потому эти элементы всегда подлежат идентификации.

Расчет номинала резистора по цветовому коду:
укажите количество цветных полос и выберите цвет каждой из них (меню выбора цвета находится под каждой полоской). Результат будет выведен в поле "РЕЗУЛЬТАТ"

Расчет цветового кода для заданного значения сопротивления:
Введите значение в поле "РЕЗУЛЬТАТ" и укажите требуемую точность резистора. Полоски маркировки на изображении резистора будут окрашены соответствующим образом. Количество полос декодер подбирает по следующему принципу: приоритет у 4-полосной маркировки резисторов общего назначения, и только если резисторов общего назначения с таким номиналом не существует, выводится 5-ти полосная маркировка 1% или 0.5% резисторов.

Назначение кнопки "РЕВЕРС":
При нажатии на эту кнопку цветовой код резистора будет перестроен зеркальным образом от исходного. Таким образом можно узнать, возможно ли чтение цветового кода в обратном направлении (справа - налево). Эта функция калькулятора нужна в том случае, когда сложно понять, какая полоска в цветовой маркировке резистора является первой. Обычно первая полоска или толще остальных, или расположена ближе к краю резистора. Но в случаях 5-ти и 6-ти полосной цветовой маркировки прецизионных резисторов может не хватить места, чтобы сместить полоски маркировки к одному краю. А толщина полосок может отличаться весьма незначительно... С 4-полосной маркировкой 5% и 10% резисторов общего назначения все проще: последняя полоска, обозначающая точность - золотистого или серебристого цвета, а эти цвета никак не могут быть у первой полоски.

Назначение кнопки "М+":
Эта кнопка позволит сохранить в памяти текущую цветовую маркировку. Сохраняется до 9 цветовых маркировок резисторов. Кроме того, автоматически сохраняются в память калькулятора все значения, выбранные из колонок примеров цветовой маркировки, из таблицы значений в стандартных рядах, любые значения (правильные и неправильные), введенные в поле "Результат", и только правильные значения, введенные с помощью меню выбора цвета полосок либо кнопок "+" и "-". Функция удобна, когда требуется определить цветовую маркировку нескольких резисторов - всегда можно быстро вернуться к маркировке любого из уже проверенных. Красным цветом в списке обозначаются значения с ошибочной и нестандартной цветовой маркировкой (значение не принадлежит к стандартным рядам, кодированный цветом допуск на резисторе не соответствует допуску стандартного ряда, к которому относится значение и т.д.).

Кнопка "MC": - очистка всей памяти. Для удаления из списка только одной записи покройте оную двойным кликом.

Назначение кнопки "Исправить":
При нажатии на эту кнопку (если в цветовом коде резистора допущена ошибка) будет предложен один из возможных правильных вариантов.

Назначение кнопок "+" и "-" :
При нажатии на них значение в соответствующей полоске изменится на один шаг в большую или меньшую сторону.

Назначение информационное поля (под полем "РЕЗУЛЬТАТ"):
В нем выводятся сообщения, к каким стандартным рядам принадлежит введенное значение (с какими допусками резисторы этого номинала выпускаются промышленностью), а так же сообщения об ошибках. Если значение не является стандартным, то либо вы допустили ошибку, либо производитель резистора не придерживается общепринятого стандарта (что случается).

Примеры цветовой кодировки резисторов:
Слева приведены примеры цветовой маркировки 1%, а справа - 5% резисторов. Кликните по значению в списке, и полоски на изображении резистора будут перекрашены в соответствующие цвета.

Резисторы – самые распространенные элементы в электронной технике, основными параметрами которых являются:

  • номинальное сопротивление;
  • номинальная мощность рассеяния: максимальное количество ватт, выделяемые резистором в виде тепла при работе;
  • допустимое отклонение сопротивления от номинального, выраженное в процентах;
  • температурный коэффициент: изменение сопротивления элемента при изменении температуры на 1°С в процентах.

Новые технологии изготовления приводят к уменьшению размеров электронных компонентов. И если раньше обозначения резисторов были буквенно-цифровыми, то теперь для удобства чтения стали применять маркировку цветными полосами.

Схема цветовой маркировки резисторов

Цветовая маркировка резисторов состоит из трех – шести полос, по мощности же их различают по другим признакам. Первой полосой считается та, что находится ближе к краю. Если размеры детали не позволяют четко выразить этот сдвиг, то первая полоса делается в два раза шире остальных.

