О логических линиях, позволяющих обнаруживать новые физические эффекты. Какие существуют типы физических явлений

Использование полупроводников в электронике прошло длительный путь – от первого детектора на кристалле сернистого свинца и до современных микро – ЭВМ. Такой результат достигнут благодаря успехам технологии, которая, в свою очередь, опирается на физическую электронику. В наши дни развитие микро- и наноэлектроники непрерывно стимулируется успехами в области физики полупроводников и в области технологии производства новых полупроводниковых структур.

По самому смыслу слов физической электроникой называют науку, которая занимается изучением и использованием потоков движущихся электронов, порождающих электрический ток. Или, так принято называть науку, изучающую электронные свойства некоторых твердых тел, а также методы получения материалов с такими характеристиками, которые позволяют создавать устройства для передачи и накопления электронов. При этом рассматриваются не любые материалы, а лишь полупроводники, характеристики которых интересны с точки зрения технических приложений.

Цели

Дисциплина «Физические основы электроники» относится к группе естественно-научных дисциплин и ее целью является изучение физики электрических явлений в твердых телах. Особое внимание уделяется основам зонной теории твердых тел, физическим механизмам и математическому описанию основных (электрических, тепловых, оптических и магнитных) свойств равновесных, неравновесных полупроводников, особенностям контактов различных веществ, поверхностным состояниям твердых тел. Рассматриваются различные физические эффекты, а также их применение в различных приборах и элементах.

Формируемые компетенции

В результате изучения дисциплины студенты должны

    основы теории твердых тел,

    физические механизмы и математические описания основных (электрических, тепловых, оптических, магнитных) свойств равновесных полупроводников,

    физические механизмы и математические описания основных (электрических, тепловых, оптических, магнитных) свойств неравновесных полупроводников,

    физические механизмы и математические описания основных свойств контактов различных веществ,

    физические механизмы и математические описания поверхностных состояний твердых тел.

    экспериментально исследовать свойства полупроводниковых материалов и структур,

    использовать основные приемы обработки экспериментальных данных,

    осуществлять информационный поиск по свойствам и использованию различных физических эффектов в электронике,

    решать задачи по оценке параметров физических процессов и свойств твердых тел,

    использовать математические методы в технических приложениях.

    навыками работы с электронными приборами и аппаратурой, используемой для исследования характеристик и измерения параметров приборов,

    методами расчета основных параметров полупроводниковых материалов и структур.

Физический эффект и его компоненты

  1. Определение физического эффекта

Для однозначности толкования понятия физический эффект принято следующее определение: физический эффект – это закономерность проявления результатов взаимодействия объектов материального мира, осуществляемого посредством физических полей. При этом закономерность проявления характеризуется последовательностью и повторяемостью при идентичности взаимодействия.

Все физические поля и их модификации будем рассматривать как воздействия в отрыве от тех материальных объектов, от которых они исходят.

Воздействие всегда направлено на некоторый материальный объект (в дальнейшем просто «объект»), которым может быть отдельный элемент или совокупность взаимосвязанных элементов, образующих определенную структуру. Так, к объектам могут быть отнесены: системы из макротел (в том числе детали приборов, механизмов и т. д.), макротела (твердое тело, жидкость, кристалл и т.п.), молекула, атом, части атомов и молекул, частицы и т. д.

Результаты воздействия – это эффекты, проявляющиеся на объектах (или в окружающем их пространстве), на которые направлены определенные воздействия. Результатами воздействия являются те же физические поля, которые относятся к воздействиям. Этим обусловливается взаимосвязь между ФЭ, которая используется в объектах техники. К результатам воздействия относятся также измерения параметров объектов (размеров, формы, диэлектрической проницаемости и т. д.). При постоянстве условий взаимодействия и свойств объекта проявляются одни и те же результаты воздействия.

На рис. 1 изображена схема представления отдельного ФЭ, где А – воздействие, В – физический объект, на который оказывается воздействие, С – результат воздействия (эффект). Схематическое изображение ФЭ позволяет наглядно представлять физические процессы, происходящие при взаимодействии материальных объектов, в том числе в объектах техники.

