Медиаторы нервной системы (нейромедиаторы). Медиаторы нервной системы, их функциональное значение Вопрос26. Виды и роль центрального нервного торможения

Определение понятий

Медиаторы (от лат. mediator посредник: синоним - нейромедиаторы ) - это биологически активные вещества, секретируемые нервными окончаниями и обеспечивающие передачу нервного возбуждения в синапсах. Следует особо подчеркнуть, что возбуждение передаётся в синапсах в виде локального потенциала - возбуждающего постсинаптического потенциала (ВПСП ), но не в виде нервного импульса.

Медиаторы являются лигандами (биолигандами) для ионотропных рецепторов хемоуправляемых ионных каналов мембраны. Таким образом, медиаторы открывают хемоуправляемые ионные каналы. Известно порядка 20-30 видов медиаторов.

После обнаружения явления синаптического торможения оказалось, что кроме возбуждающих синапсов существуют также ещё и тормозные синапсы , которые не передают возбуждение, а наводят торможение на свои нейроны-мишени. Соответственно, они секретируют тормозные медиаторы .

В качестве медиаторов могут выступать самые различные вещества. Насчитывается более 30 видов медиаторов, однако лишь 7 из них принято относить к «классическим» медиаторам.

Классические медиаторы

  1. (глутамат, глютамат, он же - пищевая добавка Е-621 для усиления вкуса)
  2. . Подробное видео, д.б.н. В. А. Дубынин:
  3. . Подробное видео, д.б.н. В.А. Дубынин:
  4. . Подробное видео, д.б.н. В.А. Дубынин:
  5. (ГАМК). Подробное видео, д.б.н. В.А. Дубынин:
  6. . Подробное видео, д.б.н. В.А. Дубынин:

Другие медиаторы

  1. Гистамин и ананамид. Подробное видео, д.б.н. В.А. Дубынин:
  2. Эндорфины и энкефалины. Подробное видео, д.б.н. В.А. Дубынин:

ГАМК и глицин являются чисто тормозными медиаторами, причём глицин действует в качестве тормозного медиатора на уровне спинного мозга. Ацетилхолин, норадреналин, дофамин, серотонин могут вызывать как возуждение, так и торможение. Дофамин и серотонин являются "по совместительству" и медиаторами, и модуляторами, и гормонами.

Кроме возбуждающих и тормозных медиаторов нервные окончания могут выделять и другие биологически активные вещества, влияющие на деятельность их мишеней. Это модуляторы , или нейромодуляторы .

Не сразу бывает понятно, чем же именно отличаются друг от друга нейромедиаторы и нейромодуляторы . Оба типа этих управляющих веществ содержатся в синаптических пузырьках пресинаптических окончаний и выбрасываются в синаптическую щель. Они относятся к нейротрансмиттерам - передатчикам управляющих сигналов.

Нейротрансмиттеры = медиаторы + модуляторы .

Медиаторы и модуляторы отличаются друг от друга по нескольким признакам. Это поясняет размещённый здесь оригинальный рисунок. Попробуйте найти на нём эти отличия...

Говоря об общем числе известных медиаторов, можно назвать от десятка до сотни химических веществ.

Критерии нейромедиаторов

1. Вещество выделяется из нейрона при его активации.
2. В клетке присутствуют ферменты для синтеза данного вещества.
3. В соседних клетках (клетках-мишенях) выявляются белки-рецепторы, активируемые данным медиатором.
4. Фармакологический (экзогенный) аналог имитирует действие медиатора.
Иногда медиаторы объединяют с модуляторами, то есть веществами, которые прямо не участвуют в процессе передачи сигнала (возбуждения или торможения) от нейрона к нейрону, но могут, однако, этот процесс существенно усиливать или ослаблять.

Первичные медиаторы - это те, которые действуют непосредственно на рецепторы постсинаптической мембраны.
Сопутствующие медиаторы и медиаторы-модуляторы - могут запускать каскад ферментативных реакций, которые, например, изменяют чувствительность рецептора к первичному медиатору.
Аллостерические медиаторы - могут участвовать в кооперативных процессах взаимодействия с рецепторами первичного медиатора.

Различия между медиаторами и модуляторами

Важнейшим отличием медиаторов от модуляторов считается то, что медиаторы способны передавать возбуждение или наводить торможение на клетку-мишень, в то время как модуляторы лишь подают сигнал к началу метаболических процессов внутри клетки.

Медиаторы связываются с ионотропными молекулярными рецепторами, которые являются наружной частью ионных каналов. Поэтому медиаторы могут открывать ионные каналы и тем самым запускать трансмембранные потоки ионов. Соответственно, входящие в ионные каналы положительные ионы натрия или кальция вызывают деполяризацию (возбуждение), а входящие отрицательные ионы хлора - гиперполяризацию (торможение). Ионотропные рецепторы вместе со своими каналами сосредоточены на постсинаптической мембране. Всего известно примерно 20 видов медиаторов.

В отличие от медиаторов, известно намного больше видов модуляторов - более 600 по сравнению с 20-30 медиаторами. Практически все модуляторы являются по химическому строению нейропептидами , т.е. аминокислотными цепочками, более короткими, чем белки. Интересно, что некоторые медиаторы "по совместительству" могут играть и роль модуляторов, т.к. к ним имеются метаботропные рецепторы. Таковы, например, серотонин и ацетилхолин.

