Как рассчитать показатель приемлемого риска. Основные принципы безопасности жизнедеятельности — GN1204: Безопасность жизнедеятельности — Бизнес-информатика. Опасности по происхождению

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

Министерство образования Российской Федерации

Уральский государственный экономический университет

Центр дистанционного образования

Курс лекций

Безопасность жизнедеятельности

Рецензенты:

кафедра безопасности горного производства Уральской государственной горно-геологической академии (заведующий кафедрой доцент, канд. техн. наук Токмаков В.В.) и канд. техн. наук Новиков Л.М. (Уральский научно-исследовательский химический институт)

Ответственные за выпуск:

заведующий кафедрой машин и аппаратов пищевых производств, декан факультета техники и технологии пищевых производств докт. техн. наук, профессор Минухин Л.А., директор ЦДО Иванов В.М.

Николаев А.Ф. Безопасность жизнедеятельности: Учеб. пособие. Екатеринбург: Изд-во Урал. гос. экон. ун-та, 2010. - 88с.

Учебное пособие для экономических специальностей разработано на основе государственных образовательных стандартов.

В пособии излагаются основные сведения по дисциплине, которые студент обязан изучить при подготовке к испытаниям, установленным учебным планом, а также вопросы для самоконтроля при освоении учебного материала в соответствии с утвержденной программой. Пособие используется совместно с рекомендованной литературой, а также, по желанию студентов, совместно с базовым учебным материалом на дискете или лазерном диске, которые не входят в перечень учебно-методического материала, подлежащего обязательной выдаче студентам.

безопасность жизнедеятельность чрезвычайный пожарный

Введение

Глава 1. Теоретические основы безопасности жизнедеятельности

1.1 Основные понятия и определения

1.2 Основы теории риска

1.3 Управление безопасностью жизнедеятельности

Вопросы для самопроверки

Контрольные вопросы

Глава 2. Безопасность при чрезвычайных ситуациях

2.1 Чрезвычайные ситуации: общая характеристика

2.2 Радиационная безопасность

2.3 Чрезвычайные ситуации с выбросом аварийных химически опасных веществ

2.4 Защита населения при чрезвычайных ситуациях

Вопросы для самопроверки

Контрольные вопросы

Глава 3. Безопасность в условиях производства (охрана труда)

3.1 Законодательная и нормативная основа охраны труда

3.2 Система управления охраной труда

3.3 Производственный травматизм и профзаболевания

3.4 Основные требования к предприятиям

3.5 Воздух рабочей зоны

3.6 Защита от производственных вредностей

3.7 Производственное освещение и техническая эстетика

3.8 Оценка условий труда и аттестация рабочих мест

Вопросы для самопроверки

Контрольные вопросы

Глава 4. Техника безопасности

4.1 Общие требования безопасности к оборудованию

4.2 Электробезопасность

4.3 Безопасность при погрузочно-разгрузочных работах

Вопросы для самопроверки

Контрольные вопросы

Глава 5. Пожарная безопасность

5.1 Горение и пожарная опасность горючих веществ

5.2 Пожарная профилактика при эксплуатации зданий

5.3 Средства пожаротушения

Вопросы для самопроверки

Контрольные вопросы

Контрольная работа

Ответы на вопросы для самопроверки

Приложение. Список сокращений

Введение

Человек живет в мире, полном опасностей. В условиях производства безопасность обеспечивается охраной труда (ОТ), в чрезвычайных ситуациях? гражданской обороной (ГО), в любых условиях обитания -- безопасностью жизнедеятельности (БЖД). По данным Международной организации труда (МОТ), ежегодно в мире на производстве погибает свыше 200 тыс. чел., 15 млн. чел. травмируются, сотни тысяч становятся инвалидами.

В 1992 г. при несчастных случаях (НС) на производстве из 1000 чел. работающих погибло в России 0,130 чел.; в 1993 г. -- 0,140; в США -- 0,054; в Японии -- 0,020; в Великобритании -- 0,016. В 1997 г. в России от НС на производстве пострадало 240 тыс. чел., погибло?6 тыс. чел.

Основу знаний в учебном пособии по БЖД для подготовки по экономическим специальностям в Центре дистанционного образования УрГЭУ составляют знания, ранее излагавшиеся в курсах "Охрана труда" и "Гражданская оборона".

В конце глав имеются вопросы для самопроверки (промежуточный тест) и контрольные вопросы -- окончательный тест, по результатам которого, а также с учетом выполнения контрольной работы студент получает зачет по БЖД.

Порядок изучения: изучается теоретический материал главы, затем -- самопроверка полученных знаний путем ответа на вопросы; после изучения всех глав выполняется контрольная работа.

Глава 1. Теоретические основы безопасности жизнедеятельности

1.1 Основные понятия и определения

В центре внимания курса "Безопасность жизнедеятельности" (БЖД) находится человек. Все виды человеческой активности (работа, отдых, быт, занятия спортом и т.д.) образуют понятие деятельности. Модель процесса деятельности состоит из двух элементов: человека и среды, имеющих прямые связи -- воздействие человека на среду, и обратные, обусловленные всеобщим законом реактивности материального мира. Кроме того, система "человек-среда" двухцелевая: достижение определенного эффекта и исключение нежелательных последствий (ущерба здоровью и жизни человека, пожаров, аварий, катастроф и т.п.).

Любая деятельность потенциально опасна -- это аксиома. Но уровнем опасности (риском) можно управлять, доводя его до приемлемого значения, так как абсолютная безопасность недостижима.

