Кислородсодержащие органические соединения спирты

Гидратация алкенов

В присутствии сильных минеральных кислот, алкены вступают в реакцию гидратации с образованием спиртов:

В случае несимметричных алкенов присоединение происходит в соответствии с правилом Марковникова – атом водорода молекулы воды присоединяется к более гидрированному атому углерода, а гидрокси-группа к менее гидрированному при двойной связи:

Гидрирование (восстановление) альдегидов и кетонов

Гидрирование альдегидов на металлических катализаторах (Pt, Pd или Ni) при нагревании приводит к образованию первичных спиртов:

В аналогичных условиях из кетонов получаются вторичные спирты:

Гидролиз сложных эфиров

При действии на сложные эфиры сильных минеральных кислот они подвергаются гидролизу с образованием спирта и карбоновой кислоты:

Гидролиз сложных эфиров в присутствии щелочей называют омылением. Данный процесс является необратимым и приводит к образованию спирта и соли карбоновой кислоты:

Данный процесс протекает по действием на моногалогенпроизводные углеводородов водного раствора щелочи:

Другие способы получения отдельных представителей одноатомных спиртов

Спиртовое брожение глюкозы

В присутствии некоторых дрожжей, точнее под действием вырабатываемых ими ферментов, возможно образование этилового спирта из глюкозы. При этом в качестве побочного продукта образуется также углекислый газ:

Получение метанола из синтез-газа

Синтез-газом называют смесь угарного газа и водорода. Действием на данную смесь катализаторов, нагрева и повышенных давлений в промышленности получают метанол:

Получение многоатомных спиртов

Реакция Вагнера (мягкое окисление алкенов)

При действии на алкены нейтрального раствора перманганата калия на холоду (0 o C) образуются вицинальные двухатомные спирты (диолы):

Схема, представленная выше, не является полноценным уравнением реакции. В таком виде ее проще запомнить, для того чтобы суметь ответить на отдельные вопросы тестовые вопросы ЕГЭ. Однако, если данная реакция попадется в заданиях высокой сложности, то ее уравнение обязательно нужно записывать в полном виде:

Хлорирование алкенов с последующим гидролизом

Данный метод является двустадийным и заключается в том, что на первой стадии алкен вступает в реакцию присоединения с галогеном (хлором или бромом). Например:

А на второй, полученный дигалогеналкан подвергается обработке водным раствором щелочи:

Получение глицерина

Основным промышленным способом получения глицерина является щелочной гидролиз жиров (омыление жиров):

Получение фенола

Трехстадийный метод через хлорбензол

Данный метод является трехстадийным. На первой стадии осуществляют бромирование или хлорирование бензола в присутствии катализаторов. В зависимости от используемого галогена (Br 2 или Cl 2) в качестве катализатора используется соответствующий галогенид алюминия или железа (III)

На второй стадии полученное выше галогенпроизводное обрабатывается водным раствором щелочи:

На третьем этапе фенолят натрия обрабатывается сильной минеральной кислотой. Фенол вытесняется поскольку является слабой кислотой, т.е. малодиссоциирующим веществом:

Окисление кумола

Получение альдегидов и кетонов

Дегидрирование спиртов

При дегидрировании первичных и вторичных спиртов на медном катализаторе при нагревании получаются альдегиды и кетоны соответственно

Окисление спиртов

При неполном окислении первичных спиртов получаются альдегиды, а вторичных – кетоны. В общем виде схемы такого окисления можно записать как:

Как можно заметить неполное окисление первичных и вторичных спиртов приводит к тем же продуктам, что и дегидрирование этих же спиртов.

В качестве окислителей можно использовать оксид меди при нагревании:

Или другие более сильные окислители, например раствор перманганата калия в кислой, нейтральной, или щелочной среде.

Гидратация алкинов

В присутствии солей ртути (часто вместе с сильными кислотами) алкины вступают в реакцию гидратации. В случае этина (ацетилена) образуется альдегид, в случае любого другого алкина — кетон:

Пиролиз солей карбоновых кислот двухвалентных металлов

При нагревании солей карбоновых кислот двухвалентных металлов, например, щелочно-земельных, образуется кетон и карбонат соответствующего металла:

Гидролиз геминальных дигалогенпроизводных

Щелочной гидролиз геминальных дигалогенпроизводных различных углеводородов приводит к альдегидам если атомы хлора были прикреплены к крайнему атому углерода и к кетонам,если не к крайнему:

Каталитическое окисление алкенов

Каталитическим окислением этилена получают ацетальдегид:

Получение карбоновых кислот

Каталитическое окисление алканов

Окисление алкенов и алкинов

Для этого чаще всего используют подкисленный раствор перманганата или дихромата калия. При этом происходит разрыв кратной углерод-углеродной связи:

Окисление альдегидов и первичных спиртов

В этом способе получения карбоновых кислот также наиболее распространенные используемые окислители это подкисленный раствор перманганата или дихромата калия:

С помощью гидролиза тригалогензамещенных углеводородов

На первой стадии тригалогеналкан подвергается обработке водным раствором щелочи. При этом образуется соль карбоновой кислоты:

На второй стадии следует обработка соли карбоновой кислоты сильной минеральной кислотой. Т.к. карбоновые кислоты являются слабыми они легко вытесняются сильными кислотами:

Гидролиз сложных эфиров

Из солей карбоновых кислот

Данная реакция уже была рассмотрена при получении карбоновых кислот посредством гидролиза тригалогенпроизодных (см. выше). Заключается в том, что карбоновые кислоты, являясь слабыми, легко вытесняются сильными неорганическими кислотами:

Специфические методы получения кислот

Получение муравьиной кислоты из угарного газа

Данный метод является промышленным и заключается в том, что на первой стадии угарный газ под давлением при высоких температурах реагирует с безводной щелочью:

а на второй полученный формиат обрабатывают сильной неорганической кислотой:

2HCOONa + H 2 SO 4 > 2HCOOH + Na 2 SO 4

Цель: формировать умения проводить наблюдения и делать выводы, записывать уравнения соответствующих реакций в молекулярном и ионном видах.

Обеспеченность занятия

1. Сборник методических указаний для студентов по выполнению практических занятий и лабораторных работ по учебной дисциплине «Химия».

2. Раствор гидроксида натрия, карбонат натрия, карбонат кальция, оксид меди (II), уксусная кислота, лакмус синий, цинк; штатив с пробир­ками, водяная баня, прибор для нагревания, спички, держатель для пробирок.

Теоретический материал

Карбоновые кислоты - органические соединения, в молекулах которых содержатся одна или несколько карбоксильных групп, соединённых с углеводородным радикалом или атомом водорода.

Получение: В лаборатории карбоновые кислоты можно получить из их солей, действуя на них серной кислотой при нагревании, например:

2СН 3 – СООNa + H 2 SO 4 ® 2СН 3 – СООН + Na 2 SO 4
В промышленности получают окислением углеводородов, спиртов и альдегидов.

Химические свойства:
1. Из-за смещения электронной плотности от гидроксильной группы O–H к сильно

поляризованной карбонильной группе C=O молекулы карбоновых кислот способны к

электролитической диссоциации: R–COOH → R–COO - + H +

2.Карбоновые кислоты обладают свойствами, характерными для минеральных кислот. Они реагируют с активными металлами, основными оксидами, основаниями, солями слабых кислот. 2СH 3 COOH + Mg → (CH 3 COO) 2 Mg + H 2 ­

2СH 3 COOH + СaO → (CH 3 COO) 2 Ca + H 2 O

H–COOH + NaOH → H–COONa + H 2 O

2СH 3 CH 2 COOH + Na 2 CO 3 → 2CH 3 CH 2 COONa + H 2 O + CO 2 ­

СH 3 CH 2 COOH + NaHCO 3 → CH 3 CH 2 COONa + H 2 O + CO 2 ­

Карбоновые кислоты слабее многих сильных минеральных кислот

СH 3 COONa + H 2 SO 4 (конц.) →CH 3 COOH + NaHSO 4

3. Образование функциональных производных:

a) при взаимодействии со спиртами (в присутствии концентрированной H 2 SO 4) образуются сложные эфиры.

Образование сложных эфиров при взаимодействии кислоты и спирта в присутствии минеральных кислот называется реакцией этерификации. CH 3 – –OH + HO–CH 3 D CH 3 – –OCH 3 + H 2 O

уксусная кислота метиловый метиловый эфир

спирт уксусной кислоты

Общая формула сложных эфиров R– –OR’ где R и R" – углеводородные радикалы: в сложных эфирах муравьиной кислоты – формиатах –R=H.

Обратной реакцией является гидролиз (омыление) сложного эфира:

CH 3 – –OCH 3 + HO–H DCH 3 – –OH + CH 3 OH.

Глицери́н (1,2,3-тригидроксипропан; 1,2,3-пропантриол) (гликос - сладкий) химическое соединение с формулой HOCH2CH(OH)-CH2OH или C3H5(OH)3. Простейший представитель трёхатомных спиртов. Представляет собой вязкую прозрачную жидкость.

Глицерин - бесцветная, вязкая, гигроскопичная жидкость, неограниченно растворимая в воде. Сладкий на вкус(гликос - сладкий). Хорошо растворяет многие вещества.

Глицерин этерефицируется карбоновыми и минеральными кислотами.

Эфиры глицерина и высших карбоновых кислот - жиры.

Жиры - это смеси сложных эфиров, образованных трехатомным спиртом глицерином и высшими жирными кислотами. Общая формула жиров, где R - радикалы высших жирных кислот:

Чаще всего в состав жиров входят предельные кислоты: пальмитиновая С15Н31СООН и стеариновая С17Н35СООН, и непредельные кислоты: олеиновая С17Н33СООН и линолевая С17Н31СООН.

Общее название соединений карбоновых кислот с глицерином - триглицериды.

б) при воздействии водоотнимающих реагентов в результате межмолекулярной

дегидратации образуются ангидриды

CH 3 – –OH + HO– –CH 3 →CH 3 – –O– –CH 3 + H 2 O

Галогенирование. При действии галогенов (в присутствии красного фосфора) образуются α-галогензамещённые кислоты:

Применение:в пищевой и химической промышленности (производство ацетилцеллюлозы, из которой получают ацетатное волокно, органическое стекло, киноплёнку; для синтеза красителей, медикаментов и сложных эфиров).

