Микрорентген в час в микрозиверт в час. Доза облучения при рентгене, КТ, МРТ и УЗИ: ну сколько можно? Допустимые дозы радиации

Естественная радиоактивность присутствует повсюду. Ионизирующее излучение есть и в космосе, и на Земле с самого момента её зарождения. Даже человеческий организм немного радиоактивен, и способа избавиться от природной радиации не существует.

Основным источником природного или естественного радиационного фона считается радон, который выделяется из земной коры. Радиоактивный инертный газ задерживается в закрытых помещениях, проникая через щели в фундаментах. Также радионуклиды могут быть в кирпиче и бетоне. Радон может образовываться в процессе сжигания природного газа, он присутствует в воде артезианских скважин.

Как её не назови, но опасности для человека не представляет, так как природная радиация обычно имеет допустимые дозы облучения. Радиоактивность, созданная человеческой деятельностью, может иметь в том числе и смертельную дозу радиации.

Виды доз радиации и что такое мощность эквивалентной дозы

Понятие дозы введено для оценки степени воздействия ионизационного облучения на различные объекты. Чтобы определить интенсивность допустимых доз облучения ввели понятие мощности дозы.

  • Экспозиционная доза. Количество положительных ионов рентгеновских и гамма лучей в определённом объёме воздухе, принято называть экспозиционной дозой. Системной единицей измерений является кулон деленный на килограмм (Кл/Г), а не системной единицей Рентген (Р). 1 Кл/Г = 3876 Р.
  • Поглощённая доза. Количество полученной энергии радиоактивного излучения на единицу массы облучаемого вещества называют поглощённой дозой. Системной единицей измерения является в Грей (Гр), а не системной Рад. 1 Гр = 100 рад.
  • Эквивалентная доза. Понятие эквивалентной дозы показывает поглощённую дозу ионизирующего излучения, скорректированную коэффициентом относительной биологической эффективности различных видов радиоактивных излучений. Системно единицей измерения является Зиверт (Зв), а не системной Бэр (бэр). 1 Зв = 100 бэр.
  • Эффективная доза. Различные ткани организма имеют разную чувствительность к облучению. Поэтому для расчёта эффективной дозы добавили коэффициент радиационной опасности. Измеряется также как и эквивалентная доза в Зивертах (Зв).
  • Мощность эквивалентной дозы. Доза облучения, полученная организмом в определённый отрезок времени (например, в течение часа), называется мощностью дозы. Мощность рассчитывается как отношение дозы ко времени воздействия и измеряется в Рентген в час, Зиверт в час и Грей в час. Бытовые дозиметры обычно измеряют мощность эквивалентной дозы (микроЗиверт в час) или мощность экспозиционной дозы (микроРентген в час). Соотношение запомнить несложно — один Зиверт это сто Рентген.

Допустимая доза облучения или безопасная мощность дозы

Допустимые дозы облучения (уровень мощности естественного фона) от 0,05 мкЗв/час до 0,5 мкЗв/час безвредны. Но при постоянном попадании в организм человека радона возрастает риск различных заболеваний, в том числе раком. Поэтому помещения необходимо проветривать. При строительстве дома или ремонте квартиры нужно проверять применяемые стройматериалы бытовым дозиметром или индикатором радиоактивности.

Человеческая деятельность увеличивает естественную радиоактивность природы. И это не только ядерное оружие или атомная промышленность. Обычное сжигание газа, нефти или каменного угля изменяет радиационный фон. Допустимые дозы облучения значительно превышены в районах нефтескважин. На грунте около скважин и на бурильном оборудовании откладываются небезопасные соли тория 232, радия 226 и калия 40. Поэтому отработанные трубы считаются радиоактивными отходами и должны утилизироваться специальным образом.

Мощность дозы естественного радиоактивного фона на территории РФ составляет 0,01–0,02 мР/ч.

Согласно Федеральному закону «О радиационной безопасности населения» № 3-ФЗ от 9 января 1996 г. и поправке к ст. 9 от 1999 г. с января 2000 года для населения средняя годовая эффективная доза равна 0,001 зиверта или эффективная доза за период жизни (70 лет) – 0,07 зиверта; в отдельные годы допустимы бо́льшие значения эффективной дозы при условии, что средняя годовая эффективная доза, исчисленная за пять последовательных лет, не превысит 0,001 зиверта.