Безопасность -- это состояние деятельности, при котором с определенной вероятностью исключено проявление опасностей. Таким образом, безопасность -- это цель, а наука БЖД -- это средства, пути, методы ее достижения. БЖД базируется на достижениях психологии, физиологии человека, охраны труда, экологии, эргономики (науки, изучающей деятельность человека с целью оптимизации орудий, условий и процесса труда и обеспечения удобств для развития способностей человека), экономики и др.

Опасность -- это явления, процессы, объекты, способные в определенных условиях наносить ущерб здоровью человека. Опасность хранят все системы, имеющие энергию, химически или биологически активные компоненты, а также характеристики, не соответствующие условиям жизнедеятельности человека. Опасности бывают потенциальные (скрытые) и реальные. Для реализации потенциальной опасности нужны условия, называемые причинами.

Таксономия -- наука о классификации и систематизации сложных явлений, понятий, объектов. По воздействию опасности делятся на физические, химические, биологические, психофизиологические. По времени проявления опасности делятся на импульсные (вызываемые импульсом -- толчком), лавинообразные (стремительно движущиеся, растущие), кумулятивные (с концентрацией энергии в одном направлении), взрывные, долговременные.

По характеру воздействия на человека опасности делятся на активные, пассивные, локальные, временные, физиологические, генетические. Пассивные -- это опасности, активизирующиеся за счет энергии человека: острые неподвижные элементы, неровности поверхности, по которой перемещается человек, уклоны, подъемы, малое трение на опорной поверхности и др.

Различают априорные признаки опасности -- так называемые предвестники, т. е. получаемые заранее, и апостериорные -- возникающие в результате реализации опасности.

Номенклатура -- это перечень названий, терминов, систематизированных по определенному признаку. Квантификация -- это количественные характеристики сложных, качественно определяемых понятий; применяются численные, балльные и другие приемы квантификации; наиболее распространенная оценка опасности -- риск. Идентификация опасности -- это процесс обнаружения и установления количественных, временных, пространственных и иных ее характеристик. При этом выявляются номенклатура опасностей, вероятность их проявления (т. е. осуществляется их квантификация), пространственная локализация (т. е. координаты), возможный ущерб и другие параметры.

Опасность, причины, последствия являются основными характеристиками НС, чрезвычайной ситуации (ЧС), пожара и т.д. Триада "опасность - причины - нежелательные последствия" -- это логический процесс развития потенциальной опасности впоследствии. Как правило, этот процесс является многопричинным, т. е. опасность может реализовываться по многим причинам.

1.2 Основы теории риска

Первая стадия оценки опасности -- это качественный анализ, т. е. ее идентификация во временно-пространственных координатах: а) установление типа опасности по их номенклатуре; б) установление связей с другими опасностями методами таксономии; в) выявление характера ущерба по таксономии и номенклатуре ущербов.

Вторая стадия оценки -- это количественный анализ, т. е. выбор метода квантификации и оценка пределов изменения опасности: а) суммирование опасностей; б) определение взаимодействия опасностей; при этом возможны эффекты синергический (совместное действие опасностей, превышающее действие их в отдельности) и ингибирующий (совместное действие опасностей, уменьшающее действие их в отдельности); в) оценка ущерба; г) выявление причин опасности и ущерба.

Численной мерой опасности или возможности нанесения ущерба человеку принят риск. Смысл риска может быть различным:

1) для каждой опасной связи в эргатической системе, т. е. системе, одним из элементов которой является человек, индивидуальный риск для i - го человека от j - й опасности есть годовая частота доли реализации опасности:

Год -1 , (1.1)

где n j -- количество пострадавших от j-го вида опасности, чел.;

Nj -- количество подвергшихся j -му виду опасности, чел.;

Ф -- время, за которое произошли события, год;

2) для нескольких видов опасности индивидуальный риск человека в ноксосфере -- пространстве, в котором постоянно существуют или периодически возникают опасности:

ri.m = k У rij , (1.2)

где m -- количество опасностей в ноксосфере;

к -- коэффициент взаимодействия опасностей;

3) для группы людей -- коллективный риск от j-й опасности:

rn.j = У rij , (1.3)

где n-- количество людей в группе;

4) коллективный риск в ноксосфере:

Rn.m = k УУ rij (1.4)

Ущерб для человека может быть разнообразным: риск гибели, риск травмы, риск болезни и т.д. Для сравнения любых видов опасности определяют риск летального исхода от них r ij лет. Тогда ущерб от реализации опасности будет:

x r i.j = rij лет?xo, (1.5)

где Хo -- стоимость человеческой жизни.

При ri.j лет = 1 имеем Хrij = Хo. Т. е. ущерб, связанный с гибелью человека, есть стоимость человеческой жизни, и значит, риск -- категория экономическая.

Приемлемый (или допустимый) риск -- это условно безопасная величина риска, устанавливаемая государством и определяемая уровнем его развития. Она может быть договорная, нормируемая или узаконенная. По международной договоренности принято считать, что технический риск должен быть пределах 10 -7 …10 -6 год -1 , приемлемый 10 -6 год -1 и менее, неприемлемый 10 -3 год -1 и более.

Фоновый риск -- это риск в ноксосфере на большой относительно безопасной территории. Изолинии риска (изориски) -- это линии одинаковых рисков на местности (см. рис. 1.1).

1 -- очаг повышенного риска;

2-- линия риска r = 10 r доп;

3 -- линия допустимого риска r доп;

4-- линия фонового риска r фон.

Рис. 1.1. Изолинии риска на местности

Риск может возрастать при увеличении объема и локальной концентрации производства, увеличении удельной мощности оборудования, плотности материальных ресурсов или финансовых вложений, общей перегрузке био-- и ноосферы (эволюционного состояния биосферы, при котором деятельность человека становится решающим фактором ее развития).

