Онлайн расчет резистора по цвету. Декодер цветовой маркировки резисторов. Пример выбора номинала резистора по буквенным и цифровым кодам

В электро- и радиотехнике существует огромное количество различных деталей, используемых в различных приборах и оборудовании. Для того, чтобы различать их между собой, существуют разные способы маркировки. Одним из наиболее характерных примеров является маркировка резисторов по цвету, наносимая на корпус специальными цветными кольцами. Каждый цвет соответствует конкретному цифровому коду, отражающему все основные характеристики детали.

Как маркируются резисторы

Цветная маркировка была введена для того, чтобы облегчить определение номинала в том или ином резисторе, независимо от его расположения в различных схемах. При нанесении происходит сдвиг цветной маркировки в сторону одного из выводов. Чтение и расшифровка кода производится слева направо. Ближе всех к выводу резистора расположена самая первая полоска.

В случае небольшого размера детали, маркировка не может быть сдвинута к какому-либо выводу. В связи с этим, ширина первого знака примерно в два раза превышает размеры остальных полос.

Зарубежные производители маркируют свои изделия четырьмя цветными кольцами. Три первых кольца позволяют определить сопротивление резистора. Первое и второе кольцо обозначает цифру, а цвет третьего кольца обозначает количество нулей или множитель. Цвет четвертого кольца является допустимым отклонением от номинального сопротивления каждого вида резисторов. Единицей измерения сопротивления служит Ом. Поскольку это совсем небольшая величина, характеристики резисторов для удобства указываются в килоомах (КОм).

Расшифровка маркировки по цвету

Расшифровка маркировки резисторов, как уже было сказано, производится слева направо. Сами цвета расшифровываются с помощью таблицы, приведенной выше. На данном конкретном примере первый цвет красный соответствует цифре 2, фиолетовый - цифре 7, желтый - означает 4 нуля. После расшифровки номинальное сопротивление резистора будет составлять 2+7+0000, то есть 270000 Ом или 270 КОм.

Если сопротивление резистора составляет ниже 10 Ом, для его маркировки применяются дополнительные цвета, заменяющие обычную третью полосу с нулями. В данном случае, это золотой цвет, означающий х 0,1 и серебряный цвет, означающий х 0,01. Фактически, они служат понижающими коэффициентами. Первые две полоски остаются прежними. Поэтому маркировка резисторов по цвету менее 10 Ом будет выглядеть следующим образом: Красный + фиолетовый + золотой показывают 27 х 0,1 = 2,7 Ом. Зеленый + голубой + серебряный показывают 56 х 0,01 = 0,56 Ом.

Данная маркировка позволяет заранее подобрать нужные резисторы со всеми необходимыми параметрами.

Резисторы относятся к наиболее простым, с точки зрения понимания и конструктивного исполнения, радиоэлектронным элементам. Однако при этом они занимают лидирующее место по применению в схемах различных электронных устройств. Поэтому очень важно научится применять их в практических целях, уметь самостоятельно рассчитать необходимые параметры и правильно выбрать резистор с соответствующими характеристиками. Этим и другим вопросам посвящена данная статья.

Основное назначение резисторов – ограничивать величину тока и напряжения в электрической цепи с целью обеспечения нормального режима работы остальных электронных компонентов электрической схемы, таких как транзисторы, диоды, светодиоды, микросхемы и т.п.

Первооткрывателей такого свойства электрической цепи, как сопротивление является выдающийся немецкий ученый Георг Симон Ом, поэтому за единицу измерения электрического сопротивления приняли Ом . Наиболее практическое применение получили килоомы , мегаомы и гигаомы .

Расширенный список сокращений и приставок системы СИ физических величин, используемых в радиоэлектронике. Максимальное значение 1018 – экса, а минимальное – 10-18 – атто. Надеюсь, приведенная таблица станет полезной.

Условно резисторы подразделяются на два больших подвида: постоянные и переменные.

Постоянные резисторы

Постоянные резисторы могут иметь различное конструктивное исполнение, в основном отличающееся внешним видом и размерами. Характерной особенностью постоянных резисторов является постоянное значение сопротивления, которое не предусматривается изменять в процессе эксплуатации радиоэлектронной аппаратуры.