Вопросы для закрепления теоретического материала

1 Какие органические соединения относятся к карбоновым кислотам?

2 Почему среди карбоновых кислот нет газообразных веществ?

3 Чем обусловлены кислотные свойства карбоновых кислот?

4 Почему изменяется цвет индикаторов в растворе уксусной кислоты?

5 Какие химические свойства для глюкозы и глицерина являются общими, и чем эти вещества отличаются друг от друга? Напишите уравнения соответствующих реакций.

Задание

1. Повторить теоретический материал по теме практического занятия.

2. Ответить на вопросы для закрепления теоретического материала.

3. Исследовать свойства кислородсодержащих органических соединений.

4. Оформить отчет.

Инструкция по выполнению

1. Ознакомьтесь с правилами по технике безопасности при работе в химической лаборатории и распишитесь в журнале по ТБ.

2. Выполните опыты.

3. Результаты внесите в таблицу.

Опыт № 1 Испытание раствора уксусной кислоты лакмусом

Разбавьте полученную уксусную кислоту небольшим количеством воды и прибавьте несколько капель синего лакмуса или опустите в пробирку индикаторную бумажку.

Опыт №2 Взаимодействие уксусной кислоты с карбонатом кальция

В пробирку насыпьте немного мела (карбоната кальция) и прилейте раствор уксусной

Опыт № 3 Свойства глюкозы и сахарозы

а) В пробирку внесите 5 капель раствора глюкозы, каплю раствора соли меди (II) и при взбалтывании несколько капель раствора гидроксида натрия до образования светло - синего раствора. Такой опыт проделывали с глицерином.

б) Полученные растворы нагрейте. Что наблюдаете?

Опыт № 4 Качественная реакция на крахмал

К 5-6 каплям крахмального клейстера в пробирке прибавьте каплю спиртового раствора йода.

Образец отчёта

Лабораторная работа № 9 Химические свойства кислородсодержащих органических соединений.

Цель:формировать умения проводить наблюдения и делать выводы, записывать уравнения соответствующих реакций в молекулярном и ионном видах.

Вывод делать в соответствии с целью работы

Литература 0-2 с. 94-98

Лабораторная работа № 10

Кислород придает органическим веществам целый комплекс характерных свойств.

Кислород двухвалентен, имеет две валентные электронные пары и характеризуется высокой электроотрицателыюстью (х = 3,5). Между атомами углерода и кислорода образуются прочные химические связи, что видно уже на примере молекул С0 2 . Одинарная связь С-0 (£ св = 344 кДж/моль) почти так же прочна, как связь С-С (Е са = 348 кДж/моль), а двойная связь С=0 (Е св = 708 кДж/моль) существенно прочнее, чем связь С=С (Е св = = 620 кДж/моль). Поэтому в молекулах органических веществ обычны превращения, ведущие к образованию двойных связей С=0. По этой же причине неустойчива угольная кислота:

Гидроксогруппа, находящаяся при двойной связи, превращается в окси- группу (см. выше).

Кислород придаст полярность молекулам органических веществ. Между молекулами усиливается притяжение, значительно повышаются температуры плавления и кипения. При обычных условиях среди кислородсодержащих веществ очень мачо газов - только эфир СН 3 ОСН 3 , формальдегид СН 2 0 и оксид этилена СН 2 СН 2 0.

Кислород способствует образованию водородных связей и как донор, и как акцептор водорода. Водородные связи усиливают притяжение молекул, а в случае достаточно сложных молекул придают им определенную пространственную структуру. Влияние полярности и водородных связей на свойства вещества видно на примере углеводорода, кетона и спирта

Полярностью и образованием водородных связей обусловлена хорошая растворимость кислородсодержащих органических веществ в воде.

Кислород в той или иной мере придает органическим веществам кислотные свойства. Кроме класса кислот, свойства которых очевидны из названия, кислотные свойства проявляют фенолы и спирты.

Еще одно общее свойство кислородсодержащих веществ заключается в легкой окисляемости атома углерода, связанного одновременно с кислородом и водородом. Это очевидно из следующих цепочек реакций, которые обрываются при потере углеводом последнего атома водовода:

содержит оксигруппу и считается гетерофункциональной кислотой.

Спирты и простые эфиры

Название целого класса органических веществ спирты (от лат. "spiritus" - дух) происходит от "действующего начала" смеси, получающейся при сбраживании плодовых соков и других систем, содержащих сахар. Это действующее начало - винный спирт, этанол С2Н5ОН, отделяется от воды и нелетучих растворенных веществ при перегонке смеси. Другое название спирта - алкоголь - арабского происхождения.

Спиртами называются органические соединения, в которых имеется гидроксогруппа, связанная с $р 3 -атомом углерода углеводородного радикала.

Спирты можно также рассматривать как продукты замещения одного атома водорода в воде на углеводородный радикал. Спирты образуют гомологические ряды (табл. 22.5), различающиеся по природе радикалов и числу гидроксогрупп.

Таблица 22.5

Некоторые гомологические ряды спиртов

"Тликолями и глицеринами называются полифункциональные спирты с ОН-группами у соседних атомов углерода.