Рис. 1. Структурная схема ФЭ

О Г Л А В Л Е Н И Е
ВВЕДЕНИЕ
1. Механические эффекты
1.1. Силы инерции.
1.1.1. Инерционное напряжение.
1.1.2. Центробежные силы.
1.1.3. Момент инерции.
1.1.4. Гироскопичекий эффект.
1.2. Гравитация.
1.3. Трение.
1.3.1. Явление аномально низкого трения.
1.3.2. Эффект безысносности.
1.3.3. Эффект Джонсона-Рабека.
2. Деформация.
2.1. Общая характеристика.
2.1.1. Связь электропроводности с деформацией.
2.1.2. Электропластический эффект.
2.1.3. Фотопластический эффект.
2.1.4. Эффект Баушингера.
2.1.5. Эффект Пойнтинга.
2.2. Передача энергии при ударах. Эффект
Ю.Александрова.
2.3. Эффект радиационного распухания.
2.4. Сплавы с памятью.
3. Молекулярные явления.
3.1. Тепловое расширение вещества.
3.1.1. Сила теплвого расширения.
3.1.2. Получение высокого давления.
3.1.3. Разность эффекта.
3.1.4. Точность теплового расширения.
3.2. Фазовые переходы. Агрегатное состояние вещества.
3.2.1. Эффект сверхпластичности.
3.2.2. Изменение плотности и модуля упругости при
фазовых переходах.
373. Поверхностные явления. Капиллярность.
3.3.1. Поверхностная энергия.
3.3.2. Смачивание.
3.3.3. Автофобность.
3.3.4. Капиллярное давление, испарение и конденсация
3.3.5. Эффект капиллярного подьема.
3.3.6. Ультразвуковой капиллярный эффект.
3.3.7. Термокапиллярный эффект.
3.3.8. Электрокапиллярный эффект.
3.3.9. Капиллярный полупроводник.
3.4. Сорбция.
3.4.1. Капиллярная конденсация.
3.4.2. Фотоадсорбционный эффект.
3.4.3. Влияние электрического поля на адсорбцию.
3.4.4. Адсорболюминесценция.
3.4.5. Радикально-рекомбинационная люминесценция.
3.4.6. Адсорбционная эмиссия.
3.4.7. Влияние адсорбции на электропроводность
полупроводников.
3.5. Диффузия.
3.5.1. Эффект люфора.
3.6. Осмос.
3.6.1. Электроосмос.
3.6.2. Обратный осмос.
3.7. Тепломассообмен.
3.7.1. Тепловые трубы.
3.8. Молекулярные неолитовые сита.
3.8.1. Цветовые эффекты в неолитах.
4. ГИДРОСТАТИКА. ГИДРО-АЭРОДИНАМИКА.
4.1.1. Закон Архимеда.
4.1.2. Закон Паскаля.
4.2. Течение жидкости и газа.
4.2.1. Ламинарность и турбулентность.
4.2.2. Закон Беркулли.
4.2.3. Вязкость.
4.2.4. Вязкоэлектрический эффект.
4.3. Явление сверхтекучести.
4.3.1. Сверхтеплопроводность.
4.3.2. Термомеханический эффект.
4.3.3. Механокалорический эффект.
4.3.4. Перенос по пленке.
4.4.2. Скачок уплотнения.
4.4.3. Эффект Коанда.
4.4.4. Эффект воронки.
4.5. Эффект Магнуса.
4.6. Дросселирование жидкостей и газов.
4.6.1. Эффект Джоуля-Томсона.
4.7. Гидравлические удары.
4.7.1. Электрогидравлический удар.
4.7.2. Светогидравлический удар.
4.8. Квитанция.
4.8.1. Гидродинамическая квитанция.
4.8.2. Акустическая квитанция.
4.8.3. Сонолюминесценция.
5. КОЛЕБАНИЯ И ВОЛНЫ.
5.1. Механические колебания.
5.1.1. Свободные колебания.
5.1.2. Вынужденные колебания.
5.1.3. Явление резонанса.
5.1.4. Автоколебания.
5.2. Акустика.
5.2.1. Явление реверберации.
5.3. Ультразвук.
5.3.1. Пластическая деформация и упрочнение.
5.3.2. Влияние ультразвука на физико-химические свойства
металлических расплавов:
5.3.2.1. на вязкость
5.3.2.2. на поверхностное натяжение
5.3.2.3. на теплообмен
5.3.2.4. на диффузию
5.3.2.5. на растворимость металлов и сплавов
5.3.2.6. на модифицирование сплавов
5.3.2.7. на дегазацию расплавов.
5.3.3. Ультразвуковой капиллярный эффект.
5.3.4. Некоторые возможности использования ультразвука.
5.3.5. Акустомагнетоэлектрический эффект.
5.4. Волновое движение.
5.4.1. Стоячие волны.
5.4.2. Эффект Допплера-Физо.
5.4.3. Поляризация.
5.4.4. Дифракция.
5.4.5. Интерференция.
5.4.6. Голография.
6. ЭЛЕКТРОМАГНИТНЫЕ ЯВЛЕНИЯ.
6.1. Взаимодействие тел.
6.1.1. Закон Кулона.
6.2. Индуцированные заряды.
6.3. Втягивание диэлектрика в конденсатор.
6.4. Закон Джоуля-Ленца.
6.5. Проводимость металлов.
6.5.1. Влияние фазовых переходов.
6.5.2. Влияние высоких давлений.
6.5.3. Влияние состава.
6.6. Сверпроводимость.
6.6.1. Критические значения параметров.
6.7. Электромагнитное поле.
6.7.1. Магнитная индукция. Сила Лоренца.
6.7.2. Движение зарядов в магнитном поле.
6.8. Проводник с током в магнитном поле.
6.8.1. Взаимодействие проводников с током.
6.9. Электродвижущая сила индукции.
6.9.1. Взаимная индукция.
6.9.2. Самоиндукция.
6.10. Индукционные токи.
6.10.1. Токи Фуко.
6.10.2. Механическое действие токов Фуко.
6.10.3. Магнитное поле вихревых токов. Эффект Мейснера.
6.10.4. Подвеска в магнитном поле.
6.10.5. Поверхностный эффект.
6.11. Электромагнитные волны.
6.11.1. Излучение движущегося заряда.
6.11.2. Эффект Вавилова-Черенкова.
6.11.3. Бататронное излучение.
