Наименьшее общее кратное 12. Калькулятор онлайн.Нахождение (вычисление) НОД и НОК

Математические выражения и задачи требуют множества дополнительных знаний. НОК - это одно из основных, особенно часто применяемое в Тема изучается в средней школе, при этом не является особо сложным в понимании материалом, человеку знакомому со степенями и таблицей умножения не составит труда выделить необходимые числа и обнаружить результат.

Определение

Общее кратное - число, способное нацело разделиться на два числа одновременно (а и b). Чаще всего, это число получают методом перемножения исходных чисел a и b. Число обязано делиться сразу на оба числа, без отклонений.

НОК - это принятое для обозначения краткое название, собранной из первых букв.

Способы получения числа

Для нахождения НОК не всегда подходит способ перемножения чисел, он гораздо лучше подходит для простых однозначных или двухзначных чисел. принято разделять на множители, чем больше число, тем больше множителей будет.

Пример № 1

Для простейшего примера в школах обычно берутся простые, однозначные или двухзначные числа. Например, необходимо решить следующее задание, найти наименьшее общее кратное от чисел 7 и 3, решение достаточно простое, просто их перемножить. В итоге имеется число 21, меньшего числа просто нет.

Пример № 2

Второй вариант задания гораздо сложнее. Даны числа 300 и 1260, нахождение НОК - обязательно. Для решения задания предполагаются следующие действия:

Разложение первого и второго чисел на простейшие множители. 300 = 2 2 * 3 * 5 2 ; 1260 = 2 2 * 3 2 *5 *7. Первый этап завершен.

Второй этап предполагает работу с уже полученными данными. Каждое из полученных чисел обязано участвовать в вычислении итогового результата. Для каждого множителя из состава исходных чисел берется самое большое число вхождений. НОК - это общее число, поэтому множители из чисел должны в нем повторятся все до единого, даже те, которые присутствуют в одном экземпляре. Оба изначальных числа имеют в своем составе числа 2, 3 и 5, в разных степенях, 7 есть только в одном случае.

Для вычисления итогового результата необходимо взять каждое число в наибольшей их представленных степеней, в уравнение. Остается только перемножить и получить ответ, при правильном заполнении задача укладывается в два действия без пояснений:

1) 300 = 2 2 * 3 * 5 2 ; 1260 = 2 2 * 3 2 *5 *7.

2) НОК = 6300.

Вот и вся задача, если попробовать вычислить нужное число посредством перемножения, то ответ однозначно не будет верным, так как 300 * 1260 = 378 000.

Проверка:

6300 / 300 = 21 - верно;

6300 / 1260 = 5 - верно.

Правильность полученного результата определяется посредством проверки - деления НОК на оба исходных числа, если число целое в обоих случаях, то ответ верен.

Что значит НОК в математике

Как известно, в математике нет ни одной бесполезной функции, эта - не исключение. Самым распространенным предназначением этого числа является приведение дробей к общему знаменателю. Что изучают обычно в 5-6 классах средней школы. Также дополнительно является общим делителем для всех кратных чисел, если такие условия стоят в задаче. Подобное выражение может найти кратное не только к двум числам, но и к гораздо большему количестве - трем, пяти и так далее. Чем больше чисел - тем больше действий в задаче, но сложность от этого не увеличивается.

Например, даны числа 250, 600 и 1500, необходимо найти их общее НОК:

1) 250 = 25 * 10 = 5 2 *5 * 2 = 5 3 * 2 - на этом примере детально описано разложение на множители, без сокращения.

2) 600 = 60 * 10 = 3 * 2 3 *5 2 ;

3) 1500 = 15 * 100 = 33 * 5 3 *2 2 ;

Для того чтобы составить выражение, требуется упомянуть все множители, в этом случае даны 2, 5, 3, - для всех этих чисел требуется определить максимальную степень.

Внимание: все множители необходимо доводить до полного упрощения, по возможности, раскладывая до уровня однозначных.