Гидроксогруппа при ненасыщенных атомах углерода неустойчива, так как превращается в карбонильную группу. Виниловый спирт находится в ничтожном количестве в равновесии с альдегидом:

Есть вещества, в которых гидроксогруппа связана с я/г-атомом углерода ароматического кольца, по они рассматриваются в качестве особого класса соединений - фенолов.

В спиртах возможна изомерия углеродного скелета и положения функциональной группы. У непредельных спиртов возникает также изомерия положения кратной связи и пространственная изомерия. Изомерны спиртам соединения класса простых эфиров. Среди спиртов различают разновидности, называемые первичными, вторичными и третичными спиртами. Это связано с характером углеродного атома, при котором находится функциональная группа.

Пример 22.12. Напишите формулы первичного, вторичного и третичного спиртов с четырьмя атомами углерода.

Решение.

Рассмотрим подробнее гомологический ряд предельных спиртов. Первые 12 членов этого ряда представляют собой жидкости. Метанол, этанол и пропанол смешиваются с водой в любых соотношениях вследствие структурного сходства с водой. Далее по гомологическому ряду растворимость спиртов уменьшается, так как большие (по числу атомов) углеводородные радикалы все сильнее вытесняются из водной среды, подобно углеводородам. Это свойство называют гидрофобностъю. В противоположность радикалу гидроксогруппа притягивается к воде, образуя водородную связь с водой, т.е. проявляет гидрофильность. У высших спиртов (пять и более атомов углерода) проявляется свойство поверхностной активности - способность концентрироваться у поверхности воды за счет выталкивания гидрофобного радикала (рис. 22.3).

Рис. 22.3.

Поверхностно-активные вещества обволакивают капли жидкостей и способствуют образованию устойчивых эмульсий. На этом основано действие моющих средств. Поверхностную активность могут проявлять не только спирты, но и вещества других классов.

Большинство растворимых в воде спиртов ядовиты. К наименее ядовитым относятся этанол и глицерин. Но, как известно, этанол опасен тем, что вызывает привыкание человека к его употреблению. Простейший из спиртов метанол похож на этанол по запаху, но крайне ядовит. Известно множество случаев отравления людей в результате ошибочного приема внутрь

метанола вместо этанола. Этому способствует и огромный объем промышленного применения метанола. Простейший двухатомный спирт этиленгликоль С 2 Н 4 (ОН) 2 в большом количестве используется для производства полимерных волокон. Раствор его применяется в качестве антифриза для охлаждения автомобильных двигателей.

Получение спиртов. Рассмотрим несколько общих способов.

1. Гидролиз галогенпроизводных углеводородов. Реакции проводят в щелочной среде:

Пример 22.13. Напишите реакции получения этиленгликоля методом гидролиза галогенпроизводных, взяв исходное вещество этилен.

2. Присоединение воды к алкенам. Наибольшее значение имеет реакция присоединения воды к этилену с образованием этанола. Реакция достаточно быстро идет при высокой температуре, но при этом равновесие сильно смещается влево и понижается выход спирта. Поэтому необходимо создание высокого давления и применение катализатора, позволяющего достичь той же скорости процесса при более низкой температуре (подобно условиям синтеза аммиака). Этанол получают гидратацией этилена при -300°С и давлении 60-70 атм:

Катализатором служит фосфорная кислота, нанесенная на оксид алюминия.

3. Имеются особые способы получения этанола и метанола. Первый получается широко известным биохимическим способом сбраживания углеводов, которые сначала расщепляются до глюкозы:

Метанол получают синтетическим путем из неорганических веществ:

Реакцию проводят при 200-300°С и давлении 40- 150 атм с применением сложного катализатора Си0/2п0/А1 2 0 3 /Сг 2 0 3 . Важность этого промышленного процесса понятна из того, что ежегодно производится более 14 млн т метанола. Он используется главным образом в органическом синтезе для метилирования органических веществ. Приблизительно в таком же количестве производится и этанол.

Химические свойства спиртов. Спирты могут горсть и окисляться. Смесь этилового спирта с углеводородами иногда используется в качестве горючего для автомобильных двигателей. Окисление спиртов без нарушения углеродной структуры сводится к потере водорода и присоединению атомов кислорода. В промышленных процессах пары спиртов окисляются кислородом. В растворах спирты окисляются перманганатом калия, дихроматом калия и другими окислителями. Из первичного спирта при окислении получается альдегид:

При избытке окислителя альдегид сразу же окисляется до органической кислоты:

Вторичные спирты окисляются до кетонов:

Третичные спирты могут окисляться только в жестких условиях с частичной деструкцией углеродного скелета.

Кислотные свойства. Спирты реагируют с активными металлами с выделением водорода и образованием производных с общим названием алкоксиды (метоксиды, этоксиды и т.д.):

Реакция идет более спокойно, чем аналогичная реакция с водой. Выделяющийся водород не загорается. Этим способом уничтожают остатки натрия после химических экспериментов. Реакция такого рода означает, что спирты проявляют кислотные свойства. Это следствие полярности связи О-Н. Однако спирт практически не реагирует со щелочью. Данный факт позволяет уточнить силу кислотных свойств спиртов: это более слабые кислоты, чем вода. Этоксид натрия практически полностью гидролизуется с образованием раствора спирта и щелочи. Несколько сильнее кислотные свойства гликолей и глицеринов вследствие взаимного индуктивного эффекта ОН-групп.