Пути уменьшения риска: устранение причин возрастания риска (по предыдущему перечню); совершенствование технических систем; профессионализм обслуживающего персонала.

1.3 Управление безопасностью жизнедеятельности

Существуют классификации принципов обеспечения безопасности по нескольким признакам. Ориентирующими принципами являются: 1) активность оператора; 2) гуманизация деятельности (утверждение ценности человека независимо от его общественного положения); 3) деструкция, т. е. разделение целого на части; 4) категорирование, т. е. деление объектов по признакам опасностей (например, категории помещений по пожароопасности -- А, Б, В, Г.Д); 5) ликвидация опасности (не бросать в панике управление процессом, а ликвидировать опасность); 6)системность при предотвращении опасности; 7) перевод опасности на меньший ущерб.

Технические принципы: 1) предохранительная блокировка оборудования; 2) вакуумирование оборудования, т. е. создание в нем вакуума, чтобы вредности не выходили в рабочую зону; 3) герметизация оборудования -- с той же целью; 4) защита расстоянием (удаление от опасной зоны); 5) компрессия (создание избыточного давления в помещении, чтобы вредности не входили в него); 6) обеспечение прочности оборудования, сооружений; 7) введение в систему слабого звена, воспринимающего изменение параметра и предотвращающего опасность (плавкие вставки, предохранительные клапаны, разрывные мембраны и др.); 8) флегматизация -- добавление к взрывоопасному веществу флегматизатора, уменьшающего чувствительность к внешним импульсам (ударным, электрическим и др.); 9) экранирование.

Организационные принципы: 1) защита временем (выждать время, пока опасность самоликвидируется или уменьшится); 2) информированность персонала (обучение, инструктаж, предупредительные надписи); 3) резервирование; 4) нормирование, обеспечивающее защиту от опасности; это предельно допустимые уровни (ПДУ), концентрации (ПДК), нормы переноса тяжести, продолжительности труда и др.; 5) подбор кадров; ?6) эргономичность.

Методы обеспечения безопасности гомосферы и ноксосферы (гомосфера -- это нижние слои атмосферы до 100 км; в БЖД гомосфера -- рабочая зона, где трудится человек): 1) пространственное или временное разделение гомосферы и ноксосферы дистанционным управлением, автоматизацией и др.; 2) нормализация ноксосферы средствами коллективной защиты (СКЗ) от шума, газа, пыли и др.; 3) адаптация человека к ноксосфере, повышение его защищенности профотбором, обучением, психологическим воздействием, средствами индивидуальной защиты (СИЗ).

Перманентный (т. е. постоянный) риск и возможность воздействия на уровень опасности позволяют управлять безопасностью. Управление БЖД -- это воздействие на систему "человек-среда" для достижения заданных результатов, перевод объекта из опасного состояния в менее опасное при соблюдении экономической и технической целесообразности.

Функции управления БЖД: 1) анализ состояния объекта; 2) прогнозирование ситуации и планирование мероприятий для достижения целей управления; 3) организация управляемой и управляющей систем с обратной связью от управляемых объектов к управляющему органу; 4) контроль за выполнением управленческих решений; 5) определение эффективности мероприятий; ?6) стимулирование участников управления творчески решать проблемы.

Средства управления БЖД: 1) образование, воспитание культуры безопасного поведения населения; 2) профессиональное обучение и отбор; 3) психологическое воздействие на субъекты управления; 4) рационализация режимов труда и отдыха; 5) технические и организационные СКЗ и СИЗ; ?6) система льгот, компенсаций и др.

Вопросы для самопроверки

1.1. Каковы основные цели человека в системе «человек - среда»?

1.2. Что такое опасность?

1.3. Что такое приемлемый (или допустимый) риск?

1.4. Что означает защита временем?

Контрольные вопросы

1.5. Как называется наука о классификации сложных явлений?

1.6. Какая опасность может реализоваться в будущем?

1.7. Укажите опасности, происходящие по вине человека.

1.8. Какие опасности связаны с отношениями в обществе?

1.9. Назовите опасности, являющиеся нарастающими.

1.10. Какие опасности характеризуются концентрацией энергии?

1.11. Какие опасности активизируются за счет энергии человека?

1.12. Какие признаки опасности известны заранее?

1.13 . Какие признаки опасности выявляются после ее реализации?

1.14. Какой эффект совместного действия опасностей выше их действия в отдельности?

1.15. Какой эффект совместного действия опасностей меньше их действия в отдельности?

1.16. Какое понятие риска считается наиболее признанным?

1.17. Как обозначается наиболее признанное понятие риска?

1.18. Какова размерность риска?

1.19. Как называется система, один из элементов которой -- человек?

1.20. Как называется пространство с опасностями?

1.21. Какой риск имеется на почти безопасной территории?

1.22. Как называются линии одинаковых рисков на местности?

1.23. Как называется новое, эволюционное состояние биосферы?

1.24. Как называется наука об удобствах труда человека?

1.25. Укажите распределение объектов по признакам опасности?

1.26. Как называется создание избыточного давления в помещении?

1.27. Как называется установление величин параметров для защиты от опасности?

1.28. Как называется зона, где трудится человек?

1.29. Укажите метод обеспечения безопасности с помощью СКЗ от шума, газа, пыли и др.