Подстроечные резисторы

Подстроечные резисторы применяются для тонкой настройки отдельных узлов радиоэлектронной аппаратуры на этапе ее окончательной регулировки перед выдачей в эксплуатацию. Чаще всего подстроечные резисторы не имеют специальной регулировочной рукоятки, а изменение сопротивления выполняется с помощью отвертки, что предотвращает самопроизвольное изменение положения регулировочного узла, а соответственно и сопротивления.

В некоторых устройствах после окончательной их регулировки на корпус и поворотный винт подстроечного резистора наносится краска, которая предотвращает поворот винта при наличии вибраций. Также метка, нанесенная краской, служит одновременно и индикатором самопроизвольного поворота регулировочного винта, что можно визуально определить по срыву краски в месте поворотного и стационарного элементов корпуса.

В современных электронных устройствах получили широкое применение многооборотные подстроечные резисторы, позволяющие более тонко выполнять регулировку аппаратуры. Как правило, они имеют синий пластиковый корпус прямоугольной формы.

Переменные резисторы

Переменные резисторы применяются для изменения электрических параметров в схеме устройства непосредственно в процессе работы, например для изменения яркости света светодиодных ламп или громкости звука приемника. Часто, вместо «переменный резистор» говорят потенциометр или реостат .

Также к переменным резисторам относятся радиоэлементы, имеющие всего два вывода, а сопротивление их изменяется в зависимости от освещенности или температуры, например фоторезисторы или терморезисторы.
Потенциометры применяются для изменения величины силы тока или напряжения. Регулируемый параметр зависит от схемы включения.

Если переменный либо подстроечный резистор используется в качестве регулятора тока , но его называют реостатом .

Ниже приведены две схемы, в которых реостат применяется для регулировки величины тока, протекающего через светодиод VD. В конечном итоге изменяется яркость свечения светодиода.

Обратите внимание, в первой цепи задействованы все три вывода реостата, а во второй – только два – средний (регулирующий) и один крайний. Обе схемы полностью работоспособны и выполняют возлагаемые на них функции. Однако вторую цепь применять менее предпочтительно, поскольку свободный вывод реостата, как антенна, может «поймать» различные электромагнитные излучения, что повлечет за собой изменение параметров электрической цепи. Особенно не рекомендуется применять такую электрическую цепь в усилительных каскадах, где даже незначительная электромагнитная наводка приведет к непредсказуемой работе аппаратуры. Поэтому берем за основу первую схему.

Изменять величину напряжения потенциометром можно по такой схеме: параллельно источнику питания подключается два крайних вывода; между одним крайним и средним выводами можно плавно регулировать напряжение от 0 до напряжения источника питания. В данном случае, от нуля до 12 В. Потенциометр служит делителем напряжения, которому более подробно уделено внимание в отдельной статье.

Условное графическое обозначение (УГО) резисторов

На чертежах электрических схем в независимости от внешнего вида резистора его обозначают прямоугольником. Прямоугольник подписывается латинской буквой R с цифрой, обозначающей порядковый номер данного элемента на чертеже. Ниже указывается номинальное значение сопротивления.

В некоторых государствах УГО резистора имеет следующий вид.

Резистор, как и любой другой элемент, обладающий активным сопротивлением, подвержен нагреву при протекании через него тока. Природа нагрева заключается в том, что при движении электроны встречают на своем пути препятствия и ударяются об них. В результате столкновений кинетическая энергия электрона передается препятствиям, что вызывает нагрев последних. Аналогично нагревается гвоздь, когда по нему долго бьют молотком.

Мощность рассеивания нормируемый параметр для любого резистора и если ее не выдерживать, то он перегреется и сгорит.

Мощность рассеивания P линейно зависит от сопротивления R и в квадрате от тока I

P=I 2 R

Значение допустимой P показывает, какую мощность способен рассеять резистор не перегреваясь выше допустимой температуры в течение длительного времени.

Как правило, чем выше P , тем большие размеры имеет резистор, чтобы отвести и рассеять больше тепла.

На чертежах электрических схем этот параметр наносится в виде определенных меток.

Если прямоугольник пустой – значит мощность рассеивания не нормирована, поэтому можно применять самый «маленький» резистор.

Более наглядные примеры расчета P можно посмотреть здесь .