7. ДИЭЛЕКТРИЧЕСКИЕ СВОЙТВА ВЕЩЕСТВА.
7.1.1. Изоляторы и полупроводники.
7.1.2. Сопротивление электрическому току.
7.1.3. Тепловые потери.
7.2. Диэлектрическая проницаемость.
7.2.1. Частотная зависимость.
7.3. Пробой диэлектриков.
7.4. Электромеханические эффекты в диэлектриках.
7.4.1. Электростракция.
7.4.2. Пьезоэлектрический эффект.
7.4.3. Обратный пьеэоэффект.
7.5. Пироэлектрики.
7.5.2. Сегнетоэлектрики.
7.5.3. Сегнетоэлектрическая температура Кюри.
7.5.4. Антисегнетоэлектрики.
7.5.5. Сегнетоферромагнетики.
7.5.6. Магнитоэлектрический эффект.
7.6. Влияние электрического поля и механических напряжений
на сегнетоэлектрический эффект.
7.6.1. Сдвиг температуры Кюри.
7.6.2. Аномалии свойств при фазовых переходах.
7.6.3. Пироэффект в сегнетоэлектриках.
7.7. Электреты.
8. МАГНИТНЫЕ СВОЙСТВА ВЕЩЕСТВА.
8.1. Магнетики.
8.1.1. Диамагнетики.
8.1.2. Парамагнетики.
8.1.3. Ферсомагнетизм.
8.1.3.1. Точка Кюри.
8.1.4. Антиферомагнетики.
8.1.4.1. Точка Нееля.
8.1.5. Температурный магнитный гистерезис.
8.1.6. Ферромагнетизм.
8.1.7. Супермарамагнетизм.
8.1.8. Пьезомагнетики.
8.1.9. Магнитоэлектрики.
8.2. Магнитокалорический эффект.
8.3. Магнитострикция.
8.3.1. Термострикция.
8.4. Магнитоэлектрический эффект.
8.5. Гиромагнитные явления.
8.6. Магнитоакустический эффект.
8.7. Ферромагнитный резонанс.
8.8. Аномалии свойств при фазовых переходах.
8.8.1. Эффекты Гипокинса и Баркгаузена.
9. КОНТАКТНЫЕ, ТЕРМОЭЛЕКТРИЧЕСКИЕ И ЭМИССИОННЫЕ
ЯВЛЕНИЯ.
9.1. Контактная разность потенциалов.
9.1.1. Трибоэлектричество.
9.1.2. Вентильный эффект.
9.2. Термоэлектрические явления.
9.2.1. Эффект Зеебека.
9.2.2. Эффект Пельтье.
9.2.3. Явление Томсона.
9.3. Электронная эмиссия.
9.3.1. Автоэлектронная эмиссия.
9.3.2. Эффект Мольтере.
9.3.3. Тунельный эффект.
10. ГАЛЬВАНО- И ТЕРМОМАГНИТНЫЕ ЯВЛЕНИЯ.
10.1.1. Гальваномагнитные явления.
10.1.2. Эффект Хола.
10.1.3. Эффект Этиингсгаузена.
10.1.4. Магнитоопротивление.
10.1.5. Эффект Томсона.
10.2. Термомагнитные явления.
10.2.1. Эффект Нернета.
10.2.2. Эффект Риги-Ледюка.
10.2.3. Продольные эффекты.
10.2.4. Электронный фототермомагнитный эффект.
11. ЭЛЕКТРИЧЕСКИЕ РАЗРЯДЫ В ГАЗАХ.
11.1. Факторы, влияющие на газовый разряд.
11.1.1. Потенциал ионизации.
11.1.2. Фотоионизация атомов.
11.1.3. Поверхностная ионизация.
11.1.4. Применение ионизации.
11.2. Высокочастотный тороидальный разряд.
11.3. Роль среды и электродов.
11.4. Тлеющий разряд.
11.5. Страты.
11.6. Коронный разряд.
11.7. Дуговой разряд.
11.8. Искровый разряд.
11.9. Факельный разряд.
11.10. "Стекание" зарядов с острия.
12. ЭЛЕКТРОКИНЕТИЧЕСКИЕ ЯВЛЕНИЯ.
12.1. Электроосмос.
12.2. Обратный эффект.
12.3. Электрофорез.
12.4. Обратный эффект.
12.5. Электрокапиллярные явления.
13. СВЕТ И ВЕЩЕСТВО.
13.1. Свет.
13.1.1. Световое давление.
13.2. Отражение и преломление света.
13.2.1. Полное внутреннее отражение.
13.3. Поглощение и рассеяние.
13.4. Испускание и поглощение.
13.4.1. Оптико-акустический эффект.
13.4.2. Спектральный анализ.
13.4.3. Спектры испускания.
13.4.4. Вунужденное извлечение.
13.4.5. Инверсия населенности.
13.4.6. Лазеры и их применение.
14. ФОТОЭЛЕКТРИЧЕСКИЕ И ФОТОХИМИЧЕСКИЕ ЯВЛЕНИЯ.
14.1. Фотоэлектрические явления.
14.1.1. Фотоэффект.
14.1.2. Эффект Дембера.
14.1.3. Фотопьезоэлектрический эффект.
14.1.4. Фотомагнитный эффект.
14.2. Фотохимические явления.
14.2.1. Фотохромный эффект.
14.2.2. Фотоферроэлектрический эффект.
15. ЛЮМИНЕСЦЕНЦИЯ.
15.1. Люминесценция, возбуждаемая электромагнитным
излучением.
15.1.1. Фотолюминесценция.
15.1.2. Антистокосовские..............
15.1.3. Рентгенолюминесценция.
15.2. Люминесценция, возбуждаемая корпускулярным
излучением.
15.2.1. Катодолюминесценция.
15.2.2. Ионолюминесценция.
15.2.3. Радиолюминесценция.
15.3. Электролюминесценция.
15.3.1. Инжекцронная люминесценция.
15.4. Химилюминесценция.
15.4.1. Радикалолюминесценция.
15.4.2. Кандолюминесценция.
15.5. Механолюминесценция.
15.6. Радиотермолюминесценция.
15.7. Стимуляция люминесценции.
15.8. Тушение люминесценции.
15.9. Поляризация люминесценции.
16. АНИЗОТРОПИЯ И СВЕТ.
16.1. Двойное лучепреломление.
16.2. Механооптические явления.
16.2.1. Фотоупругость.
16.2.2. Эффект Максвелла.
16.3. Электрооптические явления.
16.3.1. Эффект Керра.
16.3.2. Эффект Поккельса.
16.4. Магнитооптические явления.
16.4.1. Эффект Фарадея.
16.4.2. Обратный эффект.
16.4.3. Магнитооптический эффект Зерра.
16.4.4. Эффект Коттона-Муттона.
16.4.5. Прямой и обращенный эффект Зеемана.
16.5. Фотодихроизм-
16.5.1. Дихроизм.
16.5.2. Естественная оптическая активность.