Многоатомные спирты образуют комплексные соединения с ионами некоторых ^/-элементов. В щелочной среде ион меди замещает сразу два иона водорода в молекуле глицерина с образованием комплекса синего цвета:

При повышении концентрации ионов Н + (для этого добавляют кислоту) равновесие смещается влево и окраска исчезает.

Реакции нуклеофильного замещения гидроксогруппы. Спирты реагируют с хлороводородом и другими галогеноводородами:

Реакция катализируется ионом водорода. Сначала Н + присоединяется к кислороду, акцептируя его электронную пару. В этом проявляются основные свойства спирта:

Образующийся ион неустойчив. Он не может быть выделен из раствора в составе твердой соли подобно иону аммония. Присоединение Н + вызывает дополнительное смещение электронной пары от углерода к кислороду, что облегчает атаку нуклеофильной частицы на углерод:

Связь углерода с хлорид-ионом усиливается по мере разрыва связи углерода с кислородом. Реакция заканчивается освобождением молекулы воды. Однако реакция обратима, и при нейтрализации хлороводорода равновесие смещается влево. Происходит гидролиз.

Гидроксогруппа в спиртах замещается также в реакциях с кислородсодержащими кислотами с образованием эфиров. Глицерин с азотной кислотой образует нитроглицерин , применяемый как средство, снимающее спазмы сосудов сердца:

Из формулы понятно, что традиционное название вещества неточно, так как фактически это нитрат глицерина - эфир азотной кислоты и глицерина.

При нагревании этанола с серной кислотой одна молекула спирта выступает как нуклеофильный реагент по отношению к другой. В результате реакции образуется простой эфир этоксиэтан:

На схеме выделены некоторые атомы, чтобы легче было проследить их переход в продукты реакции. Одна молекула спирта сначала присоединяет катализатор - ион Н + , а кислородный атом другой молекулы передает электронную пару углероду. После отщепления воды и диссоциации Н 4 получается молекула простого эфира. Эту реакцию называют еще межмолекулярной дегидратацией спирта. Есть также метод получения простых эфиров с разными радикалами:

Простые эфиры более летучие вещества, чем спирты, так как между их молекулами не образуются водородные связи. Этанол кипит при 78°С, а его изомер эфир СН3ОСН3 - при -23,6°С. Простые эфиры не гидролизуются до спиртов при кипячении с растворами щелочей.

Дегидратация спиртов. Спирты могут разлагаться с отщеплением воды так же, как разлагаются галоген производные углеводородов с отщеплением гало- геноводорода. В получении спиртов из алкена и воды (см. выше) присутствует и обратная реакция элиминирования воды. Разница в условиях присоединения и отщепления воды заключается в том, что присоединение идет под давлением при избытке паров воды относительно алкена, а отщепление происходит от отдельно взятого спирта. Такая дегидратация называется внутримолекулярной. Она идет также в смеси спирта с серной кислотой при ~150°С.

Один из наиболее распространенных химических элементов, входящий в подавляющее большинство химических веществ - это кислород. Оксиды, кислоты, основания, спирты, фенолы и другие кислородсодержащие соединения изучаются в курсе неорганической и органической химии. В нашей статье мы изучим свойства, а также приведем примеры их применения в промышленности, сельском хозяйстве и медицине.

Оксиды

Наиболее простыми по строению являются бинарные соединения металлов и неметаллов с кислородом. Классификация оксидов включает следующие группы: кислотные, основные, амфотерные и безразличные. Главный критерий деления всех этих веществ заключается в том, какой элемент соединяется с кислородом. Если это металл, то они относятся к основным. Например: CuO, MgO, Na 2 O - окиси меди, магния, натрия. Их основное химическое свойство - это реакция с кислотами. Так, оксид меди реагирует с хлоридной кислотой:

CuO + 2HCl -> CuCl2 + H2O + 63, 3 кДж.

Присутствие атомов неметаллических элементов в молекулах бинарных соединений свидетельствует об их принадлежности к кислотным водорода H 2 O, углекислый газ CO 2 , пятиокись фосфора P 2 O 5 . Способность таких веществ реагировать со щелочами - главная их химическая характеристика.

В результате реакции могут образовываться видов: кислые или средние. Это будет зависеть от того, сколько моль щелочи вступает в реакцию:

  • CO2 + KOH => KHCO3;
  • CO2+ 2KOH => K2CO3 + H2O.

Еще одну группу кислородсодержащих соединений, в которые входят такие химические элементы, как цинк или алюминий, относят к амфотерным оксидам. В их свойствах прослеживается тенденция к химическому взаимодействию как с кислотами, так и со щелочами. Продуктами взаимодействия кислотных оксидов с водой являются кислоты. Например, в реакции серного ангидрида и воды образуется Кислоты - это один из наиболее важных классов кислородсодержащих соединений.