Проверка:

1) 3000 / 250 = 12 - верно;

2) 3000 / 600 = 5 - верно;

3) 3000 / 1500 = 2 - верно.

Данный метод не требует каких-либо ухищрений или способностей уровня гения, все просто и понятно.

Еще один способ

В математике многое связано, многое можно решить двумя и более способами, то же самое касается поиска наименьшего общего кратного, НОК. Следующий способ можно использовать в случае с простыми двузначными и однозначными числами. Составляется таблица, в которую вносятся по вертикали множимое, по горизонтали множитель, а в пересекающихся клетках столбца указывается произведение. Можно отразить таблицу посредством строчки, берется число и в ряд записываются результаты умножения этого числа на целые числа, от 1 до бесконечности, иногда хватает и 3-5 пунктов, второе и последующие числа подвергаются тому же вычислительному процессу. Все происходит вплоть до того, как найдется общее кратное.

Даны числа 30, 35, 42 необходимо найти НОК, связывающий все числа:

1) Кратные 30: 60, 90, 120, 150, 180, 210, 250 и т. д.

2) Кратные 35: 70, 105, 140, 175, 210, 245 и т. д.

3) Кратные 42: 84, 126, 168, 210, 252 и т. д.

Заметно, что все числа достаточно разные, единственное общее среди них число 210, вот оно и будет НОК. Среди связанных с этим вычислением процессов есть также наибольший общий делитель, вычисляющийся по похожим принципам и часто встречающийся в соседствующих задачах. Различие невелико, но достаточно значимо, НОК предполагает вычисление числа, которое делится на все данные исходные значения, а НОД предполагает под собой вычисление наибольшего значение на которое делятся исходные числа.

Приступим к изучению наименьшего общего кратного двух и более чисел. В разделе мы дадим определение термина, рассмотрим теорему, которая устанавливает связь между наименьшим общим кратным и наибольшим общим делителем, приведем примеры решения задач.

Общие кратные – определение, примеры

В данной теме нас будет интересовать только общие кратные целых чисел, отличных от нуля.

Определение 1

Общее кратное целых чисел – это такое целое число, которое кратно всем данным числам. Фактически, это любое целое число, которое можно разделить на любое из данных чисел.

Определение общих кратных чисел относится к двум, трем и большему количеству целых чисел.

Пример 1

Согласно данному выше определению для числа 12 общими кратными числами будут 3 и 2 . Также число 12 будет общим кратным для чисел 2 , 3 и 4 . Числа 12 и - 12 являются общими кратными числами для чисел ± 1 , ± 2 , ± 3 , ± 4 , ± 6 , ± 12 .

В то же время общим кратным числом для чисел 2 и 3 будут числа 12 , 6 , − 24 , 72 , 468 , − 100 010 004 и целый ряд любых других.

Если мы возьмем числа, которые делятся на первое число из пары и не делятся на второе, то такие числа не будут общими кратными. Так, для чисел 2 и 3 числа 16 , − 27 , 5 009 , 27 001 не будут общими кратными.

0 является общим кратным для любого множества целых чисел, отличных от нуля.

Если вспомнить свойство делимости относительно противоположных чисел, то получается, что некоторое целое число k будет общим кратным данных чисел точно также, как и число – k . Это значит, что общие делители могут быть как положительными, так и отрицательными.

Для всех ли чисел можно найти НОК?

Общее кратное можно найти для любых целых чисел.

Пример 2

Предположим, что нам даны k целых чисел a 1 , a 2 , … , a k . Число, которое мы получим в ходе умножения чисел a 1 · a 2 · … · a k согласно свойству делимости будет делиться на каждый из множителей, который входил в изначальное произведение. Это значит, что произведение чисел a 1 , a 2 , … , a k является наименьшим общим кратным для этих чисел.

Сколько всего общих кратных могут иметь данные целые числа?

Группа целых чисел может иметь большое количество общих кратных. Фактически, их число бесконечно.