16.6. Поляризация при рассеивании.
17. ЭФФЕКТЫ НЕЛИНЕЙНОЙ ОПТИКИ.
17.1. Вынужденное рассеяние света.
17.2. Генерация оптических гармоник.
17.3. Параметрическая генерация света.
17.4. Эффект насыщения.
17.5. Многофотонное поглощение.
17.5.1. Многофотонный фотоэффект.
17.6. Эффект самофокусирования.
17.7. Светогидравлический удар.
17.8. Гистеризисные скачки.
18. ЯВЛЕНИЯ МИКРОМИРА.
18.1. Радиоактивность.
18.2. Рентгеновское и -излучение.
18.2.1. адгезолюминисценция.
18.2.2. Астеризм.
18.3. Взаимодействие рентгеновского и -излучений с
веществом.
18.3.1. Фотоэффект.
18.3.3. Когерентное рассеяние.
18.3.4. Образование пар.
18.4. Взаимодействие электронов с веществом.
18.4.1. Упругое рассеяние.
18.4.2. Неупругое рассеяние.
18.4.3. Тормозное изучение.
18.4.4. Совместное облучение электрозами и светом.
18.5. Взаимодействие нейтронов с веществом.
18.5.1. Нейтронное распухание.
18.6. Взаимодействие -частиц с веществом.
18.7. Радиотермолюминесценция.
18.8. Эффект Месбауэра.
18.9. Электронный парамагнитный резонанс.
18.10. Ядерный магнитный резонанс.
18.11. Эффект Сверхаузера-Абрагама.
19. РАЗНОЕ.
19.1. Термофорез.
19.2. Фотофорез.
19.2.1. "Перпендикулярный" фотофорез.
19.3. Стробоскопический эффект.
19.4. Муаровый эффект.
19.4.1. Контроль размеров.
19.4.2. Выявление дефектов.
19.4.3. Конусные шкалы.
19.4.4. Измерение параметров оптических сред.
19.4.5. Контроль оптики.
19.5. Высокодисперсные структуры.
19.5.1. Консолидированные тела.
19.6. Эпекстрореологический эффект.
19.7. Ресалектрический эффект.
19.8. Жидкие кристалы.
19.8.1. Электрооптические эффекты.
19.8.2. Динамическое рассеяние.
19.8.3. Управление окраской кристаллов.
19.8.4. Визуализация ИК-изобретения.
19.8.5. Химическая чувствительность.
19.9. Смачивание (к 3.3.2)
19.9.1. Эффект ратекания жидкости под окисными пленками
металлов.
19.9.2. Эффект капиллярного клея.
19.9.3. Теплота смачивания.
19.9.4. Магнитотепловой эффект смачивания.
19.10. Лента Мебиуса.
19.11. Обработка магнитными и электрическими полями.
Приложение 1: Возможные применения некоторых физических
эффектов и явлений при решении
изобретательских задач.
В В Е Д Е Н И Е
- - - - - - - -
Вы держите в руках "Указатель физических эффектов и
явлений". Это не справочник, потому что он включает в себя
лишь незначительную часть огромного колличества эффектов и
явлений изученного окружающего нас мира. Это и не учебник.
Он не научит Вас эффективному использованию физики при ре-
шении головоломных технических задач. Роль "Указателя" зак-
лючается в том, что он поможет вам увидеть и ощутить одну
из важнейших тенденций развития технических систем -переход
от исследования природы и практического воздействия на нее
на макроуровне к исследованию к исследованию ее на микроу-
ровне и связанный с этим переход от макротехнологии к мик-
ротехнологии.
Микротехнология основывается на совершенно иных прин-
ципах, чем технология,имеющая дело с макротелами. Микротех-
нология строится на основе применения к производству совре-
менных достижений химической физики, ядерной физики,
квантовой механики. Это новая ступень взаимодействия чело-
века и природы, а самое главное - это взаимодействие проис-
ходит на языке природы, на языке ее законов.
Человек, создавая свои первые технические системы, ис-
пользовал в них макромеханические свойства окружаещего вас
мира. Это не случайно, так как научное познание природы на-
чалось исторически именно с механических процессов на уров-
не вещества.
Вещество с его внешними формами и геометрическими па-
раметрами является обьектом, непосредственно данным *
человеку в ощущениях. Это тот уровень организации материи,
на котором она предстает перед человеком как явление, как
количество, как форма. Поэтому каждый технологический метод
воздействия соответствовал (и во многих современных техни-
ческих системах сейчас соответствует) простейшей форме дви-
жения материи - механической.
С развитием техники все методы воздействия совершенс-
твуются, но тем не менее, в их соотношении можно проследить
известные изменения. Механические методы в большинстве слу-
чаев заменяются более эффективными физическими и химически-
ми методами. В добывающей промышленности, например, вместо
механического дробления руды и подьема ее на поверхность,
получают распространение методы выщелачивания рудного тела
и получением раствора металла с последующим его выделением
химическим путем. В обрабатывающей промышленности микротех-
нологии приводит к революционным преобразованием.