Кислоты и их свойства

Соединения, состоящие из водородных атомов, связанных со сложными ионами кислотных остатков - это кислоты. Условно их можно разделить на неорганические, например, карбонатную кислоту, сульфатную, нитратную, и органические соединения. К последним принадлежат уксусная кислота, муравьиная, олеиновая кислоты. Обе группы веществ имеют схожие свойства. Так, они вступают в реакцию нейтрализации с основаниями, реагируют с солями и основными оксидами. Практически все кислородсодержащие кислоты в водных растворах диссоциируют на ионы, являясь проводниками второго рода. Определить кислый характер их среды, обусловленной избыточным присутствием водородных ионов, можно с помощью индикаторов. Например, фиолетовый лакмус при добавлении его в раствор кислоты приобретает красную окраску. Типичным представителем органических соединений является уксусная кислота, содержащая карбоксильную группу. В нее входит атом водорода, который и обуславливает кислотные Это бесцветная жидкость со специфическим резким запахом, кристаллизующаяся при температуре ниже 17 °С. CH 3 COOH, как и другие кислородсодержащие кислоты, прекрасно растворяется в воде в любых пропорциях. Ее 3 - 5 % раствор известен в быту под названием уксуса, который используют в кулинарии как приправу. Вещество нашло свое применение также в производстве ацетатного шелка, красителей, пластических масс и некоторых лекарственных средств.

Органические соединения, содержащие кислород

В химии можно выделить большую группу веществ, содержащих, кроме углерода и водорода, еще и кислородные частицы. Это карбоновые кислоты, эфиры, альдегиды, спирты и фенолы. Все их химические свойства определяются присутствием в молекулах особых комплексов - функциональных групп. Например, спирта, содержащего только предельные связи между атомами - ROH, где R - углеводородный радикал. Эти соединения принято рассматривать как производные алканов, у которых один водородный атом замещен гидроксогруппой.

Физические и химические свойства спиртов

Агрегатное состояние спиртов - это жидкости или твердые соединения. Среди спиртов нет газообразных веществ, что можно объяснить образованием ассоциатов - групп, состоящих из нескольких молекул, соединенных слабыми водородными связями. Этим фактом определяется и хорошая растворимость низших спиртов в воде. Однако в водных растворах кислородсодержащие органические вещества - спирты, не диссоциируют на ионы, не изменяют цвет индикаторов, то есть имеют нейтральную реакцию. Атом водорода функциональной группы слабо связан с другими частицами, поэтому в химических взаимодействиях способен покидать пределы молекулы. По месту же свободной валентности происходит его замещение на другие атомы, например, в реакциях с активными металлами или со щелочами - на атомы металла. В присутствии катализаторов, таких, как платиновая сетка или медь, спирты окисляются энергичными окислителями - бихроматом или перманганатом калия, до альдегидов.

Реакция этерификации

Одно из важнейших химических свойств кислородсодержащих органических веществ: спиртов и кислот - это реакция, приводящая к получению сложных эфиров. Она имеет большое практическое значение и используется в промышленности для добывания эстеров, применяемых в качестве растворителей, в пищевой промышленности (в виде фруктовых эссенций). В медицине некоторые из эфиров применяют в качестве спазмолитиков, например, этилнитрит расширяет периферические кровеносные сосуды, а изоамилнитрит является протектором спазмов коронарных артерий. Уравнение реакции этерификации имеет следующий вид:

CH3COOH+C2H5OH<--(H2SO4)-->CH3COOC2H5+H2O

В ней CH 3 COOH - это уксусная кислота, а C 2 H 5 OH - химическая формула спирта этанола.

Альдегиды

Если соединение содержит функциональную группу -COH, то оно относится к альдегидам. Их представляют как продукты дальнейшего окисления спиртов, например, такими окислителями, как оксид меди.

Присутствие карбонильного комплекса в молекулах муравьиного или уксусного альдегида обуславливают их способность полимеризоваться и присоединять атомы других химических элементов. Качественными реакциями, с помощью которых можно доказать наличие карбонильной группы и принадлежность вещества к альдегидам, являются реакция серебряного зеркала и взаимодействие с гидроокисью меди при нагревании:

Наибольшее применение получил ацетальдегид, используемый в промышленности для получения уксусной кислоты - много тоннажного продукта органического синтеза.

Свойства кислородсодержащих органических соединений - карбоновых кислот

Наличие карбоксильной группы - одной или нескольких - это отличительная черта карбоновых кислот. Благодаря строению функциональной группы, в растворах кислот могут образовываться димеры. Они связаны между собой водородными связями. Соединения диссоциируют на катионы водорода и анионы кислотного остатка и являются слабыми электролитами. Исключением служит первый представитель ряда предельных одноосновных кислот - муравьиная, или метановая, являющаяся проводником второго рода средней силы. Присутствие в молекулах только простых сигма- связей говорит о предельности, если же вещества имеют в своем составе двойные пи-связи - это непредельные вещества. К первой группе относятся такие кислоты, как метановая, уксусная, масляная. Вторая представлена соединениями, входящими в состав жидких жиров - масел, например, олеиновой кислотой. Химические свойства кислородсодержащих соединений: органических и неорганических кислот во многом похожи. Так, они могут взаимодействовать с активными металлами, их оксидами, со щелочами, а также со спиртами. Например, уксусная кислота реагирует с натрием, оксидом и с образованием соли - ацетата натрия:

NaOH + CH3COOH→NaCH3COO + H2O

Особое место занимают соединения высших карбоновых кислородсодержащих кислот: стеариновой и пальмитиновой, с трехатомным предельным спиртом - глицерином. Они относятся к сложным эфирам и называются жирами. Эти же кислоты входят в состав солей натрия и калия в качестве кислотного остатка, образуя мыла.