Классы точности и номиналы резисторов

Ни один радиоэлектронный элемент невозможно выполнить со сто процентным соблюдением требуемых характеристик, так как точность связана с рядом параметров и технологических процессов, которым присуща погрешность, в основном связана с точностью производственного оборудования. Поэтому любая деталь или отдельный элемент имеют отклонение от заданных размеров или характеристик. Причем, чем меньший разброс характеристик, тем точнее производственное оборудование и выше конечная стоимость изделия. Поэтому далеко не всегда оправдано применение изделий с минимальными отклонениями характеристик. В связи с этим введены классы точности. В радиолюбительской практике наибольшее применение находят резисторы трех классов точности: I, II и III. Последним временем резисторы второго и третьего классов точности встречаются довольно редко, но мы их рассмотрим в качестве примера.

К I-му классу относится допуск отклонения сопротивления от номинального значения ±5%, II –му – ±10%, III –му – ±20%. Например, при номинальном значении сопротивления 100 Ом резистора I класса, допустимое отклонение может находиться в диапазоне 95…105 Ом; для II-го – 90…110 Ом; для III -го – 80…120 Ом.
Резисторы более высокого класса точности, с допуском 1% и менее, относятся к прецизионным. Они имеют более высокую стоимость, поэтому их применение оправдано только в измерительной и высокоточной технике.

Все стандартные значения сопротивлений I…III классов точности приведены выше в таблице, значения из которой могут умножаться на 0,1; 1, 10, 100, 1000 и т.д. Например, резисторы I-го класса изготавливаются со значениями 1,3; 13; 130; 1300; 13000; 130000 Ом и т.п.

В зависимости от класса точности, номинальные значения выпускаемых промышленностью резисторов строго стандартизированы. Например, если потребуется сопротивление 17 Ом I-го класса, то вы его не найдете, поскольку данный номинал не изготавливается в соответствующем классе точности. Вместо него следует выбрать ближайший номинал – 16 Ом или 18 Ом.

Маркировка резисторов служит для визуального восприятия ряда параметров, характерных для данных электронных элементов. Среди прочих параметров следует выделить три основных: номинальное значение сопротивления, и . Именно на эти параметры в первую очередь обращают внимание при выборе рассматриваемых радиоэлементов.

На протяжении долгих лет существовало много типов маркировки, однако постепенно, по мере развития технологических процессов, пару типов маркировки вытеснили все остальные.

На корпусах советских резисторов, которые все еще широко используются, наносится маркировка в виде цифр и букв. Латинские буквы «E» и «R», стоящие рядом с цифрами или только цифры, обозначают сопротивление в омах, например 21; 21E, 21R – 21 Ом. Буквы «k» и «M» означают соответственно килоомы и мегаомы. Например, если буква стоит перед цифрами или посреди них, то она одновременно служит десятичной точкой: 68к – 68 кОм; 6к8 – 6,8 кОм; к68 – 0,68 кОм.

Для большинства радиоэлектронных элементов сейчас применяется цветовая маркировка. Такой подход является вполне рациональный, поскольку цветные метки проще рассмотреть, чем цифры и буквы, поэтому хорошо распознаются даже на самых мелких корпусах.

Цветная маркировка резисторов наносится на корпус в виде четырех или пяти цветных колец или полос. В первом случае (4 полосы) первые две полосы обозначают мантису, а во втором (5 полос) – мантису обозначают три полосы. Третье или соответственно 4-е кольцо указывают множитель. Четвертое или пятое – допустимое отклонение в процентах от номинального сопротивления.

По моему мнению и личному опыту, гораздо удобней, проще и практичней измерять сопротивление мультиметром. Здесь наименьшая вероятность допустить ошибку, поскольку цвета колец не всегда четко различимы. Например, красный цвет можно принять за оранжевый и наоборот. Однако, выполняя измерения, следует избегать касания пальцами щупов мультиметра и выводов резистора. В противном случае тело человека зашунтирует резистор, и результаты измерений будут заниженные.

Характерной особенностью SMD резисторов по сравнению с выводными аналогами являются минимальные габариты при сохранении необходимых характеристик.

В SMD компонентах отсутствуют гибкие выводы, вместо них имеются контактные площадки, посредством которых производится пайка SMD детали на аналогичные поверхности, предусмотренные на печатной плате. По этой причине SMD компоненты называют компонентами для поверхностного монтажа.