После Чернобыльской аварии в РФ установлены следующие допустимые пределы радиационного фона:

15–19 мР/ч (миллирентген в час) – безопасно;

20–60 мР/ч – относительно безопасно;

61–120 мР/ч – зона повышенного внимания;

121 мР/ч и более – опасная зона.

Международная комиссия по радиационной защите (МКРЗ) рекомендует считать предельно допустимую дозу (ПДД) разового аварийного облучения – 25 бэр; ПДД профессионального хронического облучения – до 5 бэр в год; для ограниченных групп населения – 0,5 бэр. Генетически значимые дозы для населения находятся в пределах 7–55 мбэр/год.

Доза облучения может быть однократной и многократной. Однократным считается облучение, полученное за первые четверо суток. Если продолжительность облучения превышает этот срок, то оно считается многократным.

При облучении человека дозой менее 100 бэр отмечаются лишь легкие реакции организма, проявляющиеся в формуле крови, изменении вегетативных функций.

При дозах более 100 бэр развивается острая лучевая болезнь, тяжесть течения которой зависит от дозы облучения.

Аварии на радиационно-опасных объектах и их классификация

Радиационная авария – это происшествие, вызванное неисправностью оборудования, неправильными действиями работников (персонала), стихийными бедствиями или иными причинами приводящее к выходу (выбросу) радиоактивных продуктов и ионизирующих излучений за предусмотренные проектом пределы (границы) РОО в количествах, превышающих установленные нормы безопасности.

Под ядерной (радиационной) аварией понимают потерю управления цепной реакцией в реакторе либо образование критической массы при перегрузке, транспортировке и хранении тепловыделяющих сборок, а также нарушении режимов хранения отработанных ядерных отходов, приводящие к облучению людей сверх допустимых пределов. В тяжелых случаях вследствие быстрого неуправляемого развития цепной реакции ядерная авария может приводить к ядерному взрыву малой мощности или тепловому взрыву, в результате которого происходит полное разрушению реактора или хранилища, сопровождающееся массовым облучением людей на значительной территории.

Классификация возможных аварий на РОО производится по двум признакам: по типовым нарушениям нормальной эксплуатации и по характеру последствий для персонала, населения и окружающей среды.

Аварии, связанные с нарушениями нормальной эксплуатации, подразделяются на:

- проектные , то есть такие, которые могут быть предотвращены существующими (заложенными в проекте) системами безопасности,

- проектные с максимально возможными последствиями (так

называемые максимальные проектные аварии) и

- запроектные , которые не могут быть локализованы системами внутренней безопасности объекта.

Последствия первых двух не приводят к выходу радиоактивных веществ за пределы санитарно-защитной зоны и облучению населения сверх допустимых установленных норм, В случае же аварий третьего типа требуется принятие в той или иной степени мер по радиационной защите населения.

По масштабам последствий радиационные аварии делятся на:

Локальные – нарушения в работе РОО, при котором не произошел выход радиоактивных продуктов или ионизирующего излучения за предусмотренные границы оборудования, технологических систем, зданий и сооружений в количествах, превышающих установленные для нормальной эксплуатации предприятия значения.

Местные – нарушения в работе РОО, при котором произошел выход радиоактивных продуктов в пределах санитарно – защитной зоны и количествах, превышающих установленные нормы для данного предприятия.

Общие – нарушения в работе РОО, при котором произошел выход радиоактивных продуктов за границу санитарно – защитной зоны и количествах, приводящих к радиоактивному загрязнению прилегающей территории и возможному облучению проживающего на ней населения выше установленных норм.

В зависимости от медицинских последствий, контингента облучаемых лиц и вида лучевого воздействия на организм человека радиационные аварии разделяются на пять основных групп: малые, средние, большие, крупные и катастрофические .

К малым радиационным авариям относятся инциденты не связанные с серьезными медицинскими последствиями. К второй и третьей группам относятся аварии, приводящие к поражению персонала, причем для аварий второй группы характерно только внешнее, а для третьей группы – внешнее и внутреннее облучение персонала. В авариях относящихся к четвертой и пятой группы (крупные и катастрофические) поражается и население, причем в катастрофических авариях имеет место внешнее и внутреннее облучение больших контингентов населения, проживающего в одном или нескольких регионах.

Перейдем теперь к рассмотрению особенностей радиационных

аварий на конкретных радиационно-опасных объектах.