Пример 3

Предположим, что у нас есть некоторое число k . Тогда произведение чисел k · z , где z – это целое число, будет являться общим кратным чисел k и z . С учетом того, что количество чисел бесконечно, то и количество общих кратных бесконечно.

Наименьшее общее кратное (НОК) – определение, обозначение и примеры

Вспомним понятие наименьшего числа из данного множества чисел, которое мы рассматривали в разделе «Сравнение целых чисел». С учетом этого понятия сформулируем определение наименьшего общего кратного, которое имеет среди всех общих кратных наибольшее практическое значение.

Определение 2

Наименьшее общее кратное данных целых чисел – это наименьшее положительное общее кратное этих чисел.

Наименьшее общее кратное существует для любого количества данных чисел. Наиболее употребимой для обозначения понятия в справочной литературе является аббревиатура НОК. Краткая запись наименьшего общего кратного для чисел a 1 , a 2 , … , a k будет иметь вид НОК (a 1 , a 2 , … , a k) .

Пример 4

Наименьшее общее кратное чисел 6 и 7 – это 42 . Т.е. НОК (6 , 7) = 42 . Наименьшее общее кратное четырех чисел - 2 , 12 , 15 и 3 будет равно 60 . Краткая запись будет иметь вид НОК (- 2 , 12 , 15 , 3) = 60 .

Не для всех групп данных чисел наименьшее общее кратное очевидно. Часто его приходится вычислять.

Связь между НОК и НОД

Наименьшее общее кратное и наибольший общий делитель связаны между собой. Взаимосвязь между понятиями устанавливает теорема.

Теорема 1

Наименьшее общее кратное двух положительных целых чисел a и b равно произведению чисел a и b , деленному на наибольший общий делитель чисел a и b , то есть, НОК (a , b) = a · b: НОД (a , b) .

Доказательство 1

Предположим, что мы имеем некоторое число M , которое кратно числам a и b . Если число M делится на a , также существует некоторое целое число z , при котором справедливо равенство M = a · k . Согласно определению делимости, если M делится и на b , то тогда a · k делится на b .

Если мы введем новое обозначение для НОД (a , b) как d , то сможем использовать равенства a = a 1 · d и b = b 1 · d . При этом оба равенства будут взаимно простыми числами.

Мы уже установили выше, что a · k делится на b . Теперь это условие можно записать следующим образом:
a 1 · d · k делится на b 1 · d , что эквивалентно условию a 1 · k делится на b 1 согласно свойствам делимости.

Согласно свойству взаимно простых чисел, если a 1 и b 1 – взаимно простые числа, a 1 не делится на b 1 при том, что a 1 · k делится на b 1 , то b 1 должно делиться k .

В этом случае уместно будет предположить, что существует число t , для которого k = b 1 · t , а так как b 1 = b: d , то k = b: d · t .

Теперь вместо k подставим в равенство M = a · k выражение вида b: d · t . Это позволяет нам прийти к равенству M = a · b: d · t . При t = 1 мы можем получить наименьшее положительное общее кратное чисел a и b , равное a · b: d , при условии, что числа a и b положительные.

Так мы доказали, что НОК (a , b) = a · b: НОД (a , b) .

Установление связи между НОК и НОД позволяет находить наименьшее общее кратное через наибольший общий делитель двух и более данных чисел.

Определение 3

Теорема имеет два важных следствия:

  • кратные наименьшего общего кратного двух чисел совпадает с общими кратными этих двух чисел;
  • наименьшее общее кратное взаимно простых положительных чисел a и b равно их произведению.

Обосновать эти два факта не составляет труда. Любое общее кратное M чисел a и b определяется равенством M = НОК (a , b) · t при некотором целом значении t . Так как a и b взаимно простые, то НОД (a , b) = 1 , следовательно, НОК (a , b) = a · b: НОД (a , b) = a · b: 1 = a · b .

Наименьшее общее кратное трех и большего количества чисел

Для того, чтобы найти наименьшее общее кратное нескольких чисел, необходимо последовательно найти НОК двух чисел.