Глава 2. Безопасность при чрезвычайных ситуациях

2.1 Чрезвычайные ситуации: общая характеристика

Чрезвычайное событие -- это техногенное, антропогенное или природное происшествие с резким отклонением от норм процессов или явлений, оказывающее значительное отрицательное воздействие на жизнедеятельность человека, экономику, социальную и природную среду. Чрезвычайные условия -- это черты обстановки, сложившейся на объекте, в регионе в результате чрезвычайного события и других факторов. Чрезвычайная ситуация (ЧС) -- это совокупность обстоятельств, сложившихся под влиянием чрезвычайных условий в результате чрезвычайного события. Авария -- это чрезвычайное событие по техногенным причинам и из-за внешних воздействий, состоящее в повреждении или разрушении технических устройств или сооружений. Катастрофа -- это авария с человеческими жертвами, значительным материальным ущербом и другими тяжелыми последствиями.

Признаки или результаты ЧС: опасность для жизни и здоровья многих людей; нарушение экологического равновесия; выход из строя систем жизнеобеспечения и управления; полное или частичное прекращение хозяйственной деятельности; значительный материальный ущерб; привлечение больших сил и средств для спасения людей и ликвидации последствий; психологический дискомфорт для многих людей.

Количественные меры ЧС: количество людей в зоне ЧС, количество пострадавших, количество смертельных исходов, финансовый ущерб и др.

Стадии ЧС независимы от ее типа: 1) зарождение -- активизация неблагоприятных природных процессов, накопление проектно-производственных дефектов и технических неисправностей, сбои в работе инженерно-технического персонала и т. п.; 2) инициирование -- начало реализации ЧС из-за инициирующего события; 3) кульминационная -- высвобождение неблагоприятно воздействующих энергии или вещества, т. е. происходит собственно чрезвычайное событие; ЧС достигает апогея или под воздействием людей переходит в четвертую стадию; 4) затухание -- действие остаточных факторов поражения; это период от перекрытия источника опасности, т. е. локализации ЧС, до полной ликвидации ее прямых и косвенных последствий (вторичных, третичных и т.д.); продолжительность стадии может быть годы и десятилетия.

Типы задач при защите человека в ЧС: 1) эвакуация людей из района действия опасных факторов; 2) помощь подвергшимся воздействию ЧС, но лишенным возможности спасаться самостоятельно (дети, старики, больные); 3) самоспасение, если внешняя помощь не оказана вовремя; 4) обеспечение безопасности самих спасателей.

По характеру генезиса (происхождения) ЧС могут быть: 1) стихийные бедствия или природные ЧС -- это землетрясения, наводнения, эпидемии (распространение инфекционных болезней человека, превышающее обычное для данной местности), эпизоотии (аналогичное распространение инфекционных болезней животных), эпифитотии (аналогичное распространение инфекционных болезней растений) и т.п.; 2) техногенные -- это выход их строя машин (преобразующих энергию, материалы, информацию), механизмов (преобразующих виды движения твердых тел), трубопроводов при их эксплуатации, сопровождающийся нарушениями производственного процесса со взрывами, пожарами, радиоактивным, химическим заражением больших территорий, групповым поражением или гибелью людей; 3) антропогенные -- следствие ошибочных действий персонала; 4) экологические -- изменения состояния суши, атмосферы, гидросферы и биосферы с резко отрицательным влиянием на здоровье людей, среду обитания, экономику, генофонд (совокупность генов, которые имеются у особей данной популяции); 5) социальные -- это события в социуме (человеческой общности -- племени, нации) -- грабежи, насилия, межнациональные конфликты с применением силы, межгосударственные -- с применением оружия.

Границы между типами ЧС условные.

2.2 Радиационная безопасность

Один из видов техногенных ЧС -- взрыв на атомной электростанции (АЭС) или другом объекте с выбросом радиоактивных веществ (РВ), в общем случае подобный взрыву ядерного оружия. Мощность ядерного взрыва характеризуется тротиловым эквивалентом -- количеством взрывчатого вещества тротила, при взрыве которого выделяется столько же энергии, сколько и при данном ядерном взрыве. Поражающими факторами ядерного взрыва или взрыва с выбросом РВ могут быть: ударная волна, световое (или тепловое) излучение, проникающая радиация (или первичное ядерное излучение), радиоактивное заражение атмосферы и местности (или вторичное ядерное излучение) и электромагнитный импульс.

Ударная волна -- это сферический слой резко сжатой среды, распространяющийся от места взрыва; несет ~50% энергии ядерного взрыва, 8 ? 10% -- нейтронного. Воздушная ударная волна -- это высокое давление газообразных продуктов ядерного взрыва; в центре ядерного взрыва 20 кт оно достигает 10 11 кПа, на расстоянии 0,7 км -- около 100 кПа, на расстоянии 3 км -- около 10кПа. Передняя граница сжатого воздуха с резким увеличением давления называется фронтом ударной волны . Вблизи от центра взрыва скорость ударной волны в несколько раз превышает скорость звука в воздухе, равную 331 м/с. Длительность фазы сжатия, т. е. действия избыточного давления? несколько секунд. За сжатием следует фаза разрежения, когда давление ниже атмосферного. Взрыв называется воздушным, если происходит на высоте до 10 км; наземным -- на поверхности земли; подземным -- ниже поверхности земли.

От воздушной ударной волны из-за высокого избыточного давления люди, находящиеся на открытой местности, могут получить поражения от легких до смертельных. Здания могут получить разрушения от легких (повреждаются второстепенные элементы, например кровля, остекление) до полных (при которых разрушаются все несущие конструкции).

Световое или тепловое излучение несет 30 ? 40% энергии ядерного взрыва; это поток лучистой энергии, включающий в себя: 1) видимые лучи; 2) ультрафиолетовые лучи -- невидимое электромагнитное излучение; в спектре -- выше фиолетового; обладает сильным химическим и биологическим действием; 3) инфракрасные лучи -- невидимое электромагнитное излучение; в спектре -- под красным участком.