Начнем с аварий на атомных электростанциях , которые, как практически показала катастрофа на Чернобыльской атомной станции, могут привести к возникновению чрезвычайных ситуаций трансграничного (глобального) масштаба. Дополнительный материал по медицинским аспектам аварии на АЭС приведен в Приложении 2 в конце пособия.

В настоящее вpемя почти в 30 стpанах миpа эксплуатиpуется около 450 атомных энеpгоблоков общей мощностью более 350 ГВт, из них 46 – в странах СНГ. Общее количество выpабатываемой атомными станциями электpоэнеpгии в миpе составляет около 20%, в Евpопе - почти 35%.

Развитие атомной энергетики сопровождается непрерывным ростом числа возникающих на атомных станциях аварийных ситуаций. Всего с момента первой серьезной аварии на АЭС NRX в Канаде в 1952 году во всем миpе было заpегистpиpовано более 300 аваpийных ситуаций на атомных станциях.

Для классификации аварий на АЭС могут быть использованы как сформулированные выше общие классификационные градации аварий на радиационно-опасных объектах, так и специальная Международная шкала событий на АЭС (шкала INES), разработанная под эгидой МАГАТЭ в 1989 г. и введенная в действие в России с сентября 1990 г. В соответствии с этой шкалой события на АЭС условно делятся на 7 групп (уровней).

К событиям 1-3 уровней относятся происшествия (незначительные, средней тяжести и серьезные).

1 и 2 уровни – это функциональные отключения и отказы в управлении, не вызывающие непосредственного влияния на безопасность АЭС, а тем более на окружающую среду.

3 уровень – серьезное происшествие из-за отказа оборудования или ошибок эксплуатации. В окружающую среду могут быть выброшены радиоактивные вещества. При этом доза облучения вне АЭС не превышает нескольких мЗв (не более 5 годовых ПДД доз). Внутри АЭС обслуживающий персонал может быть переоблучен дозами порядка 50 мЗв. За пределами площадки не требуется принятия защитных мер.

События 4-го уровня и выше относятся к авариям, причем 4-й уровень соответствует максимальной проектной аварии. Серьезное повреждение активной зоны и физических барьеров. Облучение персонала порядка 1 Зв, приводящее к острой лучевой болезни. Выброс р/а продуктов в окружающую среду в количествах, не превышающих дозовые пределы для населения при проектных авариях.

5 уровень – авария с риском для окружающей среды. Тяжелое повреждение активной зоны и физических барьеров. Имеет место значительный выброс продуктов деления в окружающую среду, радиологически эквивалентный активностям от нескольких единиц до десятков терабеккерелей радиоактивного йода131. Возможна частичная эвакуация, необходима местная йодная профилактика.

6 уровень – тяжелая авария. По внешним последствиям характеризуется значительным выбросом РВ эквивалентным активностям от десятков до сотен терабеккерелей радиоактивного йода-131.

7 уровень - глобальная авария, сопровождающаяся выбросом РВ в окружающую среду, радиологически эквивалентным активностям от тысяч до десятков тысяч терабеккерелей радиоактивного йода-131. Наносится ущерб здоровью людей и окружающей среде на больших территориях.

В развитии аварий на АЭС можно выделить следующие фазы :

Начальная фаза – характеризуется наличием угрозы выброса радиоактивных веществ в окружающую среду. Меры защиты: оповещение об угрозе; обеспечение препаратами стабильного йода; приведение в готовность защитных сооружений; подготовка к организованной эвакуации.

Ранняя фаза – фаза острого облучения. Происходит выброс радиоактивных веществ в окружающую среду. Меры защиты: оповещение; эвакуация; ограничение питания.

Промежуточная фаза – дополнительных поступлений радиоактивных веществ в окружающую среду нет. Радиационная обстановка сформировалась полностью. Экстренные меры радиационной защиты: эвакуация; отселение; ограничение на сельскохозяйственную деятельность; ограничение рыбного производства; завоз воды и продуктов.

Последняя фаза – возвращение к нормальной деятельности.

Основным поражающим фактором крупных аварий на АЭС является радиоактивное заражение местности в результате выброса радионуклидов из активной зоны реактора в атмосферу. Кроме того, при запроектной аварии с разрушением реактора на работающую смену персонала поражающее воздействие может оказать световое излучение и проникающая радиация (нейтронное и гамма-излучение) из активной зоны. Еще одним поражающим фактором может являться ударная волна (воздушная или сейсмическая), возникающая при ядерном взрыве реактора (при тепловом взрыве ее воздействие незначительно).