Количество полос зависит от допустимой погрешности. Чем допуск меньше – тем больше цифр требуется для записи характеристик компонента. Цветная маркировка резисторов бывает двух видов.

  • Обозначение 3-4 полосками. При этом первые две полоски — мантисса, третья – множитель, четвертая – допуск погрешности в процентах.
  • Обозначение 5-6 полосками. Три первые полоски – мантисса, четвертая – множитель, пятая – допуск, шестая – температурный коэффициент сопротивления.

Каждому из цветов, принятому для обозначения присваивается либо мантисса, либо множитель, любо характеристическое значение. Их можно определить по таблице маркировки резисторов.

Цвет полосы Сопротивление, Ом Допуск, % ТКС, ppm/°С
1 цифра 2 цифра 3 цифра Множитель
Серебристый ±10
Золотистый ±5
Черный 0 0 0 1
Коричневый 1 1 1 10 ±1 100
Красный 2 2 2 10 2 ±2 50
Оранжевый 3 3 3 10 3 15
Желтый 4 4 4 10 4 25
Зеленый 5 5 5 10 5 0,5
Голубой 6 6 6 10 6 ±0,25 10
Фиолетовый 7 7 7 10 7 ±0,1 5
Серый 8 8 8 10 8 ±0,05
Белый 9 9 9 10 9 1

Иногда возникают трудности с определением начала маркировки миниатюрных резисторов. На этот случай разработчики предусмотрели маленькую хитрость: код не может начинаться с серебристой, золотистой и черной полоски. Но у большинства элементов одна из них всегда имеется в конце.

Если определить начало не получается совсем, можно измерить сопротивление элемента мультиметром и оценить его порядок. Затем составить два варианта расшифровки кода с обоих концов и сравнить их с измеренным значением. Подойдет только один вариант.

При расшифровке маркировки резисторов полезно знать, что значащие цифры могут принимать строго определенные значения. В соответствии с ГОСТ 2825-67 они выбираются из стандартных последовательностей – рядов: Е6, Е12, Е24, Е48, Е96, Е192. Чем выше номер ряда, тем меньше допуск погрешности. Последние три ряда используются для элементов, использующихся в точных приборах и устройствах. Далее приводится таблица для наиболее часто встречающихся номиналов сопротивлений.

Таблица рядов сопротивлений
Е6 1,0 1,5 2,2
Е12 1,0 1,2 1,5 1,8 2,2 2,7
Е24 1,0 1,1 1,2 1,3 1,5 1,6 1,8 2,0 2,2 2,4 2,7 3,0
Е6 3,3 4,7 6,8
Е12 3,3 3,9 4,7 5,6 6,8 8,2
Е24 3,3 3,6 3,9 4,3 4,7 5,1 5,6 6,2 6,8 7,5 8,2 9,1

Мощности рассеяния определяются либо по размерам, либо по типу, указанному на корпусе. На принципиальных схемах мощности 0,125 Вт соответствует две косых черты внутри элемента, 0,25 Вт – одна косая черта, 0,5 Вт – горизонтальная. Остальные значения указываются римскими цифрами.

SMD

Обозначение элементов для поверхностного монтажа (SMD) состоит из трех – четырех цифр. Первые две цифры трехзначного кода или три – четырехзначного обозначают мантиссу, последняя цифра – множитель (количество нулей). В результате получается значение сопротивления в Омах.

Иногда в маркировку добавляются буквы:

R или E –ставится на месте десятичной точки;

К – обозначает приставку «кило»;

М – обозначает приставку «мега».

Следующая таблица содержит несколько примеров для расшифровки.

Пример обозначения Расшифровка
101 10∙10 1 = 100 Ом
473 47∙10 3 = 47 000 Ом
225 22∙10 5 = 2 200 000 Ом
27R 27,0 Ом
3К3 3,3 кОм = 3300 Ом
М27 0,27 МОм – 270 000 Ом

Для определения мощности нужно измерить геометрические размеры элемента. В зависимости от них корпусу присвоен типоразмер, ему соответствует мощность, указанная в таблице.

Типоразмер Мощность, Вт Длина Ширина высота
0201 0,05 0,6 0,3 0,23
0402 0,062 1,0 0,5 0,35
0603 0,1 1,6 0,8 0,45
0805 0,125 2,0 1,2 0,4
1206 0,25 3,2 1,6 0,5
2010 0,75 5,0 2,5 0,55
2512 1,0 6,35 3,2 0,55


Просмотров