Благодаря смене традиционного корпуса на SMD упростился процесс автоматизации изготовления печатных плат, что позволило значительно снизить затраты время на изготовление электронного изделия, его массы и габаритов.

Маркировка SMD резисторов чаще всего состоит из трех цифр. Первые две указывают мантису,а третья – множитель или количество нулей, следующих после двух предыдущих цифр. Например, маркировка 681 означает 68×101 = 680 Ом, то есть после числа 68 нужно прибавить один ноль.

Если все три цифры – нули, то это перемычка, сопротивление такого SMD резистора близкое к нулю.

Для резисторов с точностью 20 % используют маркировку с тремя полосками, для резисторов с точностью 10 % и 5 % маркировку с четырьмя полосками, для более точных резисторов с пятью или шестью полосками. Первые две полоски всегда означают первые два знака номинала. Если полосок 3 или 4, третья полоска означает десятичный множитель, то есть степень десятки, которая умножается на число, состоящее из двух цифр, указанное первыми двумя полосками. Если полосок 4, последняя указывает точность резистора. Если полосок 5, третья означает третий знак сопротивления, четвёртая - десятичный множитель, пятая - точность. Шестая полоска, если она есть, указывает температурный коэффициент сопротивления (ТКС). Если эта полоска в 1,5 раза шире остальных, то она указывает надёжность резистора (% отказов на 1000 часов работы)

Следует отметить, что иногда встречаются резисторы с 5 полосами, но стандартной (5 или 10 %) точностью. В этом случае первые две полосы задают первые знаки номинала, третья - множитель, четвёртая - точность, а пятая - температурный коэффициент.

Маркировка в виде 4 колец


Маркировка в виде 5 колец


Калькулятор номиналов SMD-резисторов

Кодирование 3-я цифрами

Кодирование 4-я цифрами

  • Похожие статьи

Войти с помощью:

Случайные статьи

  • 05.10.2014

    Данный предусилитель прост и имеет хорошие параметры. Эта схема основана на TCA5550, содержащий двойной усилитель и выходы для регулировки громкости и выравнивания ВЧ, НЧ, громкости, баланса. Схема потребляет очень малый ток. Регуляторы необходимо как можно ближе расположить к микросхеме, чтобы уменьшить помехи, наводки и шум. Элементная база R1-2-3-4=100 Kohms C3-4=100nF …

  • 16.11.2014

    На рисунке показана схема простого 2-х ваттного усилителя (стерео). Схема проста в сборке и имеет низкую стоимость. Напряжение питания 12 В. Сопротивление нагрузки 8 Ом. Схема усилителя Рисунок печатной платы (стерео)

  • 20.09.2014

    Его смысл pазличен для pазных моделей винчестеpов. В отличие от высокоуpовневого фоpматиpования — создания pазделов и файловой стpуктуpы, низкоуpовневое фоpматиpование означает базовую pазметку повеpхностей дисков. Для винчестеpов pанних моделей, котоpые поставлялись с чистыми повеpхностями, такое фоpматиpование создает только инфоpмационные сектоpы и может быть выполнено контpоллеpом винчестеpа под упpавлением соответствующей пpогpаммы. …

Резистор - один из основных элементов электрической цепи, который обладает постоянным или переменным сопротивлением и служит для преобразования электрического тока в напряжение (и наоборот), поглощения электроэнергии и для выполнения ряда других операций.

Этот пассивный элемент является неотъемлемой частью любого прибора. Поэтому, считаете вы себя опытным электриком или только любителем радиоэлектроники, вам пригодится и полосками цветными, и буквенно-цифровые обозначения для сличения характеристик разных компонентов.

на схемах

На принципиальных схемах электрических устройств резистор обозначается в виде прямоугольника, сверху которого ставится буква латинского алфавита R. Вслед за символом идет порядковый номер, по которому элемент можно найти в спецификации. Завершает схемное обозначение набор чисел, которые указывают на номинальное сопротивление. Так, надпись R12 100 будет означать, что установлен 12 в 100 Ом.