Меры защиты от радиационных аварий

В случае аварии на радиационно-опасном объекте необходимые меры защиты определяются по результатам зонирования загрязненных территорий. При этом под зоной радиационной аварии понимают территорию, на которой годовая доза облучения превышает 5 мЗв.

Зонирование и комплекс защитных мероприятий в соответствующих зонах зависит от фазы радиационной аварии.

На ранней и промежуточной (средней) фазах аварии территория вокруг РОО делится на следующие зоны:

Зона отселения - доза более 50 мЗв. В этой зоне вмешательство осуществляется путем эвакуации населения.

Зона добровольного отселения – доза от 20 до 50 мЗв. Здесь осуществляется радиационный мониторинг людей и объектов внешней среды, а также необходимые меры радиационной и медицинской защиты. Оказывается помощь в добровольном переселении за пределы зоны.

Зона ограниченного проживания населения – доза от 5 до 20 мЗв. Радиационный мониторинг. Осуществляются меры по снижению доз на основе выполнения соответствующих правил поведения на загрязненной территории. Жителям и лицам, проживающим на указанной территории, разъясняется риск ущерба здоровью, обусловленный воздействием радиации.

Зона радиационного контроля - доза от 1 мЗв до 5 мЗв. (находится вне зоны радиационной аварии). Радиационный мониторинг объектов окружающей среды, сельскохозяйственной продукции и доз внешнего и внутреннего облучения критических групп населения. Те же меры по снижению доз, что и в предыдущей зоне.

Зонирование территории вокруг РОО на последней

(восстановительной) стадии радиационной аварии

Зона отчуждения - доза более 50 мЗв. В этой зоне постоянное проживание не допускается, а хозяйственная деятельность и природопользование регулируются специальными актами. Осуществляются меры мониторинга и защиты работающих с обязательным индивидуальным дозиметрическим контролем.

Зона отселения – доза от 20 мЗв до 50 мЗв. Въезд на указанную территорию для постоянного проживания не разрешен. В этой зоне запрещается постоянное проживание лиц репродуктивного возраста и детей. Здесь осуществляется радиационный мониторинг людей и объектов внешней среды, а также необходимые меры радиационной и медицинской защиты.

Зона ограниченного проживания населения – доза от 5 мЗв до 20 мЗв. Радиационный мониторинг. Осуществляются меры по снижению доз на основе выполнения соответствующих правил поведения на загрязненной территории. Добровольный въезд на указанную территорию для постоянного проживания не ограничивается. Лицам, въезжающим на указанную территорию, разъясняется риск ущерба здоровью.

Зона радиационного контроля – доза от 1 мЗв до 5 мЗв. Радиационный мониторинг объектов окружающей среды, сельскохозяйственной продукции и доз внешнего и внутреннего облучения групп населения. Те же меры по снижению доз, что и в зоне ограниченного проживания.

Действия населения при авариях на радиационно-опасных

Объектах

Основным способом оповещения населения об авариях на радиационно-опасных объектах является передача информации по местной теле- и радиовещательной сети с использованием установленного сигнала "Внимание всем!", при котором для привлечения внимания населения включаются электросирены, дублируемые производственными гудками и другими установленными на местах сигнальными средствами.

Если в поступившей информации отсутствуют рекомендации по действиям, следует защитить себя от внешнего и внутреннего облучения. Для этого по возможности быстро защитить органы дыхания табельными средствами защиты (респиратор, противогаз), а при их отсутствии ватно-марлевыми повязками, шарфом, платком и укрыться в ближайшем здании, лучше в собственной квартире. Войдя в помещение, в коридоре следует снять с себя верхнюю одежду и обувь, поместив их в пластиковый пакет или пленку, немедленно закрыть окна, двери и вентиляционные отверстия, включить радиоприемники, телевизоры и радиорепродукторы, занять место вдали от окон, быть готовым к приему информации и указаний о действиях.

При наличии измерителя мощности дозы определить степень загрязнения квартиры.

Обязательно загерметизировать помещение и укрыть продукты питания. Для этого подручными средствами заделать щели в окнах и дверях, заклеить вентиляционные отверстия. Открытые продукты поместить в полиэтиленовые мешки, пакеты или пленку. Сделать запас воды в емкостях с плотно прилегающими крышками. Продукты и воду поместить в холодильники, закрываемые шкафы или кладовки.