Источник светового излучения - светлая область взрыва из нагретых? до 8000 ? 10000 0 С веществ ядерного боеприпаса или того, что взорвалось, а также воздуха и грунта (при наземном взрыве). Продолжительность излучения (до десятков секунд) зависит от мощности взрыва. Поражающее действие - световой импульс (Дж/м 2) зависит от мощности и вида взрыва, ослабления излучения в атмосфере и обратно пропорционален квадрату расстояния от места взрыва. Радиус действия светового излучения больше, чем для ударной волны.

Световое излучение поражает глаза, воспламеняет одежду, обжигает открытые участки тела от покраснения кожи до обугливания. В зависимости от свойств материалов они оплавляются, обугливаются или воспламеняются, что ведет к пожарам.

Проникающая радиация или первичное ядерное излучение -- это поток?-лучей и нейтронов в воздухе из разрушенной ядерной установки или факела выброса над ней; несет ~5% энергии ядерного взрыва или 85% -- нейтронного. Источник радиации -- ядерная реакция с самопроизвольным превращением ядер атомов одних элементов в другие.

Лучи -- это электромагнитное излучение в виде сгустков энергии -- квантов, по длине волны и частоте колебаний близкое к рентгеновским лучам, лежащим в спектре выше ультрафиолетовых. Нейтроны -- это ядерные частицы, не имеющие заряда. Нейтроны и?-лучи обладают высокой проникающей способностью и опасны даже при внешнем облучении (?-лучи проходят в воздухе несколько сот метров).

Радиоактивное заражение атмосферы и местности иливторичное ядерное излучение (~15% энергии ядерного взрыва) возникает при выпадении РВ из облака, образовавшегося над ядерным взрывом или разрушенным ядерным реактором. Распадаясь в воздухе, осев на землю, РВ испускают? и?-частицы и?-лучи. ? - частицы -- это поток ядер гелия, возникающих при ядерных превращениях; проникающая способность -- несколько сантиметров в воздухе, но высокая ионизирующая способность, поэтому они наиболее опасны при внутреннем облучении, попадая в организм с воздухом, пищей и водой. ?-частицы -- это поток электронов; проникающая способность в воздухе -- несколько метров; от облучения?-частицами эффективно защищает обычная одежда; на открытых участках тела могут быть радиационные ожоги.

И?-частицы, ?-лучи, нейтроны ионизируют среду, т. е. разбивают атомы и молекулы веществ на разнополярные ионы, поэтому их называют ионизирующим излучением (ИИ). На человека оно воздействует тремя путями: 1) внешнее облучение от радиоактивного облака и РВ, осевших на землю, т. е. воздействие через кожу; 2) внутреннее облучение при вдыхании РВ, выпадающих из облака, и нуклидов, вторично попавших в воздух с загрязненной поверхности. Нуклид -- это атом с различным числом протонов и нейтронов в ядре, способный к радиоактивному распаду; 3) внутреннее облучение от загрязненных пищи и воды, т. е. через желудочно-кишечный тракт.

Взаимодействие ИИ с живым организмом приводит к образованию ионов, разрыву молекулярных связей и образованию в нем новых, несвойственных ему химических соединений. Излучения различаются по степени ионизации среды и лучевого поражения при одинаковой поглощенной тканями энергии; если эту способность? - и рентгеновских лучей принять за 1, то для нейтронов будет 10, для?-частиц -- 20. Эти величины названы коэффициентами качества (или взвешивающими коэффициентами) излучения Q .

Различают следующие виды радиационных доз:

1) экспозиционная -- это способность?-лучей ионизировать воздух. В системе интернациональной (СИ) единица измерения кулон/кг (Кл/кг). В радиобиологии -- внесистемная единица рентген (Р) -- это количество?-излучения, которое при температуре 0°С и давлении 760 мм рт. ст создает в 1 смі сухого воздуха 2?10 9 пар ионов. 1Р = 2,58?10 -4 Кл/кг. По этой дозе судят о болезнетворности?-излучения. На свойстве?-лучей ионизировать воздух основаны конструкции дозиметров -- измерителей мощности дозы;

2) поглощенная -- это количество энергии всех видов излучения, поглощенной единицей массы тела. В СИ единица измерения грей (Гр). 1 Гр равен энергии в 1 джоуль (Дж) любого излучения, переданной массе вещества в 1 кг. 1 Гр = 1Дж/кг = 100 Р. Внесистемная единица - рад (радиационная адсорбированная, т. е. поглощенная доза); 1Гр=100 рад;

3) эквивалентная -- это поглощенная доза D погл, умноженная на коэффициент качества (или взвешивающий коэффициент) Q данного ИИ:

Н = D погл? Q. (2.1)

В СИ единица измерения зиверт (Зв). 1 Зв = 1 Дж/кг=100Р. Внесистемная единица -- бэр (биологический эквивалент рентгена) -- это количество излучения, биологический эффект которого равен воздействию 1Р;

4) разные части тела по-разному чувствительны к излучению, поэтому используется коэффициент радиационного риска (или взвешивающий коэффициент) Кр.р для данного органа или ткани: щитовидной железы -- 0,05; красного кровяного мозга и легких -- 0,12; молочной железы -- 0,15; гонадов -- яичников (женских) и семенников (мужских) -- 0, 25 и т.д. Умножив эквивалентные дозы на Кр.р и просуммировав по всему организму, получают эффективную дозу -- это суммарный эффект облучения; измеряется в зивертах (Зв);

5) предельно допустимая доза (ПДД) -- это наибольшая эквивалентная доза за год, при равномерном воздействии в течение 50 лет не вызывающая в здоровье человека неблагоприятных изменений.