Теорема 2

Предположим, что a 1 , a 2 , … , a k – это некоторые целые положительные числа. Для того, чтобы вычислить НОК m k этих чисел, нам необходимо последовательно вычислить m 2 = НОК (a 1 , a 2) , m 3 = НОК (m 2 , a 3) , … , m k = НОК (m k - 1 , a k) .

Доказательство 2

Доказать верность второй теоремы нам поможет первое следствие из первой теоремы, рассмотренной в данной теме. Рассуждения строятся по следующему алгоритму:

  • общие кратные чисел a 1 и a 2 совпадают с кратными их НОК, фактически, они совпадают с кратными числа m 2 ;
  • общие кратные чисел a 1 , a 2 и a 3 m 2 и a 3 m 3 ;
  • общие кратные чисел a 1 , a 2 , … , a k совпадают с общими кратными чисел m k - 1 и a k , следовательно, совпадают с кратными числа m k ;
  • в связи с тем, что наименьшим положительным кратным числа m k является само число m k , то наименьшим общим кратным чисел a 1 , a 2 , … , a k является m k .

Так мы доказали теорему.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Чтобы понять, как вычислять НОК, следует определиться в первую очередь со значением термина "кратное".


Кратным числу А называют такое натуральное число, которое без остатка делится на А. Так, числами кратными 5 можно считать 15, 20, 25 и так далее.


Делителей конкретного числа может быть ограниченное количество, а вот кратных бесконечное множество.


Общее кратное натуральных чисел - число, которое делится на них без остатка.

Как найти наименьшее общее кратное чисел

Наименьшее общее кратное (НОК) чисел (двух, трех или больше) - это самое маленькое натурально число, которое делится на все эти числа нацело.


Чтобы найти НОК, можно использовать несколько способов.


Для небольших чисел удобно выписать в строчку все кратные этих чисел до тех пор, пока среди них не найдется общее. Кратные обозначают в записи заглавной буквой К.


Например, кратные числа 4 можно записать так:


К (4) = {8,12, 16, 20, 24, ...}


К (6) = {12, 18, 24, ...}


Так, можно увидеть, что наименьшим общим кратным чисел 4 и 6 является число 24. Эту запись выполняют следующим образом:


НОК (4, 6) = 24


Если числа большие, найти общее кратное трех и более чисел, то лучше использовать другой способ вычисления НОК.


Для выполнения задания необходимо разложить предложенные числа на простые множители.


Сначала нужно выписать в строчку разложение наибольшего из чисел, а под ним - остальных.


В разложении каждого числа может присутствовать различное количество множителей.


Например, разложим на простые множители числа 50 и 20.




В разложении меньшего числа следует подчеркнуть множители, которые отсутствуют в разложении первого самого большого числа, а затем их добавить к нему. В представленном примере не хватает двойки.


Теперь можно вычислить наименьшее общее кратное 20 и 50.


НОК (20, 50) = 2 * 5 * 5 * 2 = 100


Так, произведение простых множителей большего числа и множителей второго числа, которые не вошли в разложение большего, будет наименьшим общим кратным.


Чтобы найти НОК трех чисел и более, следует их все разложить на простые множители, как и в предыдущем случае.


В качестве примера можно найти наименьшее общее кратное чисел 16, 24, 36.


36 = 2 * 2 * 3 * 3


24 = 2 * 2 * 2 * 3


16 = 2 * 2 * 2 * 2


Так, в разложение большего числа на множители не вошли только две двойки из разложения шестнадцати (одна есть в разложении двадцати четырех).


Таким образом, их нужно добавить к разложению большего числа.


НОК (12, 16, 36) = 2 * 2 * 3 * 3 * 2 * 2 = 9


Существуют частные случаи определения наименьшего общего кратного. Так, если одно из чисел можно поделить без остатка на другое, то большее из этих чисел и будет наименьшим общим кратным.


Например, НОК двенадцати и двадцати четырех будет двадцать четыре.


Если необходимо найти наименьшее общее кратное взаимно простых чисел, не имеющих одинаковых делителей, то их НОК будет равняться их произведению.