При получении указаний по средствам массовой информации провести профилактику препаратами йода (например, йодистым калием). При их отсутствии использовать 5% раствор йода:3-5 капель на стакан воды для взрослых и 1-2 капли на 100 г жидкости для детей. Прием повторить через 6-7 часов. Следует помнить, что препараты йода противопоказаны для беременных женщин.

При приготовлении и приеме пищи все продукты, выдерживающие воздействие воды, промыть.

Строго соблюдать правила личной гигиены, предотвращающие или значительно снижающие внутреннее облучение организма.

В случае загрязненности помещения защитить органы дыхания.

Помещения оставлять лишь в крайней необходимости и на короткое время. При выходе защитить органы дыхания, надеть плащ (накидку из подручных материалов) или табельные средства защиты кожи.

После возвращения переодеться.


Похожая информация.


Радиация представляет собой ионизирующее излучение микроскопических частиц и физических полей. К не относятся ультрафиолетовые лучи и диапазон видимого света. Способностью ионизировать встречное вещество не обладают радиоволны и микроволны, это не радиация. Смертельная доза для человека не создается искусственно при помощи химических процессов, радиация относится к физическому действию.

Мощность и доза

Мощностью радиационного излучения называется количество ионизации за определенный временной промежуток. Для мощности существует единица измерения - микрорентген в час.

Полученная доза измеряется суммарной дозой, определяемой мощностью излучения, умноженной на время действия микрочастиц, таким образом, высчитывается смертельная доза радиация для человека, которая приводит к летальному исходу. Для измерения эквивалентной дозы используется зиверт (Зв), мощность для расчета определяется в зивертах в час (Зв/ч).

Для расчета эквивалентной дозы от воздействия лучей различных типов принимают во внимание интенсивность искомого излучения по отношению к зиверту. Например, при определении суммарной дозы от действия гамма-лучей приравнивают 100 рентген к 1 Зв. Мелкие дозы, меньше 1 Зв высчитывают в отношении:

  • 1 мЗв (миллизиверт) равен 1/1000 зиверта;
  • 1 мкЗв (микрозиверт) равен 1/1000 миллизиверта или 1/1000000 зиверта.

Прибор для измерения излучения

Стандартным распространенным устройством для определения мощности дозы или мощности, направленной на прибор и на оператора прибора, является дозиметр. Дозиметрия проводится за время подверженности радиации, например, рабочая смена или время выполнения спасательных работ.

Смертельная доза радиации для человека в рентгенах зависит от интенсивности излучения в месте нахождения работника, если суммарный показатель насчитывает более 600 единиц, то такое облучение опасно для жизни. Обследуются перевозимые грузы, предметы, измеряется фон от построек и зданий. Каждый человек, посещающий места с опасностью радиационного загрязнения, приобретает дозиметр в постоянное личное пользование.

Собираясь в незнакомую местность, например, горы, озера, отправляясь в поход или за ягодами и грибами, берут прибор для обследования местности перед длительным нахождением. Определяется интенсивность излучения участка перед строительством или при покупке земли. Радиационный фон не понижается и не удаляется со стен зданий и предметов, поэтому предварительно выявляется опасность с помощью дозиметра.

Понятие радиоактивности

Некоторые атомы содержат неустойчивые ядра, способные превращаться или распадаться. Этот процесс способствует освобождению свободных ионов. Возникает энергетически мощное, способное воздействовать на окружающее вещество и провоцировать появление новых ионов отрицательного и положительного заряда. Смертельная доза радиации в рад возникает при облучении человека 600 рад, при этом 100 рад (внесистемная единица) = 100 рентгенам.

Причины радиоактивного заражения

Действие различных факторов и обстоятельств вызывает повышенный радиационный фон:

  • выпадение вещества радиоактивного характера из ядерного облака при взрыве;
  • при возникновении наведенной радиации, полученной образованием изотопов радиоактивного вида при мгновенном действии гамма-лучей и нейтронов, высвободившихся при ядерном взрыве;
  • действием внешнего излучения гамма и бета-лучей;
  • смертельная проявляется при внутреннем облучении после попадания радиоактивных изотопов внутрь человеческого организма из воздуха или с продуктами питания;
  • провоцируется в мирное время техногенными катастрофами на атомных объектах, неправильной транспортировкой и утилизацией ядерных отходов.