Так, к началу 1970-х годов выяснили, что дофамин, норадреналин и серотонин, известные как медиаторы в центральной нервной системе, оказывали необычное воздействие на клетки-мишени. В отличие от быстрых, наступающих за миллисекунды, эффектов классических аминокислотных медиаторов и ацетилхолина их действие нередко развивается неизмеримо дольше: сотни миллисекунд или секунды, а может длиться даже целыми часами. Такой способ передачи возбуждения между нейронами назвали “медленной синаптической передачей”. Именно такие медленные эффекты предложил назвать "метаботропными" Дж. Экклс (John Eccles) в соавторстве с супружеской парой биохимиков по фамилии Мак-Гир в 1979 году. Он хотел этим подчеркнуть, что метаботропные рецепторы запускают метаболические процессы в постсинаптическом окончании синапса, в отличие от быстрых "ионотропных" рецепторов, управляющих ионными каналами в постсинаптической мембране. Как оказалось, метаботропные дофаминовые рецепторы, действительно, запускают относительно медленный процесс, ведущий к фосфорилированию белков.

Механизм внутриклеточных эффектов модуляторов, осуществляющих медленную синаптическую передачу, был раскрыт в исследованиях Пола Грингарда (Paul Greengard). Он продемонстрировал, что, помимо классических эффектов, реализующихся через ионотропные рецепторы и непосредственное изменение электрических мембранных потенциалов, многие нейротрансмиттеры (катехоламины, серотонин и многие нейропептиды) оказывают влияние на биохимические процессы в цитоплазме нейронов. Именно этими метаботропными эффектами и обусловлено необычно медленное действие таких трансмиттеров и их длительное модулирующее влияние на функции нервных клеток. Поэтому именно нейромодуляторы вовлечены в обеспечение сложных состояний нервной системы - эмоций, настроений, мотиваций, а не в передачу быстрых сигналов для восприятия, движения, речи и т.д.

Патология

Нарушения взаимодействия нейромедиаторных систем могут считаться начальным звеном патогенеза опиатной наркомании. Они же являются мишенью фармакотерапии при лечении абстинентного синдрома и в период поддержания ремиссии.

Источники:
Медиаторы и синапсы / Зефиров А.Л., Черанов С.Ю., Гиниатуллин Р.А., Ситдикова Г.Ф., Гришин С.Н. / Казань: КГМУ, 2003. 65 с.

А вот - шутливая песенка про главный медиатор нервной системы (по совместительству он же - пищевая добавка Е-621) - глутамат натрия: www.youtube.com/watch?v=SGdqRhj2StU

Характеристика отдельных трансмиттеров приводится на дочерних страницах ниже

Медиаторы (трансмиттеры) - физиологически активные вещества, непосредственно передающие информацию от одной клетки к другой через специальные межклеточные контакты - синапсы.

На периферии медиаторами чаще всего служат два вещества - АХ (нервно-мышечные синапсы и синапсы парасимпатического отдела ВНС) и НА (синапсы постганглиоиарных волокон симпатического отдела ВНС). Но в ЦНС возбуждение и торможение могут передаваться с нейрона на нейрон при помощи многих медиаторов. Среди возбуждающих медиаторов чаще всего встречаются глутамат, АХ, НА, Д, серотонин, а среди тормозных - ГАМК и глицин. Но есть и довольно редко встречающиеся химические посредники, вырабатываемые в относительно малом числе нервных клеток. Считают, что медиаторами в нашем мозге являются не менее 35-40 различных веществ. Именно нарушения в выработке или утилизации медиаторов являются основной причиной множества нервных и психических расстройств.

Свойства вещества, способного стать медиатором, представлены на рис. 9.4.

Рис. 9.4.

1 - медиатор и его химические предшественники должны присутствовать в нейроне; 2 - медиатор должен содержаться в высоких концентрациях в синаптических везикулах; 3 - в синаптическом окончании и (или) в теле нейрона должна содержаться ферментативная система синтеза медиатора; 4 - медиатор должен высвобождаться из везикул в синаптическую щель при приходе ПД к нервному окончанию; 5 - выбросу медиатора в синаптическую щель при стимуляции должен предшествовать вход в окончание ионов кальция; 6 - в синаптической щели должна присутствовать система деградации медиатора и (или) система его обратного захвата в пресинаптическое окончание; 7 - на постсинаптической мембране должны присутствовать рецепторы к медиатору

По своей химической природе медиаторы можно подразделить на «классические », являющиеся видоизмененными аминокислотами, и «неклассические » - пептидные и газообразные (табл. 9.1). Традиционно медиаторы ИА и Д, синтезируемые в организме из пищевой аминокислоты фенилаланина, содержащей катехоловое ядро, называют катехоламинами. Серотонин, синтезируемый из аминокислоты триптофана и по своей химической природе представляющий собой производное индола, вместе с НА и Д относят к группе биогенных аминов, хотя и среди других медиаторов встречается множество «аминов».

Таблица 9.1

Некоторые медиаторы, обнаруженные в организме животных

По своим эффектам классические медиаторы подразделяют на возбуждающие и тормозные. Много позднее «классических» медиаторов были открыты пептидные медиаторы, представляющие собой небольшие цепочки из аминокислот. Доказана медиаторная роль нескольких пептидов, и несколько десятков пептидов находятся «под подозрением». И наконец, достаточно неожиданным было обнаружение способности клеток вырабатывать ряд газообразных веществ, для секреции которых не нужны «упаковка» в везикулы; тем не менее они являются полноценными медиаторами. Лучше других газов в роли медиатора известен оксид азота (NO), но медиаторные свойства СО и H 2 S также не вызывают сомнений.

Любой медиатор, независимо от химической или физической природы, имеет свой жизненный цикл , включающий следующие этапы:

  • - синтез;
  • - транспорт в пресинаптическое окончание;
  • - накопление в везикулах;
  • - выделение в синаптическую щель;
  • - взаимодействие с рецептором на постсинаптической мембране;
  • - разрушение в синаптической щели;
  • - транспорт получившихся метаболитов обратно в пресинаптическое окончание.