Например, НОК (10, 11) = 110.

Наибольший общий делитель

Определение 2

Если натуральное число a делится на натуральное число $b$, то $b$ называют делителем числа $a$, а число $a$ называют кратным числа $b$.

Пусть $a$ и $b$-натуральные числа. Число $c$ называют общим делителем и для $a$ и для $b$.

Множество общих делителей чисел $a$ и $b$ конечно, так как ни один из этих делителей не может быть больше, чем $a$. Значит,среди этих делителей есть наибольший, который называют наибольшим общим делителем чисел $a$ и $b$ и для его обозначения используют записи:

$НОД \ (a;b) \ или \ D \ (a;b)$

Чтобы найти наибольший общий делитель двух, чисел необходимо:

  1. Найти произведение чисел, найденных на шаге 2. Полученное число и будет искомым наибольшим общим делителем.

Пример 1

Найти НОД чисел $121$ и $132.$

    $242=2\cdot 11\cdot 11$

    $132=2\cdot 2\cdot 3\cdot 11$

    Выбрать числа, которые входят в разложение этих чисел

    $242=2\cdot 11\cdot 11$

    $132=2\cdot 2\cdot 3\cdot 11$

    Найти произведение чисел, найденных на шаге 2.Полученное число и будет искомым наибольшим общим делителем.

    $НОД=2\cdot 11=22$

Пример 2

Найти НОД одночленов $63$ и $81$.

Будем находить согласно представленному алгоритму. Для этого:

    Разложим числа на простые множители

    $63=3\cdot 3\cdot 7$

    $81=3\cdot 3\cdot 3\cdot 3$

    Выбираем числа, которые входят в разложение этих чисел

    $63=3\cdot 3\cdot 7$

    $81=3\cdot 3\cdot 3\cdot 3$

    Найдем произведение чисел, найденных на шаге 2.Полученное число и будет искомым наибольшим общим делителем.

    $НОД=3\cdot 3=9$

Найти НОД двух чисел можно и по-другому, используя множество делителей чисел.

Пример 3

Найти НОД чисел $48$ и $60$.

Решение:

Найдем множество делителей числа $48$: $\left\{{\rm 1,2,3.4.6,8,12,16,24,48}\right\}$

Теперь найдем множество делителей числа $60$:$\ \left\{{\rm 1,2,3,4,5,6,10,12,15,20,30,60}\right\}$

Найдем пересечение этих множеств: $\left\{{\rm 1,2,3,4,6,12}\right\}$- данное множество будет определять множество общих делителей чисел $48$ и $60$. Наибольший элемент в данном множестве будет число $12$. Значит наибольший общий делитель чисел $48$ и $60$ будет $12$.

Определение НОК

Определение 3

Общим кратным натуральных чисел $a$ и $b$ называется натуральное число, которое кратно и $a$ и $b$.

Общими кратными чисел называются числа которые делятся на исходные без остатка.Например для чисел $25$ и $50$ общими кратными будут числа $50,100,150,200$ и т.д

Наименьшее из общих кратных будет называться наименьшим общим кратным и обозначается НОК$(a;b)$ или K$(a;b).$

Чтобы найти НОК двух чисел, необходимо:

  1. Разложить числа на простые множители
  2. Выписать множители, входящие в состав первого числа и добавить к ним множители, которые входят в состав второго и не ходят в состав первого

Пример 4

Найти НОК чисел $99$ и $77$.

Будем находить согласно представленному алгоритму. Для этого

    Разложить числа на простые множители

    $99=3\cdot 3\cdot 11$

    Выписать множители, входящие в состав первого

    добавить к ним множители, которые входят в состав второго и не ходят в состав первого

    Найти произведение чисел, найденных на шаге 2.Полученное число и будет искомым наименьшим общим кратным

    $НОК=3\cdot 3\cdot 11\cdot 7=693$

    Составление списков делителей чисел часто очень трудоемкое занятие. Существует способ нахождение НОД, называемый алгоритмом Евклида.