Разновидность излучения

Опасными для человека является излучение микрочастиц, приводящее к заболеваниям организма и смертельным случаям. Величина воздействия зависит от разновидности лучей, продолжительности действия и частоты:

  • тяжелые альфа-частицы, положительно заряженные после распада ядер (к ним относят торон, кобальт-60, уран, радон);
  • бета-частицы являются обычными электронами стронция-90, калия-40, цезия-137;
  • гамма-излучение представлено частицами с большой проникающей способностью (цезия-137, кобальта-60);
  • жесткое рентгеновское излучение, напоминающее гамма-частицы, но менее энергичное, обеспечивает америций-241, постоянным источником возникновения является солнце;
  • нейтроны возникают в результате распада ядер плутония, их скопление наблюдается в окружении атомных реакторов.

Разновидности доз

Эквивалентная фиксированная эффективная доза представляет собой определение доз радиации на организм в результате поступления некоторого количества вредного вещества. Этот показатель учитывает чувствительность внутренних органов и время нахождения радиоактивного вещества в теле (иногда в течение всей жизни). В некоторых случаях смертельная доза радиации в рентгенах измеряется для одного выбранного органа.

Амбидентный эквивалент дозы определяется величиной, которую мог бы получить человек, если бы присутствовал на территории, где делается дозиметрия, показатель измеряется в зивертах.

Воздействие радиационного загрязнения на организм человека

Любое излучение, приводящее к образованию в окружающей среде электрических частиц с различными знаками, считается ионизирующим. Рассеянный радиационный фон постоянно сопровождает человека, его создает космическое излучение, влияние солнца, природные источники радионуклидов, другие составляющие биосферы.

Для работы в опасных условиях персонал защищают специальными костюмами, соблюдают нормы безопасности. Облучение организм получает на рабочем месте при физических и химических опытах, проведении дефектоскопии, медицинских исследованиях, геологических изысканиях и др.

Мутация от облучения

Смертельная доза радиации для человека в рад составляет свыше 600 единиц и приводит к летальному исходу. Облучение в дозе от 400 до 600 рад способствует появлению лучевой болезни и может вызвать мутацию генов. Действие ионизированного преображения организма мало изучено, мутации проявляют себя через поколения. Разброс времени дает право сомневаться, появилась мутация от радиоактивного влияния или вызвана другими причинами.

Мутации по виду делят на доминантные, появляющиеся в короткий период после действия облучения и рецессивными. Второй вид проявляет себя, если мать и ребенок имеют один мутантный ген. Мутация не просыпается несколько поколений или не беспокоит человека совсем. Перерождение плода трудно определяется в случае преждевременных родов, если мутация не дает возможности зародышу достичь родового возраста.

Лучевая болезнь. Лейкоз

В постановке болезни большое влияние оказывает радиация. Смертельная доза облучения приводит к летальному исходу, но не менее опасны уровни облучения от 200 до 600 р, вызывающие лучевую болезнь. Радиация поражает человека после однократного мощного воздействия или при постоянном проникновении радиационного излучения небольшой мощности. Примером служит работа рентгенологов, не выдерживающих постоянного облучения и заболевающих характерными заболеваниями.

Наиболее опасным является действие радиации на неокрепший организм до 15 лет. О размере дозы единого мнения нет, исследователи приводят разные дозы допуска в 50, 100 и 200 р. Патогенез изучается в исследовательских институтах, лучевой лейкоз становится более доступным для лечения.

Онкологические заболевания

Изучение действия радиации на человека затруднено тем, что для появления обобщенных данных исследуются большие группы людей, что невозможно без специального эксперимента. Какая смертельная доза радиации является летальной, а какие уровни вызывают онкологические опухоли человека нельзя судить по эксперименту над животными.

В смысле выделения опасной дозы, вызывающей раковые опухоли, нет определенных данных. Любая доза полученной радиации дает толчок организму для начала деления агрессивных клеток. По частоте проявления болезни подразделяют следующим образом:

  • наиболее частым является проявление лейкоза;
  • из 1000 женщин, попавших в группу риска, раком молочной железы заболевают 10 пациенток;
  • такая же статистика заболевания раком щитовидки.