Синтез медиаторов может происходить как в теле нейрона, так и в самих пресинаптических окончаниях. Молекулы медиаторов пептидной природы ферментативно «вырезаются» из крупных белков-предшественников, которые синтезируются в теле нейрона на шероховатом ЭПР. Затем эти

медиаторы упаковываются в аппарате Гольджи в крупные везикулы, которые при помощи аксонального транспорта движутся но аксону к синапсам. «Классические» медиаторы синтезируются в самом окончании, куда ферменты для синтеза и упаковки молекул в везикулы поступают за счет аксонального транспорта. В большинстве нейронов доминирует какой-то один медиатор, однако в последние годы установлено, что в одном и том же нейроне и, более того, в одном и том же синапсе могут присутствовать несколько медиаторов. Они могут находиться как в одних и тех же, так и в различных везикулах. Такое сосуществование показано, например, для биогенных аминов и пептидных медиаторов.

Выброс медиатора в синаптическую щель происходит в тот момент, когда ПД достигает нервной терминали и пресинаптическая мембрана деполяризуется (рис. 9.5).


Рис. 9.5.

  • 1 - ПД в иресинаптическом волокне, приводящий к частичной деполяризации нервного окончания; 2 - Са 2+ во внеклеточном пространстве; 3 - Са 2+ -канал, открывающийся при деполяризации мембраны; 4 - везикулы с медиатором;
  • 5 - везикула взаимодействует с Са 2+ и встраивается в пресинаптическую мембрану, выбрасывая медиатор в синаптическую щель; 6 - везикула взаимодействует с Са 2+ и формирует краткосрочный контакт с нресинаптической мембраной для выброса медиатора в щель; 7 - Са 2+ быстро удаляется из нресинаптического окончания в межклеточную среду, эндоплазматическую сеть и митохондрии

В этот момент в мембране открываются потенциалзависимые кальциевые каналы и Са 2+ входит в пресинаптическое окончание, связываясь с определенным белком на внешней стороне мембраны везикул и запуская процесс слияния везикулы и пресинаптической мембраны. Везикула может, во-первых, встроиться в нее целиком и «выбросить» все свое содержимое в синаптическую щель («полное слияние»). Во-вторых, может образовываться краткосрочный контакт («пора слияния») из специальных белков между мембраной везикулы и мембраной окончания. Через пору слияния часть молекул медиатора успевает выйти в синаптическую щель (такой способ секреции медиатора называется «kiss-and-run » (в переводе с англ, «целуй и беги»).

Как только медиатор оказался в щели, необходимо очень быстро убрать вошедший в нервное окончание кальций. Для этого существуют специальные связывающие кальций белки-буферы, а также кальциевые насосы, откачивающие кальций в эндоплазматическую сеть, в митохондрии и во внешнюю среду. В это время опустошенные (kiss-and-run ) или заново формирующиеся в нервном окончании везикулы снова наполняются молекулами медиатора.

Попавшие в синаптическую щель молекулы медиатора достигают постсинаптической мембраны за счет диффузии и взаимодействуют с рецепторами . Традиционно термином «рецептор» обозначаются специальные клетки или клеточные чувствительные образования, реагирующие на раздражители внешней и внутренней среды: фоторецепторы, механорецепторы и т.п. В современной биологии термин «рецептор» употребляют также по отношению к молекулам белков, встроенных в клеточную мембрану или находящихся в цитоплазме и способных реагировать изменением своей формы и состояния па специфические для каждого вида рецепторов воздействия. Рецепторы найдены для медиаторов, гормонов, антител и других сигнальных молекул, важных для передачи информации в живых системах.

Передача сигнала через мембрану включает в себя три стадии:

  • 1) взаимодействие сигнальной молекулы с рецептором;
  • 2) изменение формы (конформации) рецепторной молекулы, приводящее к изменениям активности специализированных мембранных белков- посредников;
  • 3) образование в клетке молекул или ионов (вторичных мессенджеров, или вторичных посредников), которые активируют или, напротив, тормозят определенные внутриклеточные механизмы, изменяя деятельность всей клетки.

Выделяют два основных вида рецепторов - ионотропные (канальные) и метаботропные.

Примером канального рецептора может служить лиганд-активируемый (хемочувствительный) рецептор для АХ, располагающийся на мембране волокон скелетных мышц (см. рис. 8.17). Такие рецепторы помимо природного АХ активируются алкалоидом табака - никотином. Поэтому их называют никотиновыми или Н-холинорецепторами. Кроме поперечно-полосатых мышц такие рецепторы встречаются и в ЦНС. Канал состоит из пяти белковых субъединиц, собранных в своеобразную трубку, пронизывающий мембрану насквозь. Две субъединицы одинаковы и обозначаются а. Когда две молекулы медиатора АХ присоединяются к специальным местам связывания на а-субъединицах, канал открывается для катионов Na + и Са 2+ (рис. 9.6).

В результате на постсинаптической мембране развивается ВПСП, и клетка может возбудиться. Взаимодействие медиатора с рецептором продолжается 1-2 мс, а затем молекула медиатора должна отсоединиться, иначе рецептор «потеряет чувствительность» и временно перестанет реа-

гировать на новые порции медиатора. Канальный вид рецепции очень быстр, однако он сводится или к деполяризации постсинаптической клетки посредством открытия катионных каналов, или к се гиперполяризации путем открытия хлорных каналов.


Рис. 9.6.

а - схема строения; 6 - капа.;: закрыт; в - канал открыт; А - ангстрем (1СГ 10 м)

Метаботропные рецепторы представляют собой молекулы белков, которые семь раз «продернуты» через клеточную мембрану, образуя три петли внутри клетки и три - на наружной стороне клеточной мембраны (рис. 9.7).


Рис. 9.7.