Важные органические соединения, широко распространенные в живой природе и играющие ведущую роль в качестве наиболее энергоемкого вещества - это жиры. Они представляют собой не индивидуальное соединение, а смесь разнородных глицеридов. Это соединения предельного многоатомного спирта - глицерина, который, как и метанол и фенол, содержит гидроксильные функциональные группы. Жиры можно подвергнуть гидролизу - нагреванию с водой в присутствии катализаторов: щелочей, кислот, оксидов цинка, магния. Продуктами реакции будут глицерин и различные карбоновые кислоты, в дальнейшем используемые для производства мыла. Чтобы в этом процессе не использовать дорогостоящие природные необходимые карбоновые кислоты получают, окисляя парафин.

Фенолы

Заканчивая рассматривать классы кислородсодержащих соединений, остановимся на фенолах. Они представлены радикалом фенилом -C 6 H 5 , соединенным с одной или несколькими функциональными гидроксильными группами. Простейший представитель этого класса - карболовая кислота, или фенол. Как очень слабая кислота, он может взаимодействовать со щелочами и активными металлами - натрием, калием. Вещество с ярко выраженными бактерицидными свойствами - фенол применяется в медицине, в также при производстве красителей и фенолформальдегидных смол.

В нашей статье мы изучили основные классы кислородсодержащих соединений, а также рассмотрели их химические свойства.

И их нахождение в природе

45. Назовите вещества, охарактеризуйте каждый спирт согласно классификации спиртов:

а) CH 3 ─CH 2 ─ CH─CH 2 ─CH 3 б) CH 3 ─ CH ─ CH─CH 3

в) CH 3 ─CH=CH─CH 2 ─OH г) HO─CH 2 ─CH 2 ─CH 2 ─CH 2 ─OH

д) CH 3 ─ CH ─ C─CH 3 е) HO─CH 2 ─C≡C─CH 2 ─OH ж) СH 3 ─ CH─CH 2 OH

Составьте структурные формулы веществ, образующих выигрышный путь, если известно, что все они имеют разветвленное строение. Назовите вещества.

49. С какими из перечисленных веществ может реагировать метиловый спирт: калий, оксид натрия, вода, оксид меди (II), уксусная кислота, пропанол-1, этилен. Напишите уравнения возможных реакций, укажите их тип, условия протекания, назовите продукты.

50. Решите цепочки превращений:

CuO, t
KOH водн
HBr
СO → CH 3 OH → CH 3 Br → C 2 H 6 → C 2 H 5 Cl → C 2 H 5 OH

2) CH 2 =CH─CH 3 X Y Z

51. При окислении этилена водным раствором перманганата калия получили органическое вещество А . Оно растворяет гидроксид меди (II) с образованием комплексного соединения Б ярко-синего цвета. Обработка вещества А нитрующей смесью приводит к получению продукта В , являющегося мощным взрывчатым веществом. Напишите уравнения всех упомянутых реакций, назовите вещества А В .

52. В трех пронумерованных пробирках находятся бесцветные прозрачные жидкости – вода, этанол, глицерин. Как распознать эти вещества? Напишите уравнения реакций, укажите их тип, условия протекания, назовите продукты.

53. Напишите структурные формулы следующих веществ: а) 2,4-дихлорфенол, б) 4-этилфенол, в) 3-нитрофенол, г) 1,2,3-тригидроксибензол.

54. Расположите в ряд по усилению кислотных свойств следующие вещества: п -нитрофенол, пикриновая кислота, о -крезол, фенол. Напишите структурные формулы этих веществ в нужной последовательности и покажите взаимное влияние атомов в молекулах.

55. Напишите уравнения реакций, с помощью которых из метана можно получить фенол. Укажите тип реакций, условия их протекания, назовите продукты.

56. Определите формулу предельного одноатомного спирта, если при дегидратации образца его объемом 37мл и плотностью 1,4г/мл получили алкен массой 39,2г.

57. Напишите и назовите все возможные изомеры состава С 5 Н 10 О.

58. Формальдегид, образующийся при окислении 2 моль метилового спирта, растворили в 100г воды. Вычислите массовую долю формальдегида в этом растворе.

59. Решите цепочки превращений:

1) CH 3 ─CHO → CH 3 ─CH 2 OH → CH 2 =CH 2 → HC≡CH → CH 3 ─CHO

Ацетилен → этаналь →этановая кислота

этилен → этанол → диметиловый эфир

60. В трех пробирках находятся бесцветные прозрачные жидкости – уксусный альдегид, глицерин, ацетон. Как с помощью одного реактива распознать эти вещества? Опишите ваши действия и наблюдения. Напишите уравнения возможных реакций, укажите их тип, условия протекания, назовите продукты.

61. При окислении некоторого кислородсодержащего органического вещества массой 1,8г аммиачным раствором оксида серебра получили серебро массой 5,4г. Какое органическое вещество подвергнуто окислению?