Степени тяжести лучевой болезни

Являются постоянная головная боль, нарушение движения, координации жестов, тошнота, рвота, головокружение, расстройства желудка и кишечника. Какая доза радиации смертельна для человека:

  • первая степень проявляется после латентного периода в две недели, заболевание вызывается облучением от 100 до 200 рентген;
  • для проявления второй степени после облучения дозой от 200 до 400 рентген, смерть наступает у четвертой части подвергшихся облучению;
  • третья стадия лучевой болезни - это смертность в 50% случаев, для возникновения достаточно дозы облучения от 400 до 600 рентгенов;
  • четвертую, самую опасную стадию, также вызывает радиация. Смертельная доза составляет более 600 рентген, летальный исход наступает в 100% случаев.

Способы индивидуальной защиты в случае радиационного загрязнения местности

Определены стандартные действия для населения, если на территории радиация. Смертельная доза облучения опасна для жизни, поэтому для уменьшения летальных исходов организовывается эвакуация людей в сооружения, которые по степени защиты делят на капитальные бомбоубежища, подвалы, деревянные строения и автомобили. Лучше всего защищает первый тип строения, остальные рассматриваются как экстренные временные пристанища.

К эффективным мерам относят защиту органов дыхания, воды и продовольственных припасов. Укрытие предметов первой необходимости делают заранее, если существует опасность выброса или взрыва. Употребляют противорадиационные медикаменты, не применяют для питания молоко в свежем виде.

Производится регулярная и обеззараживание местности, при любом удобном случае люди эвакуируются за пределы зараженного района. Уменьшение внутреннего облучения за счет исключения захвата пыли обеспечивается респираторами, эффективными в 80% случаев. Меньший показатель дает марлевая повязка из четырех слоев, но используют все имеющиеся под рукой средства защиты. В качестве накидки применяют в крайнем случае, полиэтиленовую пленку.

В заключение следует упомянуть, что радиационная загрязненность местности не уменьшается, опасность заражения человека сводится к минимуму применением индивидуальных средств защиты и контролем полученной дозы облучения с помощью дозиметров.

в корзину

Корзина покупок Продолжить покупки Оформить заказ

Как перевести зиверты в рентгены

Человек не способен при помощи органов чувств определить наличие в окружающей среде радиоактивных веществ и вредных излучений. Для этого используются различные модели дозиметров и радиометров.

В основе работы таких приборов лежит счетчик Гейгера – газонаполненный конденсатор, который реагирует на попадание в него ионизирующих частиц. Специальная программа обрабатывает данные, полученные со счетчика Гейгера, и преобразует их в понятные человеку показания. Большинство современных приборов выдает пользователю значения в мкР/ч, мЗв/ч, мР/ч, мкЗв/ч. Соотвественно, часто возникает вопрос о том, как перевести Зиверты в Рентгены и определить степень опасности для здоровья и жизни человека показаний дозиметра.

Что такое Рентген и Зиверт?

Зиверт – это единица измерения эквивалентной и эффективной доз ионизирующего излучения в системе СИ. Фактически, это количество энергии, которая была поглощена 1 кг биологической ткани. В литературе применяются русское и международное обозначения «Зв» или «Sv».

Рентген – это единица измерения экспозиционной дозы радиоактивного облучения гамма- или рентгеновским излучением, которая определяется по их ионизирующему действию на сухой воздух. Для обозначения единицы применяются общеупотребительные русское и международное обозначения «Р» или «R».

Как осуществляется перевод Рентгенов в Зиверты?

1 Рентген, точно так же, как и 1 Зив ерт – это очень большая величина. В повседневной жизни проще использовать миллионные или тысячные доли (микрорентген и микрозиверт, а та кже миллирентген и миллизиверт).


Распишем для наглядности:

  • 1 Рентген = 0,01 Зиверт;
  • 100 Рентген = 1 Зиверт;
  • 1 Рентген = 1000 миллирентген;
  • 1 миллирентген = 1000 микрорентген;
  • 1 микрорентген = 0.000001 Рентген;
  • 1 микрозиверт = 100 микрорентген.

А теперь на примере разберем, как пересчитывать Зиверты в Рентгены:

  • нормальный радиационный фон составляет 0,20 мкЗв/ч или 20 мкР/ч;
  • санитарная норма 0,30 мкЗв/ч или 30 мкР/ч;
  • верхний предел допустимой мощности дозы 0,50 мкЗв/ч или 50 мкР/ч;
  • природный фон в большом городе, таком как Киев, составляет 0,12 мкЗв/ч, что равно 12 мкР/ч.

Как приобрести хороший бытовой дозиметр?