а, р, у - субъединицы G-бел ка

В настоящее время обнаружено множество подобных рецепторных белков, причем часть белковой молекулы, обращенная внутрь клетки, связана с соответствующим G-белком. G-белки получили свое название за способность расщеплять ГТФ (гуанозинтрифосфат) до ГДФ (гуанозиндифосфат) и остатка фосфорной кислоты. Эти белки состоят из трех субъединиц: а, р, у (см. рис. 9.7), причем известно несколько подтипов а-субъединиц. Тот или иной подтип а-субъединиц, входящих в состав G-белка, определяет, на какой процесс в клетке будет влиять данный G-белок. Например, Gj.-белок (т.е. включающий в себя а 5 -субъединицу) стимулирует фермент АЦ, G q стимулирует фосфолипазу С, G 0 связывается с ионными каналами, Gj тормозит активность АД. Часто одна разновидность G-белка воздействует на несколько процессов в клетке. В отсутствие лиганда (медиатора или гормона), который может связаться с метаботропным рецептором, G-белок неактивен. Если же с рецептором связался соответствующий ему активирующий лиганд - а-субъединица активируется (ГДФ замещается на ГТФ), отсоединяется от комплекса субъединиц Ру и короткое время взаимодействует с белками-мишенями, запуская или, напротив, тормозя внутриклеточные процессы. Субъединицы G-белка не могут существовать раздельно в течение долгого времени и после гидролиза ГТФ а-субъедииицей образуют единый неактивный G-белок. Действуя на целый ряд ферментов и ионных каналов, активированные G-белки запускают каскад внутриклеточных химических реакций, в результате которых меняется концентрация ряда регуляторных молекул - вторичных посредников (первичные посредники - молекулы, переносящие сигнал от клетки к клетке, г.е. медиатор, гормон).

К наиболее распространенным вторичным посредникам (мессенджерам) относят цАМФ, который образуется из АТФ под действием фермента АЦ. Если же в результате воздействия лиганда на рецептор активируется G^-форма белка, то она активирует фермент фосфолипазу С, которая в свою очередь стимулирует образование из фосфолипидов мембран двух посредников: ИФ 3 (инозитолтрифосфата) и ДАГ (диацилглицерола). Оба посредника приводят к увеличению в клетке концентрации кальция за счет его поступления извне (через ионные каналы) или при выбросе его из внутриклеточных депо. Са 2+ - мощнейший внутриклеточный стимулятор процессов жизнедеятельности клетки. Кроме того, ИФ 3 и ДАГ стимулируют рост клеток, способствуют экспрессии генов, высвобождению медиаторов, секреции гормонов и т.п. Однако вторичный посредник прямо или через ряд промежуточных стадий влияет на хемочувствительные ионные каналы - открывает или закрывает их. Это способствует развитию возбуждения или торможения клетки, в зависимости от того, какие каналы подверглись воздействию. Величина и продолжительность потенциалов будет зависеть от вида, количества и времени взаимодействия молекул медиатора с рецепторами, а в итоге - от того, какая система вторичных посредников активируется под действием медиатора.

Характерной чертой метаботропной рецепции является ее каскадность, позволяющая многократно усилить воздействие медиатора на клетку (рис. 9.8).


Рис. 9.8.

Как уже говорилось, медиатор не должен взаимодействовать с ионотропным или метаботропным рецептором дольше 1-2 мс. В нервно-мышечных синапсах АХ очень быстро разрушается ферментом ацетилхолинэстеразой до холина и ацетата. Образовавшийся холин транспортируется в пресинап- тическое окончание и снова используется для синтеза АХ. Аналогично разрушаются соответствующими ферментами в синаптической щели и другие медиаторы (АТФ, пептиды).

Другой распространенный вариант устранения медиатора из синаптической щели - это его обратный захват (англ, reuptake ) в пресинаптическое окончание или в глиальные клетки. НА, Д и серотонин после захвата окончаниями снова «пакуются» в везикулы или могут быть разрушены внутриклеточными ферментами. ГАМК и глутамат транспортируются из синаптической щели в клетки глии и, претерпев ряд биохимических превращений, снова попадают в нервные окончания.

В процессе эволюции природа создала множество физиологически активных веществ, действующих на метаболизм медиаторов. Много таких веществ производят растения в целях защиты. Вместе с тем, яды, действующие на жизненный цикл медиаторов и синаптическую передачу, вырабатывают некоторые животные: для нападения на жертву или для обороны от хищников.

Огромное количество химических соединений, влияющих на работу медиаторных систем, создается искусственно человеком в поисках новых лекарственных средств, оказывающих влияние на функционирование НС.

  • См. параграф 10.3.

По химическому строению медиаторы являются неоднородной группой. В нее входят эфир холина (ацетилхолин); группа моноаминов, включающая катехоламины (дофамин, норадреналин и адреналин); индолы (серотонин) и имидазолы (гистамин); кислые (глутамат и аспартат) и основные (ГАМК и глицин) аминокислоты; пурины (аденозин, АТФ) и пептиды (энкефалины, эндорфины, вещество Р). К этой же группе примыкают вещества, которые не могут быть классифицированы как истинные нейромедиаторы - стероиды, эйкозаноиды и ряд АФК, прежде всего N0.

Для решения вопроса о нейромедиаторной природе какого-либо соединения используется ряд критериев. Основные из них изложены ниже.