    Утверждения, на которых основан алгоритм Евклида:

    Если $a$ и $b$ --натуральные числа, причем $a\vdots b$, то $D(a;b)=b$

    Если $a$ и $b$ --натуральные числа, такие что $b

Пользуясь $D(a;b)= D(a-b;b)$, можно последовательно уменьшать рассматриваемые числа до тех пор, пока не дойдем до такой пары чисел, что одно из них делится на другое. Тогда меньшее из этих чисел и будет искомым наибольшим общим делителем для чисел $a$ и $b$.

Свойства НОД и НОК

  1. Любое общее кратное чисел $a$ и $b$ делится на K$(a;b)$
  2. Если $a\vdots b$ , то К$(a;b)=a$
  3. Если К$(a;b)=k$ и $m$-натуральное число, то К$(am;bm)=km$

    Если $d$-общий делитель для $a$ и $b$,то К($\frac{a}{d};\frac{b}{d}$)=$\ \frac{k}{d}$

    Если $a\vdots c$ и $b\vdots c$ ,то $\frac{ab}{c}$ - общее кратное чисел $a$ и $b$

    Для любых натуральных чисел $a$ и $b$ выполняется равенство

    $D(a;b)\cdot К(a;b)=ab$

    Любой общийй делитель чисел $a$ и $b$ является делителем числа $D(a;b)$

Продолжим разговор о наименьшем общем кратном, который мы начали в разделе « НОК – наименьшее общее кратное, определение, примеры». В этой теме мы рассмотрим способы нахождения НОК для трех чисел и более, разберем вопрос о том, как найти НОК отрицательного числа.

Yandex.RTB R-A-339285-1

Вычисление наименьшего общего кратного (НОК) через НОД

Мы уже установили связь наименьшего общего кратного с наибольшим общим делителем. Теперь научимся определять НОК через НОД. Сначала разберемся, как делать это для положительных чисел.

Определение 1

Найти наименьшее общее кратное через наибольший общий делитель можно по формуле НОК (a , b) = a · b: НОД (a , b) .

Пример 1

Необходимо найти НОК чисел 126 и 70 .

Решение

Примем a = 126 , b = 70 . Подставим значения в формулу вычисления наименьшего общего кратного через наибольший общий делитель НОК (a , b) = a · b: НОД (a , b) .

Найдет НОД чисел 70 и 126 . Для этого нам понадобится алгоритм Евклида: 126 = 70 · 1 + 56 , 70 = 56 · 1 + 14 , 56 = 14 · 4 , следовательно, НОД (126 , 70) = 14 .

Вычислим НОК: НОК (126 , 70) = 126 · 70: НОД (126 , 70) = 126 · 70: 14 = 630 .

Ответ: НОК (126 , 70) = 630 .

Пример 2

Найдите нок чисел 68 и 34 .

Решение

НОД в данном случае нейти несложно, так как 68 делится на 34 . Вычислим наименьшее общее кратное по формуле: НОК (68 , 34) = 68 · 34: НОД (68 , 34) = 68 · 34: 34 = 68 .

Ответ: НОК (68 , 34) = 68 .

В этом примере мы использовали правило нахождения наименьшего общего кратного для целых положительных чисел a и b: если первое число делится на второе, что НОК этих чисел будет равно первому числу.

Нахождение НОК с помощью разложения чисел на простые множители

Теперь давайте рассмотрим способ нахождения НОК, который основан на разложении чисел на простые множители.

Определение 2

Для нахождения наименьшего общего кратного нам понадобится выполнить ряд несложных действий:

  • составляем произведение всех простых множителей чисел, для которых нам нужно найти НОК;
  • исключаем их полученных произведений все простые множители;
  • полученное после исключения общих простых множителей произведение будет равно НОК данных чисел.