Всё, что нас окружает: и живая, и неживая природа, находится в постоянном движении и непрерывно изменяется: движутся планеты и звёзды, идут дожди, растут деревья. И человек, как известно из биологии, постоянно проходит какие-либо стадии развития. Перемалывание зёрен в муку, падение камня, кипение воды, молния, свечение лампочки, растворение сахара в чае, движение транспортных средств, молнии, радуги – это примеры физических явлений.

И с веществами (железо, вода, воздух, соль и др.) происходят разнообразные изменения, или явления. Вещество может быть кристаллизировано, расплавлено, измельчено, растворено и вновь выделено из раствора. При этом его состав останется тем же.

Так, сахарный песок можно измельчить в порошок настолько мелкий, что от малейшего дуновения он будет подниматься в воздух, как пыль. Сахарные пылинки можно разглядеть лишь под микроскопом. Сахар можно разделить ещё на более мелкие части, растворив его в воде. Если же выпарить из раствора сахара воду, молекулы сахара снова соединяться друг с другом в кристаллы. Но и растворении в воде, и при измельчении сахар остаётся сахаром.

В природе вода образует реки и моря, облака и ледники. При испарении вода переходит в пар. Водяной пар – это вода в газообразном состоянии. При воздействии низких температур (ниже 0˚С) вода переходит в твёрдое состояние – превращается в лёд. Мельчайшая частичка воды – это молекула воды. Молекула воды является и мельчайшей частичкой пара или льда. Вода, лёд и пар не разные вещества, а одно и то же вещество (вода) в разных агрегатных состояниях.

Подобно воде, и другие вещества можно переводить из одного агрегатного состояния в другое.

Характеризуя то или другое вещество как газ, жидкость или твёрдое вещество, имеют в виду состояние вещества в обычных условиях. Любой металл можно не только расплавить (перевести в жидкое состояние), но и превратить в газ. Но для этого необходимы очень высокие температуры. Во внешней оболочке Солнца металлы находятся в газообразном состоянии, потому что температура там составляет 6000˚С. А, например, углекислый газ путём охлаждения можно превратить в «сухой лёд».

Явления, при которых не происходит превращений одних веществ в другие, относят к физическим явлениям. Физические явления могут привести к изменению, например, агрегатного состояния или температуры, но состав веществ останется тем же.

Все физические явления можно разделить на несколько групп.

Механические явления – это явления, которые происходят с физическими телами при их движении относительно друг друга (обращение Земли вокруг Солнца, движение автомобилей, полёт парашютиста).

Электрические явления – это явления, которые возникают при появлении, существовании, движении и взаимодействии электрических зарядов (электрический ток, телеграфирование, молния при грозе).

Магнитные явления – это явления, связанные с возникновением у физических тел магнитных свойств (притяжение магнитом железных предметов, поворот стрелки компаса на север).