  1. Вещество должно накапливаться в пресинаптических окончаниях, высвобождаться в ответ на приходящий импульс. Пресинаптическая область должна содержать систему синтеза этого вещества, а постсинаптическая зона - обнаруживать специфический рецептор для данного соединения.
  2. При стимуляции пресинаптической области должно происходить Са-зависимое выделение (путем экзоцитоза) этого соединения в межсинаптическую щель, пропорциональное силе стимула.
  3. Обязательная идентичность эффектов эндогенного нейромедиатора и предполагаемого медиатора при его аппликации на клетку-мишень и возможность фармакологического блокирования эффектов предполагаемого медиатора.
  4. Наличие системы обратного захвата предполагаемого медиатора в пресинаптические терминали и/или в соседние астроглиальные клетки. Возможны случаи, когда обратному захвату подвергается не сам медиатор, а продукт его расщепления (например, холин после расщепления ацетилхолина ферментом ацетилхолинэстеразой).

Влияние лекарственных препаратов на различные этапы медиаторной функции в синаптической передаче

Модифицирующее влияние

Результат
воздействия

Синтез
медиатора

Добавка предшественника
Блокада обратного захвата
Блокада ферментов синтеза


Накопление

Торможение захвата в везикулы Торможение связывания в везикулах

Выделение
(экзоцитоз)

Стимуляция тормозных ауторецепторов Блокада ауторецепторов
Нарушение механизмов экзоцитоза



Действие

Эффекты агонистов на рецепторы

на рецепторы

Блокада постсинаптических рецепторов

Разрушение
медиатора

Блокада обратного захвата нейронами и/или глией
Торможение разрушения в нейронах

Торможение разрушения в синаптической щели

Применение различных методов тестирования медиаторной функции, в том числе и самых современных (иммуногистохимических, рекомбинантных ДНК и др.), затруднено из-за ограниченной доступности большинства индивидуальных синапсов, а также из-за ограниченности набора средств направленного фармакологического воздействия.

Попытка дать определение понятия «медиаторы» наталкивается на ряд трудностей, поскольку в последние десятилетия значительно расширился список веществ, которые выполняют в нервной системе ту же сигнальную функцию, что и классические медиаторы, но отличаются от них по химической природе, путям синтеза, рецепторам. Прежде всего, сказанное относится к обширной группе нейропептидов, а также к АФК, и в первую очередь к оксиду азота (нитроксиду, N0), для которого медиаторные свойства описаны достаточно хорошо. В отличие от «классических» медиаторов, нейропептиды, как правило, имеют больший размер, синтезируются с невысокой скоростью, накапливаются в небольших концентрациях и связываются с рецепторами, обладающими низким специфическим сродством, кроме того, они не имеют механизмов обратного захвата пресинаптической терминалью. Продолжительность эффекта нейропептидов и медиаторов также значительно различается. Что касается нитроксида, то, несмотря на его участие в межклеточном взаимодействии, по ряду критериев он может быть отнесен скорее не к медиаторам, а ко вторичным посредникам.

Первоначально считалось, что нервное окончание может содержать только один медиатор. К настоящему времени показана возможность наличия в терминали нескольких медиаторов, высвобождающихся совместно в ответ на импульс и воздействующих на одну клетку-мишень - сопутствующие (сосуществующие) медиаторы (комедиаторы, котрансмиттеры). При этом происходит накопление разных медиаторов в одной пресинаптической области, но в разных везикулах. Примером комедиаторов могут служить классические медиаторы и нейропептиды, которые различаются местом синтеза и, как правило, локализуются в одном окончании. Высвобождение комедиаторов происходит в ответ на серию возбуждающих потенциалов определенной частоты.

В современной нейрохимии кроме нейромедиаторов выделяют вещества, модулирующие их эффекты, - нейромодуляторы. Их действие носит тонический характер и более продолжительно во времени, чем действие медиаторов. Эти вещества могут иметь не только нейрональное (синаптическое), но и глиальное происхождение и не обязательно опосредоваться нервными импульсами. В отличие от нейромедиатора модулятор действует не только на постсинаптическую мембрану, но и на другие части нейрона, в том числе и внутриклеточно.

Различают пре- и постсинаптическую модуляцию. Понятие «нейромодулятор» является более широким, чем понятие «нейромедиатор». В ряде случаев медиатор может являться и модулятором. Например, норадреналин, высвобождающийся из симпатического нервного окончания, действует как нейромедиатор на а1-рецепторы, но как нейромодулятор - на а2-адренорецепторы; в последнем случае он опосредует торможение последующей секреции норадреналина.

Вещества, осуществляющие медиаторные функции, различаются не только по химическому строению, но и по тому, в каких компартментах нервной клетки происходит их синтез. Классические низкомолекулярные медиаторы синтезируются в аксонной терминали и включаются в маленькие синаптические пузырьки (50 нм в диаметре) для хранения и высвобождения. N0 также синтезируется в терминали, но, поскольку не может быть упакован в пузыръки, то сразу же диффундирует из нервного окончания и оказывает воздействие на мишени. Пептидные нейромедиаторы синтезируются в центральной части нейрона (перикарионе), упаковываются в большие везикулы с плотным центром (100-200 нм в диаметре) и транспортируются с помощью аксонального тока к нервным окончаниям.

Ацетилхолин и катехоламины синтезируются из циркулирующих в крови предшественников, тогда как аминокислотные медиаторы и пептиды в конечном счете образуются из глюкозы. Как известно, нейроны (как и другие клетки организма высших животных и человека) не могут синтезировать триптофан. Поэтому первым шагом, ведущим к началу синтеза серотонина, является облегченный транспорт триптофана из крови в мозг. Эта аминокислота, как и другие нейтральные аминокислоты (фенилаланин, лейцин и метионин), транспортируется из крови в мозг специальными переносчиками, относящимися к семейству переносчиков монокарбоновых кислот. Таким образом, одним из важных факторов, определяющих уровень серотонина в серотонинергических нейронах, является относительное по сравнению с другими нейтральными аминокислотами количество триптофана в пище. Например, добровольцы, которых кормили пищей с низким содержанием белка в течение одного дня, а затем давали смесь аминокислот, не содержавшую триптофана, демонстрировали агрессивное поведение и изменение цикла «сон-бодрствование», что связано со снижением уровня серотонина в мозге.