Степень опасности РВ на местности (т. е. степень ее загрязненности РВ) оценивается внесистемной единицей кюри (Кu) -- это количество РВ, в котором за одну секунду происходит 37?10 9 ядерных распадов или беккерелей. С загрязненной РВ территории временно отселяют население, если радиоактивность по цезию-137 больше или равна 15 Кu/кмІ, по стронцию-90 больше или равна 3 Кu/кмІ. Заражение местности РВ характеризуют также мощностью дозы -- количеством излучения в единицу времени (Р/ч). 1 Кu/мІ ?10 Р/ч. Мощность дозы на высоте 1 м от поверхности земли называется уровнем радиации (с течением времени снижается), а в 1 ? 2 см от поверхности предметов, одежды, продовольствия, воды, кожных покровов людей и животных -- степенью заражения.

При разрушении ядерных реакторов радиоактивные частицы мелкие, образуются также газообразные радиоактивные облака; обычные СИЗ органов дыхания не могут полностью задержать такие частицы. При ядерном взрыве (боевом) частицы более крупные, поэтому воздух хорошо фильтруется СИЗ и даже носоглоткой человека, а с поверхности одежды и техники пыль легко удаляется. Поэтому при авариях на АЭС опасны внутреннее и внешнее облучение, а при ядерном взрыве -- в основном, внешнее.

В процессе исторического развития человек постоянно подвергался воздействию природных источников ИИ: космической радиации, наземных естественных источников, пищи и выделяющегося всюду из земли невидимого, без запаха, тяжелого газа радона -- наиболее весомого источника ИИ (~37% суммарного излучения природных и искусственных источников). А в целом природные источники излучения дают ~ 0,2 бэр/год, искусственные ~0,2 бэр/год: медицинские приборы, полеты в самолете, телевизор, испытания ядерного оружия, РВ на производстве (атомная энергетика, радиоизотопные контрольно-измерительные приборы).

"Нормами радиационной безопасности" (НРБ-96) предусмотрены принципы радиационной безопасности: 1) нормирования -- непревышение дозового предела; 2) обоснования -- исключение необоснованного облучения, если польза не превышает риск возможного вреда; 3) оптимизации -- снижение облучения до возможно низкого уровня.

По возможности облучения всего тела население делится на категории:

А -- персонал, работающий с источниками ИИ; ПДД = 5 бэр/ год.

Б -- это персонал и население, которые не работают с ИИ, но при проживании или работе могут подвергаться их воздействию; установлен предел дозы (ПД) -- предельная эквивалентная доза за жизнь; он определяется по усредненной дозе внешнего облучения, уровням радиоактивных выбросов и загрязнения среды. (ПД = 0,5 бэр/год);

В -- остальное население; дозовые пределы устанавливаются Минздравом РФ по обстановке; на территории, загрязненной РВ, ПД = 35 бэр за жизнь; он не включает дозу от медицинских исследований и увеличения естественного фона.

В особых случаях (спасение людей, предотвращение аварий и переоблучения многочисленного контингента) с письменного разрешения администрации и согласия исполнителя допускается планируемое повышение ПДД в 2 раза в каждом случае или в 5 раз на протяжении всей работы. Норма 25 бэр была для ликвидаторов аварии на Чернобыльской АЭС (ЧАЭС) Планируемое повышение ПДД не разрешается, если работник ранее получил дозу выше годовой в 5 раз.

НРБ-96 вводят основные дозовые пределы (табл. 2.1).

Таблица 2.1. Основные дозовые пределы облучения

Примечания: * Для персонала категории Б -- не более 1/4 значений для катег о рии А. ** В слое толщиной 5 мг/см 2 , на ладонях 40 мг/см 2 .

При передозировке воздействия ИИ возникает лучевая болезнь -- детерминированные, нестохастические пороговые эффекты (стохастические - случайные, вероятностные): 1) острая лучевая болезнь (ОЛБ) -- при однократных больших дозах облучения в короткие сроки (поглощенная доза выше 0,25 Гр); 2) хроническая -- при многократных небольших дозах, но выше ПДД.

При малых дозах могут развиться стохастические беспороговые эффекты: опухоли; лейкозы (лейкемия, белокровие) -- заболевания кроветворной системы; генетические дефекты.

Этапы развития ОЛБ: 1)поглощение излучения тканями; 2) физико-химические процессы в тканях: ионизация среды и радиолиз воды (распад под действием ИИ). Образовавшиеся ионы и оторванные от атомов электроны образуют перекисные соединения -- перекись водорода и более сильные окислители; 3) биологический эффект: перекисные соединения губят часть клеток; изменяются биохимические, иммунные и другие реакции, что дает полиморфизм клинической картины, а в тяжелых случаях - смерть (морфизм-- форма, вид; поли… -- много…). Этапы 1-й, 2-й и часть 3-го скоротечны -- наносекунды (нано -- 10 -9).

Клинические формы и тяжесть ОЛБ: 1) при поглощенной дозе 1 ? 10 Гр клиническая форма костномозговая, основное -- поражение кроветворной ткани; при дозе 1 ? 2 Гр степень тяжести I (легкая), прогноз абсолютно благоприятный; при дозе 6 ? 10 Гр степень тяжести IV (крайне тяжелая), прогноз неблагоприятный; 2) при дозах 10 ? 20 Гр клиническая форма кишечная -- также поражается кишечный эпителий (ткань, покрывающая кожу, роговицу глаз, все полости организма), вызывая смерть еще до нарушений в кроветворении; степень тяжести IV, прогноз абсолютно неблагоприятный; 3) при дозах более 20 Гр в основном поражаются сосуды и центральная нервная система (ЦНС), клинические формы токсемическая (сосудистая) и церебральная (относящаяся к головному мозгу), степень тяжести IV , прогноз абсолютно неблагоприятный.