Этот способ нахождения наименьшего общего кратного основан на равенстве НОК (a , b) = a · b: НОД (a , b) . Если посмотреть на формулу, то станет понятно: произведение чисел a и b равно произведению всех множителей, которые участвуют в разложении этих двух чисел. При этом НОД двух чисел равен произведению всех простых множителей, которые одновременно присутствуют в разложениях на множители данных двух чисел.

Пример 3

У нас есть два числе 75 и 210 . Мы можем разложить их на множители следующим образом: 75 = 3 · 5 · 5 и 210 = 2 · 3 · 5 · 7 . Если составить произведение всех множителей двух исходных чисел, то получится: 2 · 3 · 3 · 5 · 5 · 5 · 7 .

Если исключить общие для обоих чисел множители 3 и 5 , мы получим произведение следующего вида: 2 · 3 · 5 · 5 · 7 = 1050 . Это произведение и будет нашим НОК для чисел 75 и 210 .

Пример 4

Найдите НОК чисел 441 и 700 , разложив оба числа на простые множители.

Решение

Найдем все простые множители чисел, данных в условии:

441 147 49 7 1 3 3 7 7

700 350 175 35 7 1 2 2 5 5 7

Получаем две цепочки чисел: 441 = 3 · 3 · 7 · 7 и 700 = 2 · 2 · 5 · 5 · 7 .

Произведение всех множителей, которые участвовали в разложении данных чисел, будет иметь вид: 2 · 2 · 3 · 3 · 5 · 5 · 7 · 7 · 7 . Найдем общие множители. Это число 7 . Исключим его из общего произведения: 2 · 2 · 3 · 3 · 5 · 5 · 7 · 7 . Получается, что НОК (441 , 700) = 2 · 2 · 3 · 3 · 5 · 5 · 7 · 7 = 44 100 .

Ответ: НОК (441 , 700) = 44 100 .

Дадим еще одну формулировку метода нахождения НОК путем разложения чисел на простые множители.

Определение 3

Раньше мы исключали из всего количества множителей общие для обоих чисел. Теперь мы сделаем иначе:

  • разложим оба числа на простые множители:
  • добавим к произведению простых множителей первого числа недостающие множители второго числа;
  • получим произведение, которое и будет искомым НОК двух чисел.

Пример 5

Вернемся к числам 75 и 210 , для которых мы уже искали НОК в одном из прошлых примеров. Разложим их на простые множители: 75 = 3 · 5 · 5 и 210 = 2 · 3 · 5 · 7 . К произведению множителей 3 , 5 и 5 числа 75 добавим недостающие множители 2 и 7 числа 210 . Получаем: 2 · 3 · 5 · 5 · 7 . Это и есть НОК чисел 75 и 210 .

Пример 6

Необходимо вычислить НОК чисел 84 и 648 .

Решение

Разложим числа из условия на простые множители: 84 = 2 · 2 · 3 · 7 и 648 = 2 · 2 · 2 · 3 · 3 · 3 · 3 . Добавим к произведению множителей 2 , 2 , 3 и 7 числа 84 недостающие множители 2 , 3 , 3 и
3 числа 648 . Получаем произведение 2 · 2 · 2 · 3 · 3 · 3 · 3 · 7 = 4536 . Это и есть наименьшее общее кратное чисел 84 и 648 ​​​​​​ ​.

Ответ: НОК (84 , 648) = 4 536 .

Нахождение НОК трех и большего количества чисел

Независимо от того, с каким количеством чисел мы имеем дело, алгоритм наших действий всегда будет одинаковым: мы будем последовательно находить НОК двух чисел. На этот случай есть теорема.

Теорема 1

Предположим, что у нас есть целые числа a 1 , a 2 , … , a k . НОК m k этих чисел находится при последовательном вычислении m 2 = НОК (a 1 , a 2) , m 3 = НОК (m 2 , a 3) , … , m k = НОК (m k − 1 , a k) .

Теперь рассмотрим, как можно применять теорему для решения конкретных задач.

Пример 7

Необходимо вычислить наименьшее общее кратное четырех чисел 140 , 9 , 54 и 250 .