Большой выбор бытовых и производственных дозиметров представлен в каталоге нашего интернет-магазина. Все эти приборы меряют радиацию и в Зивертах, и в Рентгенах. Воспользовавшись промокодом «СКИДКА2017» , можно получить скидку 5 % на любой приглянувшийся товар.

Радиацией (или ионизирующим излучением) называется совокупность разных видов физических полей и микрочастиц, которые имеют способности ионизировать вещества.

Радиация делится на несколько видов и измеряется при помощи различных научных приборов, специально разработанных для этих целей.

Кроме того, существуют единицы измерения, превышающие показатели которых могут быть смертельными для человека.

Наиболее точные и достоверные способы измерения радиации

При помощи дозиметра (радиометра) можно максимально точно измерить интенсивность радиации, произвести обследование определенного места или конкретных предметов. Чаще всего приборы для измерения уровня радиации используют в местах:

  1. Приближенных к районам радиационного излучения (например, рядом с ЧАЭС).
  2. Планируемого строительства жилого типа.
  3. В необследованных, неизведанных местностях во время походов, путешествий.
  4. При потенциальной покупке объектов жилого фонда.

Так как очищение от радиации территории и предметов, находящихся на ней, является невозможным (растений, мебели, оборудования, конструкций), то единственный верный способ обезопасить себя – вовремя проверить уровень опасности и по возможности держаться от источников и зараженных участков как можно дальше. Поэтому в обычных условиях для проверки местности, продуктов, предметов обихода можно применять бытовые дозиметры, успешно выявляющие опасность и ее дозы.

Нормирование радиации

Целью контроля радиации является не просто измерение ее уровня, но и определение соответствий показателей установленным нормам. Критерии и нормативы безопасного уровня радиационного излучения прописаны в отдельных законах и общеустановленных правилах. Условия содержания техногенных и радиоактивных веществ регламентируются для следующих категорий:

  • Продуктов питания
  • Воздуха
  • Строительных материалов
  • Компьютерной техники
  • Медицинского оборудования.

Производители многих видов продуктовых или промышленных товаров обязаны по закону прописывать в условиях и сертификационных документах критерии и показатели соответствия радиационной безопасности. Соответствующие государственные службы довольно строго отслеживают различные отклонения или нарушения в этом плане.

Единицы измерения радиации

Уже давно доказано, что радиационный фон присутствует практически везде, просто в большинстве мест его уровень признается безопасным. Уровень радиации измеряется в определенных показателях, среди которых основными считаются дозы – единицы энергии, поглощаемые веществом в момент прохождения ионизирующего излучения через него.

Основные виды доз и единицы их измерения можно перечислить в таких определениях:

  1. Доза экспозиционная – создается при гамма- или рентгеновском излучении и показывает степень ионизации воздуха; внесистемные единицы измерения – бэр или «рентген», в международной системе СИ классифицируется как «кулон на кг»;
  2. Поглощенная доза – единица измерения – грэй;
  3. Эффективная доза – определяется в индивидуальном порядке для каждого органа;
  4. Доза эквивалентная – в зависимости от разновидности излучения, рассчитывается исходя из коэффициентов.

Радиационное излучение может быть определено только и приборов. При этом существуют определенные дозы и установленные нормы, среди которых строго конкретизированы допустимые показатели, негативные дозы воздействия на человеческий организм и смертельные дозы.

Уровни безопасности радиационного излучения

Для населения установлены определенные уровни безопасных величин поглощаемых доз излучения, которые измеряются дозиметром.

На каждой территории есть свой естественный радиационный фон, но безопасным для населения считается величина, равная приблизительно 0,5 микрозиверт (µЗв) в час (до 50 микрорентген в час). При нормальном радиационном фоне наиболее безопасным уровнем внешнего облучения человеческого тела считается величина до 0,2 (µЗв) микрозиверт в час (значение, равное 20 микрорентгенам в час).

Самый верхний предел допустимого радиационного уровня – 0.5 µЗв - или 50 мкР/ч .

Соответственно, человек может перенести излучение, мощность которого составляет 10 мкЗ/ч (микрозиверт), а при сокращении времени воздействия до минимума, безвредно излучение в несколько миллизивертов в час. Так воздействует флюорография, рентген – до 3 мЗв. Снимок больного зуба у стоматолога – 0,2 мЗв. Поглощаемая доза облучения имеет способность накапливаться в течение жизни, но сумма не должна пересекать порог в 100-700 мЗв.



Просмотров