Фазность ОЛБ для III степени тяжести (тяжелой): 1) первичная реакция -- до 3 ? 4 суток; 2) скрытый, т. е. латентный период -- 1 ? 2 недели; 3) разгар заболевания -- 3 ? 4 недели; 4) восстановление -- ???6 ? 12 месяцев, возможны рецидивы (возврат).

Для I и II степеней первые две фазы увеличиваются, а для IV -- резко сокращаются. Первичная реакция -- сразу или через несколько часов после облучения; чем она раньше, тем тяжелее ОЛБ; симптомы: тошнота и рвота, слабость, головная боль, головокружение, возбуждение психики, сменяемое угнетением, жажда; температура тела нормальная; в тяжелых случаях -- одышка, потеря сознания. В скрытый период -- мобилизация защитных и компенсаторных механизмов; первичные симптомы исчезают, но изменения в кроветворных органах и биохимических процессах прогрессируют. В разгар заболевания -- ухудшение самочувствия и полиморфизм клинической картины из-за поражения всех органов и систем. Выздоровление медленное, долго сохраняются нарушения в функциях органов. Отдаленные последствия ОЛБ (через многие годы) -- катаракта (помутнение хрусталика глаза), опухоли, лейкозы, генетические нарушения.

В первую очередь при радиационном поражении необходима эвакуация из зоны заражения, как можно раньше санитарная обработка: сначала помыться холодной водой с моющими средствами, чтобы поры кожи закрылись, а пыль смылась, потом горячей, чтобы поры открылись и смыть остатки пыли, затем опять холодной, чтобы поры закрылись. При рвоте показаны этаперазин по одной таблетке (успокаивающее средство), экстракт валерианы и др. При сердечно-сосудистой слабости -- по 20 ? 30 капель кордиамина. Профилактика радиационных поражений -- это соблюдение правил охраны труда и дозиметрический контроль за работающими с ИИ, систематическое медицинское наблюдение. При угрозе заражения радионуклидами или внешнего облучения -- прием радиопротекторов, снижающих воздействие излучения: йодистого калия и цистамина. Эффективны для защиты от РВ, попавших в организм, комплексоны (органические соединения, связывающие ионы металлов в комплексы), адсорбенты, поглощающие другие вещества из раствора или газа; они способствуют выведению радионуклидов из организма.

ЧС с выбросом РВ возможны при авариях на АЭС, предприятиях ядерно-топливного цикла атомной энергетики, на транспорте с ядерными энергетическими установками или при перевозке РВ, при промышленных или испытательных ядерных взрывах.

Международной комиссией по радиационной защите (МКРЗ) и Всемирной организацией здравоохранения (ВОЗ) установлены этапы аварии на радиационно-опасном объекте (РОО): 1) начальный -- угроза выброса РВ и первые часы после выброса; 2) первичной ликвидации последствий аварии -- от нескольких суток до месяца, когда радионуклиды осели на землю; 3) проведения и завершения работ по ликвидации аварии.

Масштабы выбросов РВ при аварии на АЭС можно представить по катастрофе на ЧАЭС (о причинах катастрофы существуют различные версии). Выбросы продолжались с 26 апреля по 7 мая 1986г; рассеялось 2 ??? 6% от имевшихся в 4-м блоке ~ 200 т радиоактивного топлива, т. е. 4 ? 12 т. Произошло радиоактивное загрязнение с уровнем радиации по цезию-137 (Cs-137) более 5 Кu/км 2 около 28 тыс. км 2 , а всего 56 тыс. км 2 -- это области Белоруссии, Украины, России. Загрязнения обнаруживались от Сухуми до Прибалтики, в Финляндии и Швеции, Франции (о?в Корсика). Облучено 3 млн. чел., в том числе в Белоруссии -- 2, 2 млн. чел. или каждый пятый житель, из них 800 тыс. -- дети. В ликвидации аварии участвовало 280 тыс. чел. ("ликвидаторы"), из них к апрелю 2001 г. умерло 15 тыс. чел., 50 тыс. чел. стали инвалидами. Чернобыльская катастрофа, крупнейшая в атомной энергетике, привела к неблагоприятным экологическим последствиям, потере человеческих жизней, экономическому ущербу, вызвала тревогу в мире. Германия решила закрыть свои АЭС к 2018 г. (Австрия закрыла в 1978 г.).

Разрушенный ядерный реактор ЧАЭС замурован в бетонный саркофаг, но все равно представляет угрозу. 15 декабря 2000 г. Украина закрыла Чернобыльскую АЭС.

Длительность поражающего действия радионуклидов определяется их периодом полураспада, то есть временем, за которое распадается половина имеющегося их количества. У йода-131 этот период 8,1 суток, у стронция-90 около 28? лет, у цезия-137 равен 30 годам, у плутония-239 около 24400 лет.

Особенности очага поражения при аварии на АЭС: большая площадь заражения местности РВ -- десятки тысяч квадратных километров; длительное поражающее действие.