Из вышеизложенного понятно, какое значение в функциях нервной системы играют медиаторы. В ответ на приход нервного импульса к синапсу происходит выброс медиатора; молекулы медиатора соединяются (комплементарно - как «ключ к замку») с рецепторами постсинаптической мембраны, что приводит к открыванию ионного канала или к активированию внутриклеточных реакций. Примеры синаптической передачи, рассмотренные выше, полностью соответствуют этой схеме. Вместе с тем благодаря исследованиям последних десятилетий эта довольно простая схема химической синаптической передачи значительно усложнилась. Появление иммунохимических методов позволило показать, что в одном синапсе могут сосуществовать несколько групп медиаторов, а не один, как это предполагали раньше. Например, в одном синаптическом окончании одновременно могут находиться синаптические пузырьки, содержащие ацетилхолин и норадреналин, которые довольно легко идентифицируются на электронных фотографиях (ацетилхолин содержится в прозрачных пузырьках диаметром около 50 нм, а норадреналин - в электронно-плотных диаметром до 200 нм). Кроме классических медиаторов, в синаптическом окончании могут находиться один или несколько ней-ропептидов. Количество веществ, содержащихся в синапсе, может доходить до 5-6 (своеобразный коктейль). Более того, медиаторная специфичность синапса может меняться в онтогенезе. Например, нейроны симпатических ганглиев, иннервирующие потовые железы у млекопитающих, исходно норадренергичны, но у взрослых животных становятся холинергичными.

В настоящее время при классификации медиаторных веществ принято выделять: первичные медиаторы, сопутствующие медиаторы, медиаторы-модуляторы и аллостерические медиаторы. Первичными медиаторами считают те, которые действуют непосредственно на рецепторы постсинаптической мембраны. Сопутствующие медиаторы и медиаторы-модуляторы могут запускать каскад ферментативных реакций, которые, например, фосфорилируют рецептор для первичного медиатора. Аллостерические медиаторы могут участвовать в кооперативных процессах взаимодействия с рецепторами первичного медиатора.

Долгое время за образец принимали синаптическую передачу по анатомическому адресу (принцип «точка - в точку»). Открытия последних десятилетий, особенно медиаторной функции нейропептидов, показали, что в нервной системе возможен принцип передачи и по химическому адресу. Другими словами, медиатор, выделяющийся из данного окончания, может действовать не только на «свою» постсинаптическую мембрану, но и за пределами данного синапса - на мембраны других нейронов, имеющих соответствующие рецепторы. Таким образом, физиологическая реакция обеспечивается не точным анатомическим контактом, а наличием соответствующего рецептора на клетке-мишени. Собственно этот принцип был давно известен в эндокринологии, а исследования последних лет нашли ему более широкое применение.

Все известные типы хеморецепторов на постсинаптической мембране разделяют на две группы. В одну группу входят рецепторы, в состав которых включен ионный канал, открывающийся при связывании молекул медиатора с «узнающим» центром. Рецепторы второй группы (метаботропные рецепторы) открывают ионный канал опосредованно (через цепочку биохимических реакций), в частности, посредством активации специальных внутриклеточных белков.

Одними из самых распространенных являются медиаторы, принадлежащие к группе биогенных аминов. Эта группа медиаторов достаточно надежно идентифицируется микрогистологическими методами. Известны две группы биогенных аминов: катехоламины (дофамин, норадреналин и адреналин) и индоламин (серотонин). Функции биогенных аминов в организме весьма многообразны: медиаторная, гормональная, регуляция эмбриогенеза.

Основным источником норадренергических аксонов являются нейроны голубого пятна и прилежащих участков среднего мозга (рис. 2.14). Аксоны этих нейронов широко распространяются в мозговом стволе, мозжечке, в больших полушариях. В продолговатом мозге крупное скопление норадренергических нейронов находится в вентролатеральном ядре ретикулярной формации. В промежуточном мозге (гипоталамусе) норадренергические нейроны наряду с дофаминергическими нейронами входят в состав гипоталамо-гипофизарной системы. Норадренергические нейроны в большом количестве содержатся в нервной периферической системе. Их тела лежат в симпатической цепочке и в некоторых интрамуральных ганглиях.

Дофаминергические нейроны у млекопитающих находятся преимущественно в среднем мозге (так называемая нигро-неостриарная система), а также в гипоталамической области. Дофаминовые цепи мозга млекопитающих хорошо изучены. Известны три главные цепи, все они состоят из однонейронной цепочки. Тела нейронов находятся в мозговом стволе и отсылают аксоны в другие области головного мозга (рис. 2.15).

Одна цепь очень проста. Тело нейрона находится в области гипоталамуса и отсылает короткий аксон в гипофиз. Этот путь входит в состав гипоталамо-гипофизарной системы и контролирует систему эндокринных желез.

Вторая дофаминовая система также хорошо изучена. Это черная субстанция, многие клетки которой содержат дофамин. Аксоны этих нейронов проецируются в полосатые тела. Эта система содержит примерно 3/4 дофамина головного мозга. Она имеет решающее значение в регулировании тонических движений. Дефицит дофамина в этой системе приводит к болезни Паркинсона. Известно, что при этом заболевании происходит гибель нейронов черной субстанции. Введение L-DOPA (предшественника дофамина) облегчает у больных некоторые симптомы заболевания.

Третья дофаминергическая система участвует в проявлении шизофрении и некоторых других психических заболеваний. Функции этой системы пока изучены недостаточно, хотя сами пути хорошо известны. Тела нейронов лежат в среднем мозге рядом с черной субстанцией. Они проецируют аксоны в вышележащие структуры мозга, мозговую кору и лимбическую систему, особенно к фронтальной коре, к септальной области и энторинальной коре. Энторинальная кора, в свою очередь, является главным источником проекций к гиппокампу.