Оптические явления – это явления, которые происходят при распространении, преломлении и отражении света (радуга, миражи, отражение света от зеркала, появление тени).

Тепловые явления – это явления, которые происходят при нагревании и охлаждении физических тел (таяние снега, кипение воды, туман, замерзание воды).

Атомные явления – это явления, которые возникают при изменении внутреннего строения вещества физических тел (свечение Солнца и звезд, атомный взрыв).

сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.


В В Е Д Е Н И Е

Вы держите в руках "Указатель физических эффектов и
явлений". Это не справочник, потому что он включает в себя
лишь незначительную часть огромного колличества эффектов и
явлений изученного окружающего нас мира. Это и не учебник.
Он не научит Вас эффективному использованию физики при ре-
шении головоломных технических задач. Роль "Указателя" зак-
лючается в том, что он поможет вам увидеть и ощутить одну
из важнейших тенденций развития технических систем -переход
от исследования природы и практического воздействия на нее
на макроуровне к исследованию к исследованию ее на микроу-
ровне и связанный с этим переход от макротехнологии к мик-
ротехнологии.
Микротехнология основывается на совершенно иных прин-
ципах, чем технология,имеющая дело с макротелами. Микротех-
нология строится на основе применения к производству совре-
менных достижений химической физики, ядерной физики,
квантовой механики. Это новая ступень взаимодействия чело-
века и природы, а самое главное - это взаимодействие проис-
ходит на языке природы, на языке ее законов.
Человек, создавая свои первые технические системы, ис-
пользовал в них макромеханические свойства окружаещего вас
мира. Это не случайно, так как научное познание природы на-
чалось исторически именно с механических процессов на уров-
не вещества.
Вещество с его внешними формами и геометрическими па-
раметрами является обьектом, непосредственно данным *
человеку в ощущениях. Это тот уровень организации материи,
на котором она предстает перед человеком как явление, как
количество, как форма. Поэтому каждый технологический метод
воздействия соответствовал (и во многих современных техни-
ческих системах сейчас соответствует) простейшей форме дви-
жения материи - механической.
С развитием техники все методы воздействия совершенс-
твуются, но тем не менее, в их соотношении можно проследить
известные изменения. Механические методы в большинстве слу-
чаев заменяются более эффективными физическими и химически-
ми методами. В добывающей промышленности, например, вместо
механического дробления руды и подьема ее на поверхность,
получают распространение методы выщелачивания рудного тела
и получением раствора металла с последующим его выделением
химическим путем. В обрабатывающей промышленности микротех-
нологии приводит к революционным преобразованием: сложные
детали выращивают в виде монокристалов, внутренние свойства
вещества изменяют воздействием сильных электрических, маг-
нитных, оптических полей. в строительстве использование
фундаментальных свойств вещества позволяет отказываться от
сложных и дорогих механизмов. Например: только одно явление
термического расширения позволяет создавать неломающиеся
домкраты, строить арочные мосты в 5 раз быстрее (при этом
отпадает необходимость в опалубке и подьемных механизмов).
Прямо на месте строительства можно сделать несущую часть
арочного моста высотой до 20 метров, а делается это сказоч-
но просто: два стометровых металлических листа накладывают
друг на друга, между ними помещают асбестовую прокладку.
Нижний лист нагревают токами ВЧ до 700 градусов, соединяют
его с верхним, а при остывании этого "пирога" получают ар-
ку.
Чем объяснить эффективность микротехнологии? Здесь
трудно различить вещество, являющееся орудием воздействия,
и вещество, служащее преом труда. Здесь нет инструмента не-
посредственного воздействия, рабочего оружия или рабочей
части машины, как это имеет место при механических методах.
Функции орудия труда выполняют частицы веществ-молекул,
атомы-участвующих в процессе. Причем сам процесс легко уп-
равляем, коль скоро мы можем легко воздействовать опреде-
ленными полями на части, создавая соответствующие условия и
тогда не только не нужно, но часто и не возможното есть ав-
томатически и непрерывно. В это проявляется, говоря словами
Гегеля, "хитрость" научно-технической деятельности.
Переход от механических и макрофизических методов воз-
действия к микрофизическим позволяет значительно упростить
любой технологический процесс, добиться при этом большего
экономического эффекта, получить безотходные процессы, если
вещества и поля на входе одних процессов становятся вещест-
вами и полями на выходе других. Надо только помнить, что
безграничность возможностей научно-технической деятельности
может успешно реализося лишь при соблюдении границ возмож-
ного в самой природе, а уж природа ведет свои производства
на тончайшем атомном уровне бесшумно, безотходно и пол-
ностью автоматически.
"Указатель" покажет Вам на примерах эффективности ис-
пользования законов природы проектировании новой техники
может быть подскажет решение стоящей пред Вами технической
задачи. В него вошли многие физэффекты, которые еще ждут
своего применения и своего "применителя" (не Вы ли им буде-
те?).
Но составителя нового сборника будут считать свою за-
дачу выполненной лишь в том случае, если помещенная в него
информация станет для Вас тем "зародышем", с помощью кото-
рого Вы "вырастите" для себя (и поделитесь с другими) мно-
гогранный кристалл физических эффектов и явлений, раство-
ренных в безграничном мире. И чем больше будет этот
"кристалл", тем будет проще заметить закономерности его
строения. Это интересует нас, надеемся, заинтересует и Вас
и, тогда следующий "Указатель" сможет стать настоящим лоц-
маном в необъятномморе технических задач.