Важной характеристикой элементов является их мощность. Проигнорировав этот параметр, вы рискуете вывести из строя всю схему, даже если определение маркировки резисторов было выполнено правильно. На схемах она обозначается:

  • римскими цифрами в пределах от 1 до 5 Ватт;
  • горизонтальной полосой при значении 0,5 Ватт;
  • одной или двумя наклонными линиями при мощности 0,25 и 0,125 Ватт соответственно.

После порядкового номера некоторых резисторов может стоять знак "*". Он означает, что приведенные характеристики являются лишь приблизительными. Точные значения вам необходимо будет подобрать самостоятельно.

Буквенно-цифровое обозначение

Буквенно-цифровая маркировка характерна для элементов советского производства, а также некоторых изделий мирового уровня.

Маркировка импортных резисторов и отечественных продуктов может начинаться как с цифры, так и с символа. При этом единицы измерения обозначают следующим образом:

  • символ «Е» или «R» говорит о том, что номинал выражен в омах;
  • буква «М» сообщает нам о том, что сопротивление выражено в мегаомах;
  • знаком «К» дополняются все численные значения, выраженные в килоомах.

Если символ стоит после чисел, то все значения выражены в целых единицах (33Е=33 Ом). Чтобы обозначить дробь букву ставят перед цифрами (К55=0,55 килоом=550 Ом). Если знак разделяет числа, то выражено в целых значениях с дробной частью (1М3 = 1,3 мегаома).

Обозначение номинала цветом

Длина некоторых «сопротивлений» составляет всего несколько миллиметров. Нанести и рассмотреть буквы и цифры на таком элементе невозможно. Для сличения таких компонентов применяется маркировка резисторов полосками цветными. Первые две полосы всегда отвечают за номинал. Другие по счету полоски имеют определенное значение:

  • в 3- или 4-полосных маркировках третья черточка определяет множитель, а четвертая - точность;
  • в 5-полосных обозначениях третий цвет указывает на номинал, четвертый - множитель, а пятый - точность;
  • шестая полоса указывает на либо на надежность элемента, если она толще остальных.

Цвет полос указывает на присвоенные им числовые значения. Разобраться с этим поможет таблица маркировки резисторов, где каждому оттенку соответствует определенный множитель, либо цифра.

Например, мы имеем резистор с красной, зеленой, коричневой и синей полосками. Расшифровав значения, мы узнаем, что перед нами резистор сопротивлением 25*10 точностью 25%.

Последовательность полосок

Как определить, с какой стороны начинать расшифровку? Ведь маркировка резисторов полосками цветными может расшифровываться в обе стороны.

Чтобы не запутаться в этом, следует запомнить несколько простых правил:

  1. Если имеется всего три полосы, то первая будет располагаться всегда ближе к краю, чем последняя.
  2. В 4-полосных элементах направление чтения следует определять по серебряному или золотому цвету - они всегда будут располагаться ближе к концу.
  3. В остальных случаях надо читать так, чтобы получилось значение из номинального ряда. Если не получается, стоит расшифровывать с другой стороны.

Отдельным случаем является расположение одной черной перемычки на корпусе. Она означает, что элемент не имеет сопротивления и используется как перемычка. Теперь вы знаете, как читается маркировка резисторов полосками цветными, и проблем с определением номинала элемента у вас не возникнет.

Резисторы – самые распространенные элементы в электронной технике, основными параметрами которых являются:

  • номинальное сопротивление;
  • номинальная мощность рассеяния: максимальное количество ватт, выделяемые резистором в виде тепла при работе;
  • допустимое отклонение сопротивления от номинального, выраженное в процентах;
  • температурный коэффициент: изменение сопротивления элемента при изменении температуры на 1°С в процентах.

Новые технологии изготовления приводят к уменьшению размеров электронных компонентов. И если раньше обозначения резисторов были буквенно-цифровыми, то теперь для удобства чтения стали применять маркировку цветными полосами.

Схема цветовой маркировки резисторов

Цветовая маркировка резисторов состоит из трех – шести полос, по мощности же их различают по другим признакам. Первой полосой считается та, что находится ближе к краю. Если размеры детали не позволяют четко выразить этот сдвиг, то первая полоса делается в два раза шире остальных.

Количество полос зависит от допустимой погрешности. Чем допуск меньше – тем больше цифр требуется для записи характеристик компонента. Цветная маркировка резисторов бывает двух видов.