Согласно дофаминовой гипотезе шизофрении, третья дофаминергическая система при этом заболевании сверхактивна. Эти представления возникли после открытия веществ, снимающих некоторые симптомы заболевания. Например, хлорпромазин и галоперидол имеют разную химическую природу, но они одинаково подавляют активность дофаминергической системы мозга и проявление некоторые симптомов шизофрении. У больных шизофренией, в течение года получавших эти препараты, появляются двигательные нарушения, получившие название tardive dyskinesia (повторяющиеся причудливые движения лицевой мускулатуры, включая мускулатуру рта, которые больной не может контролировать).

Серотонин почти одновременно открыли в качестве сывороточного сосудосуживающего фактора (1948) и энтерамина, секретируемого энтерохромаффиновыми клетками слизистой оболочки кишечника. В 1951 г. было расшифровано химическое строение серотонина и он получил новое название - 5-гидрокситриптамин. В организме млекопитающих он образуется гидроксилированием аминокислоты триптофана с последующим декарбоксилированием. 90% серотонина образуется в организме энтерохромаффиновыми клетками слизистой оболочки всего пищеварительного тракта. Внутриклеточный серотонин инактивируется моноаминоксидазой, содержащейся в митохондриях. Серотонин внеклеточного пространства окисляется перулоплазмином. Большая часть вырабатываемого серотонина связывается с кровяными пластинками и по кровяному руслу разносится по организму. Другая часть действует в качестве местного гормона, способствуя авторегулированию кишечной перистальтики, а также модулируя эпителиальную секрецию и всасывание в кишечном тракте.

Серотонинергические нейроны широко распространены в центральной нервной системе (рис. 2.16). Они обнаруживаются в составе дорсального и медиального ядер шва продолговатого мозга, а также в среднем мозге и варолиевом мосту. Серотонинергические нейроны иннервируют обширные области мозга, включающие кору больших полушарий, гиппокамп, бледный шар, миндалину, область гипоталамуса. Интерес к серотонину был привлечен в связи с проблемой сна. При разрушении ядер шва животные страдали бессонницей. Сходный эффект оказывали вещества, истощающие хранилище серотонина в мозге.

Самая высокая концентрация серотонина обнаружена в эпифизе (pineal gland). Серотонин в эпифизе превращается в мелатонин, который участвует в пигментации кожи, а также влияет у многих животных на активность женских гонад. Содержание как серотонина, так и мелатонина в эпифизе контролируется циклом свет - темнота через нервную симпатическую систему.

Другую группу медиаторов ЦНС составляют аминокислоты. Уже давно известно, что нервная ткань с ее высоким уровнем метаболизма содержит значительные концентрации целого набора аминокислот (перечислены в порядке убывания): глутаминовой кислоты, глутамина, аспарагиновой кислоты, гамма-аминомасляной кислоты (ГАМК).

Глутамат в нервной ткани образуется преимущественно из глюкозы. У млекопитающих больше всего глутамата содержится в конечном мозге и мозжечке, где его концентрация примерно в 2 раза выше, чем в стволе мозга и спинном мозге. В спинном мозге глутамат распределен неравномерно: в задних рогах он находится в большей концентрации, чем в передних. Глутамат является одним из самых распространенных медиаторов в ЦНС.

Постсинаптические рецепторы к глутамату классифицируются в соответствии с аффинностью (сродством) к трем экзогенным агонистам - квисгулату, каинату и N-метил-D-аспартату (NMDA). Ионные каналы, активируемые квисгулатом и каинатом, подобны каналам, которые управляются никотиновыми рецепторами - они пропускают смесь катионов (Na + и. К +). Стимуляция NMDA-рецепторов имеет сложный характер активации: ионный ток, который переносится не только Na + и К + , но также Са ++ при открывании ионного канала рецептора, зависит от потенциала мембраны. Вольтзависимая природа этого канала определяется разной степенью его блокирования ионами Mg ++ с учетом уровня мембранного потенциала. При потенциале покоя порядка - 75 мВ ионы Mg ++ , которые преимущественно находятся в межклеточной среде, конкурируют с ионами Са ++ и Na + за соответствующие каналы мембраны (рис. 2.17). Вследствие того, что ион Mg ++ не может пройти через пору, канал блокируется всякий раз, как попадает туда ион Mg ++ . Это приводит к уменьшению времени открытого канала и проводимости мембраны. Если мембрану нейрона деполяризовать, то количество ионов Mg ++ , которые закрывают ионный канал, снижается и через канал беспрепятственно могут проходить ионы Са ++ , Na + и. К + . При редких стимуляциях (потенциал покоя изменяется мало) глутаматергического рецептораВПСП возникает преимущественно за счет активации квисгулатных и каинатных рецепторов; вклад NMDA-рецепторов незначителен. При длительной деполяризации мембраны (ритмическая стимуляция) магниевый блок удаляется, и NMDA-каналы начинают проводить ионы Са ++ , Na + и. К + . Ионы Са ++ через вторичные посредники могут потенцировать (усиливать) минПСП, что может привести, например, к длительному увеличению синаптической проводимости, сохраняющейся часами и даже сутками.