ОБНИНСК, 1979 г. Денисов С.
Ефимов В.
Зубарев В.
Кустов В.


Несколько соображений об Указателе физэффектов

Чтобы уверенно решать сложные изобретательские задачи,
нужна, во-первых, программа выявления технических и физических
противоречий. Во-вторых, нужен информационный фонд, включающий
средства устранения противоречий: типовые приемы и физические
эффекты. Разумеется, есть еще и "в-третьих","в-четвертых" и т.
д. Но главное - программа и информационное обеспечение.
Вначале была просто программа - первые модификации АРИЗ.
Путем анализа патентных материалов постепенно удалось соста-
вить список типовых приемов и таблицу их применения. В число
типовых приемов попали и некоторые физические эффекты. В сущ-
ности, все приемы прямо или косвенно "физичны". Скажем, дроб-
ление; на микроуровне этот прием становится диссоциацией-ассо-
циацией, десорбцией-сорбцией и т.п. Но в типовых приемах
главное - комбинационные изменения. Физика либо проста (тепло-
вое расширение, например), либо скромно держится на втором
плане.
К 1967-68 г.г. стало ясно, что дальнейшее развитие инфор-
мационного обеспечения АРИЗ требует создания фонда физических
явлений и эффектов. В 1969 г. за эту работу взялся студент-фи-
зик В.Гутник, слушатель Молодежной изобретательской школы при
ЦК ЛКСМ Азербайджана (в начале 1970 г. школа стала и "при РС
ВОИР";в 1971 г. была преобразована в АзОИИТ - первый в стране
общественный институт изобретательского творчества). В 1970 г.
была организовна Общественная лаборатория методики изобрета-
тельства при ЦС ВОИР. В план ее работы было включено создание
"Указателя применения физэффектов при решении изобретательских
задач".
За два года В.Гутник проанализировал свыше 5.000 изобрете-
ний "с физическим уклоном" и отобрал из них примерно 500 наи-
более интересных; эта информация положила начало картотеке по
физэффектам. К 1971 г. появились первые наброски Указателя. Но
В.Гутник ушел в армию, работа прервалась. С 1971 г. разработку
"Указателя" начал вести физик Ю.Горин, слушатель, а затем пре-
подаватель АзОИИТ ныне кандидат наук. К 1973 г. Ю.Горин подго-
товил первый "Указатель". В него были включены свыше 100 эф-
фектов и явлений и примеры их изобретательского применения.
Полный текст "Указателя" (300 машинописных страниц) в 1973 г.
был передан в ЦК ВОИР, но не был издан. В том же 1973 г. уда-
лось подготовить сокращенный текст "Указателя" (108 стр.) и
отпечатать его на рататоре (баку,150 экз.). Позже этот текст
печатался в Брянске и других городах. Всего было отпечатано
около 1000 экз.

Практика применения этого - еще во многом периодичного
"Указателя" свидетельствует, что разделы, оживляющие забытые
знания, в общем работают удовлетворительно. Однако большая
часть физики относится к тому, что раньше было мало известно
или вобще не известно человеку, пользующемуся указателем. Из-
ложенные, слишком кратко, сведения о "новых" эффектах практи-
чески не работают. Да исамих эффектов в первом выпуске Указа-
теля было слишком мало. Далеко не ко всем эффектам удалось
подобрать характерные примеры их изобретательского применения.
Нуждались в корректировке и таблицы применения физэффектов.
Несмотря на появление нового Указателя, изобретательские
задачи и физика по-прежнему оставались "на разных берегах ре-
ки": Указатель еще не стал мостом между техникой и физикой.
Однако работа продолжалась.
С января 1977 г. эта работа была перенесена в ОБНИНСК и
велась коллективом. За год С.А.Денисов, В.Е.Ефимов, В.В.Зуба-
рев, В.П.Кустов подготовили вторую модификацию Указателя: ох-
вачено 400 эффектов и явлений, подобраны характерные примеры
их изобретательского применения, изложение стало более точным
и насыщенным. Успешной работе способствовало содействие препо-
давателей теории решения изобретательских задач из многих го-
родов: в ОБНИНСК все время поступала информация по физэффек-
там.
Нынешний Указатель - это справочник, который следовало бы
издать массовым тиражом. В сущности, это настольная книга
изобретателя (даже, если он не работает в АРИЗ).

Как использовать указатель?