Решение

Введем обозначения: a 1 = 140 , a 2 = 9 , a 3 = 54 , a 4 = 250 .

Начнем с того, что вычислим m 2 = НОК (a 1 , a 2) = НОК (140 , 9) . Применим алгоритм Евклида для вычисления НОД чисел 140 и 9: 140 = 9 · 15 + 5 , 9 = 5 · 1 + 4 , 5 = 4 · 1 + 1 , 4 = 1 · 4 . Получаем: НОД (140 , 9) = 1 , НОК (140 , 9) = 140 · 9: НОД (140 , 9) = 140 · 9: 1 = 1 260 . Следовательно, m 2 = 1 260 .

Теперь вычислим по тому е алгоритму m 3 = НОК (m 2 , a 3) = НОК (1 260 , 54) . В ходе вычислений получаем m 3 = 3 780 .

Нам осталось вычислить m 4 = НОК (m 3 , a 4) = НОК (3 780 , 250) . Действуем по тому же алгоритму. Получаем m 4 = 94 500 .

НОК четырех чисел из условия примера равно 94500 .

Ответ: НОК (140 , 9 , 54 , 250) = 94 500 .

Как видите, вычисления получаются несложными, но достаточно трудоемкими. Чтобы сэкономить время, можно пойти другим путем.

Определение 4

Предлагаем вам следующий алгоритм действий:

  • раскладываем все числа на простые множители;
  • к произведению множителей первого числа добавляем недостающие множители из произведения второго числа;
  • к полученному на предыдущем этапе произведению добавляем недостающие множители третьего числа и т.д.;
  • полученное произведение будет наименьшим общим кратным всех чисел из условия.

Пример 8

Необходимо найти НОК пяти чисел 84 , 6 , 48 , 7 , 143 .

Решение

Разложим все пять чисел на простые множители: 84 = 2 · 2 · 3 · 7 , 6 = 2 · 3 , 48 = 2 · 2 · 2 · 2 · 3 , 7 , 143 = 11 · 13 . Простые числа, которым является число 7 , на простые множители не раскладываются. Такие числа совпадают со своим разложением на простые множители.

Теперь возьмем произведение простых множителей 2 , 2 , 3 и 7 числа 84 и добавим к ним недостающие множители второго числа. Мы разложили число 6 на 2 и 3 . Эти множители уже есть в произведении первого числа. Следовательно, их опускаем.

Продолжаем добавлять недостающие множители. Переходим к числу 48 , из произведения простых множителей которого берем 2 и 2 . Затем добавляем простой множитель 7 от четвертого числа и множители 11 и 13 пятого. Получаем: 2 · 2 · 2 · 2 · 3 · 7 · 11 · 13 = 48 048 . Это и есть наименьшее общее кратное пяти исходных чисел.

Ответ: НОК (84 , 6 , 48 , 7 , 143) = 48 048 .

Нахождение наименьшего общего кратного отрицательных чисел

Для того, чтобы найти наименьшее общее кратное отрицательных чисел, эти числа необходимо сначала заменить на числа с противоположным знаком, а затем провести вычисления по приведенным выше алгоритмам.

Пример 9

НОК (54 , − 34) = НОК (54 , 34) , а НОК (− 622 , − 46 , − 54 , − 888) = НОК (622 , 46 , 54 , 888) .

Такие действия допустимы в связи с тем, что если принять, что a и − a – противоположные числа,
то множество кратных числа a совпадает со множеством кратных числа − a .

Пример 10

Необходимо вычислить НОК отрицательных чисел − 145 и − 45 .

Решение

Произведем замену чисел − 145 и − 45 на противоположные им числа 145 и 45 . Теперь по алгоритму вычислим НОК (145 , 45) = 145 · 45: НОД (145 , 45) = 145 · 45: 5 = 1 305 , предварительно определив НОД по алгоритму Евклида.

Получим, что НОК чисел − 145 и − 45 равно 1 305 .

Ответ: НОК (− 145 , − 45) = 1 305 .

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter



Просмотров