62. Напишите структурные формулы следующих веществ: а) 2-метилпропановая кислота, б) 3,4-диметилгептановая кислота, в) бутен-2-овая кислота, г) 2,3,4-трихлорбутановая кислота, д) 3-метил-2-этилпетановая кислота, е) 2-метилбензойная кислота.

63. Расположите в порядке усиления кислотных свойств следующие соединения:

1) фенол, муравьиная кислота, соляная кислота, пропанол-1, вода

2) этанол, п -крезол, бромоводородная кислота, вода, уксусная кислота, угольная кислота.

64. С какими из перечисленных веществ будет взаимодействовать раствор уксусной кислоты: Cu(OH) 2 , Na 2 SiO 3 , Hg, Mg, SO 3 , K 2 CO 3 , NaCl, C 2 H 5 OH, NaOH, Cu, CH 3 OH, CuO? Напишите уравнения возможных реакций, укажите их тип, условия протекания и назовите продукты.

65. В трех пронумерованных пробирках находятся: этиловый спирт, муравьиная кислота, уксусная кислота. Как можно распознать эти вещества опытным путем? Напишите уравнения реакций и опишите предполагаемые наблюдения.

66. Какой объем 80%-ной уксусной эссенции плотностью 1,070г/мл надо взять для приготовления 6%-ного столового уксуса объемом 200мл и плотностью 1,007г/мл?

67. Составьте формулы сложных эфиров и напишите уравнения реакций их получения: а) бутилового эфира пропионовой кислоты, б) этилового эфира масляной кислоты, в) амилового эфира муравьиной кислоты, г) этилового эфира бензойной кислоты.

68. Метиловый эфир метакриловой (2-метилпропеновой) кислоты используют для получения полимера, известного под названием органического стекла. Составьте уравнения реакции получения этого эфира.

69. При нагревании метанола массой 2,4г и уксусной кислоты массой 3,6г получили метилацетат массой 3,7г. Определите выход эфира.

70. Напишите структурные формулы следующих веществ: а) трипальмитат, б) триолеат, в) диолеостеарат, г) пальмитат натрия, д) стеарат магния.

71. Напишите уравнения реакций, укажите их тип, условия протекания, назовите продукты:

1) синтез жира на основе стеариновой кислоты,

2) гидролиз жира на основе линоленовой кислоты в присутствии гидроксида калия,

3) гидрирование триолеата,

4) гидролиз диолеопальмитата в присутствии гидроксида натрия.

72. Какую массу глицерина можно получить из природного жира массой 17,8кг, содержащего 97% тристеарата глицерина?

73. В среднем сладкоежки кладут 2 чайные ложки сахара на стакан чая. Зная, что в такой ложке помещается 7г сахара, а объем стакана 200мл, рассчитайте массовую долю сахарозы в растворе (плотность чая считать равной 1г/мл).

74. Смешали 100г 10%-ного и 200г 5%-ного растворов глюкозы. Какова массовая доля углевода в полученном растворе?

75. Решите цепочку превращений: углекислый газ → глюкоза → →этанол → этаналь → этановая килота → этилацетат.

76. Как с помощью одного реактива распознать растворы следующих веществ: вода, этиленгликоль, муравьиная кислота, ацетальдегид, глюкоза. Напишите уравнения соответствующих реакций, укажите их тип, условия протекания, опишите наблюдения.

77. Даны растворы глюкозы и сахарозы. Как распознать их опытным путем? Опишите предполагаемые наблюдения и подтвердите их уравнениями реакций.

78. Решите цепочку превращений: мальтоза → глюкоза → →молочная кислота → углекислый газ.

79. Массовая доля крахмала в картофеле составляет 20%. Какую массу глюкозы можно получить из 1620кг картофеля, если выход продукта составляет 75 % от теоретического?

80. Решите цепочки превращений:

1) CH 4 → Х → CH 3 OH → Y → HCOOH → этилформиат

2) CH 3 ─CH 2 ─CH 2 OH → CH 3 ─CH 2 ─CHO → CH 3 ─CH 2 ─COOH → →CH 3 ─CHBr─COOH → CH 3 ─CHBr─COOCH 3 → CH 2 =CH─COOCH 3

NaOH,
Br 2

NaOH,
3-метилбутанол Х 1 Х 2 Х 3

81. Как, используя минимальное число реактивов, распознать вещества в каждой паре: а) этанол и метаналь, б) ацетальдегид и уксусная кислота, в) глицерин и формальдегид, г) олеиновая кислота и стеариновая кислота. Напишите уравнения реакций, укажите их тип, назовите продукты, опишите наблюдения.

82. Решите цепочки превращений:

1) метан→этин→этаналь→этановая кислота→метиловый эфир уксусной кислоты→углекислый газ

2) крахмал→глюкоза→этанол→ этилен→полиэтилен

3) карбид кальция→ацетилен→бензол→хлорбензол→фенол→ 2,4,6-трибромфенол

83. Назовите вещества и укажите класс кислородсодержащих органических веществ:

А) CH 3 ─ C ─CH 2 ─CHO б) CH 3 ─CH 2 ─COOCH 3



Просмотров