Из тормозных медиаторов ГАМК является самой распространенной в ЦНС. Она синтезируется из L-глутаминовой кислоты в одну стадию ферментом декарбоксилазой, наличие которой является лимитирующим фактором этого медиатора. Известно два типа ГАМК-рецепторов на постсинаптической мембране: ГАМКА (открывает каналы для ионов хлора) и ГАМКБ (открывает в зависимости от типа клетки каналы для. К + или Са ++). На рис. 2.18 показана схема ГАМК-рецептора. Интересно, что в его состав входит бензодиазипиновый рецептор, наличием которого объясняют действие так называемых малых (дневных) транквилизаторов (седуксена, тазепама и др.). Прекращение действия медиатора в ГАМК-синапсах происходит по принципу обратного всасывания (молекулы медиатора специальным механизмом поглощаются из синаптической щели в цитоплазму нейрона). Из антагонистов ГАМК хорошо известен бикукулин. Он хорошо проходит через гематоэнцефалический барьер, оказывает сильное воздействие на организм даже в малых дозах, вызывая конвульсии и смерть. ГАМК обнаруживается в ряде нейронов мозжечка (в клетках Пуркинье, клетках Гольджи, корзинчатых клетках), гиппокампа (в корзинчатых клетках), в обонятельной луковице и черной субстанции.

Идентификация ГАМК-цепей мозга трудна, так как ГАМК - обычный участник метаболизма в ряде тканей организма. Метаболическая ГАМК не используется как медиатор, хотя в химическом отношении их молекулы одинаковы. ГАМК определяется по ферменту декарбоксилазы. Метод основан на получении у животных антител к декарбоксилазе (антитела экстрагируют, метят и вводят в мозг, где они связываются с декарбоксилазой).

Другим известным тормозным медиатором является глицин. Глицинергические нейроны находятся главным образом в спинном и продолговатом мозге. Считают, что эти клетки выполняют роль тормозных интернейронов.

Ацетилхолин - один из первых изученных медиаторов. Он чрезвычайно широко распространен в нервной периферической системе. Примером могут служить мотонейроны спинного мозга и нейроны ядер черепных нервов. Как правило, холинергические цепи в мозге определяют по присутствию фермента холинэстеразы. В головном мозге тела холинергических нейронов находятся в ядре перегородки, ядре диагонального пучка (Брока) и базальных ядрах. Нейроанатомы считают, что эти группы нейронов формируют фактически одну популяцию холинергических нейронов: ядро педнего мозга, nucleus basalis (оно расположено в базальной части переднего мозга) (рис. 2.19). Аксоны соответствующих нейронов проецируются к структурам переднего мозга, особенно в новую кору и гиппокамп. Здесь встречаются оба типа ацетилхолиновых рецепторов (мускариновые и никотиновые), хотя считается, что мускариновые рецепторы доминируют в более рострально распоженных мозговых структурах. По данным последних лет складывается впечатление, что ацетилхолиновая система играет большую роль в процессах, связанных с высшими интегративными функциями, которые требуют участия памяти. Например, показано, что в мозге больных, умерших от болезни Альцгеймера, наблюдается массивная утрата холинергических нейронов в nucleus basalis.

Медиаторами, или нейротрансмиттерами, нейронов ЦНС являются различные биологически активные вещества. В зависимости от химической природы их можно разделить на 4 группы: 1) амины (ацетилхолин, норадреналин, дофамин, серотонин), 2) аминокислоты (глицин, глутаминовая, аспарагиновая, гамма-аминомасляная - ГАМК), 3) пуриновые и нуклеотиды (АТФ); 4) нейропептиды (вещество Р, вазопрессин, опоидни пептиды и др.).
Раньше считали, что во всех окончаниях одного нейрона "выделяется один медиатор (по принципу Дейла). За последние годы выяснили, что во многих нейронах может содержаться 2 медиаторы или больше.
По действию медиаторы можно разделить на ионотропных и метаболотропни. Ионотропных медиаторы после взаимодействия с циторецепторамы постсинаптической мембраны изменяют проницаемость ионных каналов. Метаболотропни медиаторы постсинаптическую действие проявляют путем активации специфических ферментов мембраны. Вследствие этого в мембране или (чаще) в цитоплазме клетки активируются так называемые вторичные посредники (вторичные мессенджеры), которые в свою очередь запускают каскады внутриклеточных процессов, тем самым влияя на функции клеток.
К основным мессенджеров систем внутриклеточной сигнализации относят аденилатциклазной и полифосфоинозитидну. В основе первой лежит аденилатциклазной механизм. Центральным звеном второй системы является кальциймобилизуючий каскад полифосфоинозитидив, который контролируется фосфолипазой С. Физиологический эффект этих систем осуществляется путем активации специфических ферментов - протеинфосфокиназ, конечным итогом чего является широкий спектр воздействия на белковые субстраты, которые могут подвергаться фосфорилированию. Вследствие этого изменяется проницаемость мембран для ионов, синтезируются и выделяются медиаторы, регулируется синтез белков, осуществляется энергетический обмен и т.д.. Метаболотропним эффектом обладают большинство нейропептидов. Метаболические изменения, происходящие в клетке или на ее мембране под действием метаболотропних медиаторов, длительные, чем при действии ионотропных медиаторов. Они могут затрагивать даже геном клетки.
По функциональным свойствам медиаторы ЦНС делятся на возбуждающие, тормозные и модулирующие. Возбуждающими медиаторами могут быть различные вещества, которые вызывают деполяризацию постсинаптической мембраны. Важнейшее значение имеют производные глутаминовой кислоты (глутамата), субстанция Р. Некоторые центральные нейроны имеют холинорецепторы, т.е. содержат на постсинаптической мембране рецепторы, которые реагируют с холинового соединениями, например, ацетилхолин в клетках Реншоу.. возбуждающими медиаторами могут быть также моноамины (норадреналин, дофамин, серотонин). € основания считать, что тип медиатора, который образуется в синапсе, обусловлен не только свойствами окончания, но и общим направлением биохимических процессов во всем нейроне.
Природа тормозного медиатора до конца не установлена. Полагают, что в синапсах различных нервных структур эту функцию могут выполнять аминокислоты - глицин и ГАМК.



Просмотров