  • Обозначение 3-4 полосками. При этом первые две полоски — мантисса, третья – множитель, четвертая – допуск погрешности в процентах.
  • Обозначение 5-6 полосками. Три первые полоски – мантисса, четвертая – множитель, пятая – допуск, шестая – температурный коэффициент сопротивления.

Каждому из цветов, принятому для обозначения присваивается либо мантисса, либо множитель, любо характеристическое значение. Их можно определить по таблице маркировки резисторов.

Цвет полосы Сопротивление, Ом Допуск, % ТКС, ppm/°С
1 цифра 2 цифра 3 цифра Множитель
Серебристый ±10
Золотистый ±5
Черный 0 0 0 1
Коричневый 1 1 1 10 ±1 100
Красный 2 2 2 10 2 ±2 50
Оранжевый 3 3 3 10 3 15
Желтый 4 4 4 10 4 25
Зеленый 5 5 5 10 5 0,5
Голубой 6 6 6 10 6 ±0,25 10
Фиолетовый 7 7 7 10 7 ±0,1 5
Серый 8 8 8 10 8 ±0,05
Белый 9 9 9 10 9 1

Иногда возникают трудности с определением начала маркировки миниатюрных резисторов. На этот случай разработчики предусмотрели маленькую хитрость: код не может начинаться с серебристой, золотистой и черной полоски. Но у большинства элементов одна из них всегда имеется в конце.

Если определить начало не получается совсем, можно измерить сопротивление элемента мультиметром и оценить его порядок. Затем составить два варианта расшифровки кода с обоих концов и сравнить их с измеренным значением. Подойдет только один вариант.

При расшифровке маркировки резисторов полезно знать, что значащие цифры могут принимать строго определенные значения. В соответствии с ГОСТ 2825-67 они выбираются из стандартных последовательностей – рядов: Е6, Е12, Е24, Е48, Е96, Е192. Чем выше номер ряда, тем меньше допуск погрешности. Последние три ряда используются для элементов, использующихся в точных приборах и устройствах. Далее приводится таблица для наиболее часто встречающихся номиналов сопротивлений.

Таблица рядов сопротивлений
Е6 1,0 1,5 2,2
Е12 1,0 1,2 1,5 1,8 2,2 2,7
Е24 1,0 1,1 1,2 1,3 1,5 1,6 1,8 2,0 2,2 2,4 2,7 3,0
Е6 3,3 4,7 6,8
Е12 3,3 3,9 4,7 5,6 6,8 8,2
Е24 3,3 3,6 3,9 4,3 4,7 5,1 5,6 6,2 6,8 7,5 8,2 9,1

Мощности рассеяния определяются либо по размерам, либо по типу, указанному на корпусе. На принципиальных схемах мощности 0,125 Вт соответствует две косых черты внутри элемента, 0,25 Вт – одна косая черта, 0,5 Вт – горизонтальная. Остальные значения указываются римскими цифрами.

SMD

Обозначение элементов для поверхностного монтажа (SMD) состоит из трех – четырех цифр. Первые две цифры трехзначного кода или три – четырехзначного обозначают мантиссу, последняя цифра – множитель (количество нулей). В результате получается значение сопротивления в Омах.

Иногда в маркировку добавляются буквы:

R или E –ставится на месте десятичной точки;

К – обозначает приставку «кило»;

М – обозначает приставку «мега».

Следующая таблица содержит несколько примеров для расшифровки.

Пример обозначения Расшифровка
101 10∙10 1 = 100 Ом
473 47∙10 3 = 47 000 Ом
225 22∙10 5 = 2 200 000 Ом
27R 27,0 Ом
3К3 3,3 кОм = 3300 Ом
М27 0,27 МОм – 270 000 Ом

Для определения мощности нужно измерить геометрические размеры элемента. В зависимости от них корпусу присвоен типоразмер, ему соответствует мощность, указанная в таблице.

Типоразмер Мощность, Вт Длина Ширина высота
0201 0,05 0,6 0,3 0,23
0402 0,062 1,0 0,5 0,35
0603 0,1 1,6 0,8 0,45
0805 0,125 2,0 1,2 0,4
1206 0,25 3,2 1,6 0,5
2010 0,75 5,0 2,5 0,55
2512 1,0 6,35 3,2 0,55


Просмотров