Прежде всего, его надо внимательно прочитать. Точнее про-
работать: прочитать и без спешки просмотреть примеры, каждый
раз обдумывая - почему использован данный эффект, а не ка-
кой-то другой. Эту работу следует сделать вдумчиво, неторопли-
во, потратив на нее месяц-полтора и осваивая разделы указателя
небольшими дозами. По ряду разделов (особенно по магнетизму,
люминесценции, поляризованному свету) необходимо дополнительно
посмотреть учебники и специальную литературу.
Прорабатывая указатель, желательно по каждому разделу за-
давать себе упражнения: как использовать эти эффекты в моей
работе, какие новые применения этих эффектов я мог бы предло-
жить? Допустим на этот эффект наложено "табу", применять эф-
фект нельзя; каким другим эффектом можно воспользоваться? Мож-
но ли построить игрушку применив данный эффект? Можно ли
данный эффект использовать в космосе и что при этом изменить-
ся? и т.д. Особое внимание следует обращать на всякого рода
аномалии,отклонения,странности, а также на различные переход-
ные состояния вещества и условия, при которых эти преходы осу-
ществляются. Если проработав таким образом указатель вы не
пришли ни к одной новой идее, значит что-то неладно; скорее
всего,проработка была поверхностной.
Когда занятия идут на семинарах, курсах, в общественных
школах и т.п. Преподаватель может использовать упражнения та-
кого типа: "придумать новый и интересный физический эффект.
Как его можно использовать в технике? Что изменится в природе,
если такой эффект станет реальностью? Подобные упражнения - на
стыке физики и фантастики - особенно эффективны для развития
творческого мышления. Вообще указатель надо, прежде всего, ис-
пользовать до решения задач, регулярно углубляя знания и тре-
нируя мышление. Желательно, в частности, пополнять указатель,
наращивая сильные примеры и включая новые физэффекты.
При решении задач применение указателя более регламенти-
ровано: таблица применения физэффектов в АРИЗ-77 дает название
эффекта, который надо использовать для устранения физического
противоречия. По указателю можно получить сведения об этом эф-
фекте, а затем обратиться к литературе, рекомендованной указа-
телем.
Мост между изобретательскими задачами и физикой еще не
достроен. работа над указателем продолжается. в первом полуго-
дии 1978 г. Должны быть подготовлены два выпуска сводной кар-
тотеки дополнительно к нынешнему тексту указателю. Подготовка
таких выпусков должны идти регулярно: здесь по-прежнему нужна
помощь всех преподавателей. Предстоит также разработать табли-
цы превращения полей (какие эффекты переводят одно поле в дру-
гое?). Но центральная на ближайшие годы проблема - как замк-
нуть мост между изобретательством и физикой? Здесь наметилось
несколько подходов. Можно перевести физэффекты на вепольный
язык, дать каждому эффекту его вепольную формулу. Для этого
надо развить вепольный язык, зделать его богаче,гибче. Но
принципиальных трудностей здесь пока невидно.
Другая возможность состоит в том, чтобы построить систему
эффектов например, по анологии с системой приемов (прос-
тые,парные,сложные...) По структуре нынешний Указатель все еще
привязан к структуре обычных курсов физики. Система физических
эффектов, видимо, должна выглядеть иначе: эффекты собираются в
группы, каждая из которых будет включать эффект, обратный эф-
фект, би-эффект (пример: интерференция), плюс - минус эффект
(сочетание эффекта и обратного эффекта), эффект сильно сжатый
по времени, эффект сильно растянутый по времени и т.д.
Вероятно, возможны и другие подходы. Так или иначе очн-
видно, что нельзя дальше ограничиваться чисто механическими
наращиваниями в память ЭВМ. А дальше что? Каждый эффект, без-
различно - записан он на бумагу или хранится в памяти ЭВМ -
придется извлекать и пробовать его "вручную"... Положение Ука-
зателя должно идти своим чередом. Но уже нынешний Указатель -
вполне достаточный фундамент для построения теории применения
физэффектов при решении изобретательских задач.
В журнале " " за 1975 г. т.24.н11, стр.512-515 (журнал
ГДР, реферат - см. реферативный журнал "Физика иа. Общие воп-
росы физики", 1976,н4,стр.25) сообщается о создании информаци-
онного каталога физических явлений для разработки технологи-
ческих методов. Это близко к идее Указателя, хотя в Указателе
уклон не в технологию, а в преодоление противоречий при реше-
нии изобретательских задач. Каталог выполнен ввиде папок, ко-
торые могут пополняться. Это примерно то, что у нас было до
составления первой модификации Указателя - папки по эффектам.
Но немцы - да и кто угодно - без особого труда могут нас наг-
нать, достаточно засадить за работу несколько десятков физиков
- и из малой "кучи эффектов" будет сделана "большая куча". На-
ше преимущество - в подходе к проблеме. Мы понимаем, что дело
не в том, чтобы набрать "большую кучу" информации и засунуть
ее в ЭВМ, которая сама разберется - что к чему. Мы понимаем,
что везде, в том числе и в данной проблеме - надо искать обь-
ективные законы. Технические системы развиваются закономерно,
поэтому применение физики в изобретательстве тоже должно под-
чиняться определенным законам.
На выявление этих законов и нужно напрвить основные усилия.



Просмотров