В Уральском регионе наиболее потенциально опасны в радиационном отношении Белоярская атомная электростанция (БАЭС; 45 км от Екатеринбурга) и производственное объединение "Маяк" в Челябинской области (г.Кыштым). БАЭС построена в1964 г. В 1976 г. из-за неисправности приборов и ошибочных действий персонала произошел массовый пережег технологических каналов; пожар ликвидирован, выброса РВ не произошло. ПО"Маяк" действует с 1949 г. В 1957 г. из-за отсутствия контроля за жидкими радиоактивными отходами произошел тепловой взрыв в их хранилище (Кыштымский взрыв); выброс РВ составил 20 млн кюри (при аварии на ЧАЭС выброшено 50 млн кюри). При Кыштымском взрыве 2 млн кюри рассеялось по Челябинской и Свердловской областям в виде Восточно-Уральского радиоактивного следа (ВУРС). На этих площадях проживало 270 тыс. чел. Всего на ПО«Маяк» при трех авариях было выброшено около 150 млн кюри РВ, заражено 26700 км 2 территории, облучено 437 тыс. чел.

Таким образом, опасность радиоактивного заражения на Урале сохраняется.

2. 3 Чрезвычайные ситуации с выбросом аварийных химически опасных веществ

Предельно допустимой концентрацией (ПДК) вредных веществ в воздухе считается такая, которая при ежедневном воздействии в течение смены на протяжении всего трудового стажа и в отдаленные сроки жизни настоящего и последующих поколений не вызывает отклонений здоровья. Вредные для здоровья людей химические вещества, оказывающиеся в воздухе преимущественно в результате аварий, называются аварийными химически опасными веществами (АХОВ).

АХОВ хранят в емкостях под давлением. При разрушении емкости давление падает, АХОВ вскипает и выделяется в виде газа или жидкости. Образовавшееся облако газа (пара) АХОВ -- первичное облако зараженн о го воздуха , распространяется на большие расстояния. Оставшаяся жидкость растекается и испаряется, создавая вторичное облако зараженного воздуха , распространяющееся меньше. Образуются зона химического з а ражения (ЗХЗ) и очаги химического поражения (ОХП) -- территории в ЗХЗ с находящимися на них людьми. При ветре ЗХЗ на местности имеет вид равнобедренного треугольника с вершиной в точке разлива АХОВ. Высота треугольника называется глубиной ЗХЗ, а длина основания -- шириной ЗХЗ.

Площадь разлива АХОВ из хранилища с обваловкой (т. е. окруженного валом, насыпью для ограничения растекания АХОВ) равна обвалованной площади. При отсутствии обваловки считают, что жидкость разливается слоем толщиной не более 0,05 м.

Стойкость заражения -- это время самодегазации (обезвреживания) АХОВ и существования ОХП и ЗХЗ. На стойкость заражения и размеры ЗХЗ влияют физико-химические свойства АХОВ, их концентрация, скорость приземного ветра, температура почвы и воздуха, вертикальная устойчивость приземных слоев атмосферы и рельеф местности.

Повышение концентрации АХОВ увеличивает глубину ЗХЗ. Скорость ветра?6…7 м/с и более ускоряет рассеивание облака. Повышение температуры почвы и воздуха ускоряет испарение АХОВ с поверхности жидкости и увеличивает его концентрацию над территорией, но на короткое время.

Виды вертикальной устойчивости приземных слоев атмосферы: 1) инверсия (переворачивание, перестановка) -- температура почвы ниже температуры воздуха, которая возрастает с высотой вместо обычного убывания; нет восходящих потоков воздуха, сохраняется высокая концентрация АХОВ (ночью и в предутренние часы при ясной погоде и слабом ветре); 2) изотермия (постоянство температуры) -- температуры почвы и приземного слоя воздуха равны, восходящие потоки слабые, застой паров АХОВ (при пасмурной погоде); 3) конвекция (перенос теплоты, массы, зарядов движущейся средой) -- температура почвы выше температуры воздуха, развиты восходящие потоки, что благоприятно для распространения АХОВ (летом при ясной погоде и слабом ветре).

Влияние рельефа местности: в низине, городе, лесу, т. е. на закрытой местности облако зараженного воздуха сохраняется дольше, чем на открытой, но размеры ЗХЗ - до трех раз меньше.

Приведем характеристики некоторых АХОВ.

Аммиак (NН 3 ) -- бесцветный газ с запахом нашатыря, легче воздуха, хорошо растворяется в воде; образуется при разложении органических веществ. Пределы взрываемости, низший (НПВ) и высший (ВПВ), 16 и 25 %. Мировое производство -- 100 млн т в год. Жидкий аммиак -- хладагент в холодильных машинах. Перевозится жидким под давлением. При выходе в атмосферу дымит. Отравиться можно при эксплуатации холодильной техники, при производстве искусственного льда, при гальванических процессах, производстве его и ряда других химических продуктов. Поражающая концентрация аммиака 500 мг/м 3 , смертельная 7000 мг/м 3 . ПДК = 20 мг/м 3 вызывает раздражение верхних дыхательных путей. При высоких концентрациях возбуждает ЦНС, вызывает судороги; смерть наступает через несколько часов или суток.

Первая помощь при поражении аммиаком:

а) при отеке гортани и легких: противогаз, желательно промышленный -- коробка Д, черная; вынос из ЗХЗ, ингаляция парами теплой воды, лучше с уксусом или лимонной кислотой и 10% -ным раствором ментола в хлороформе; при остановке или прерывистом дыхании -- искусственное дыхание; теплое питье -- молоко; при попадании в желудок -- вызвать рвоту; покой, согревание;

б) при асфиксии, т. е. отсутствии пульса из-за нарушения дыхания, недостатка кислорода и избытка двуокиси углерода в крови и тканях -- вдыхать кислород до тех пор, пока одышка или цианоз (синюха, синюшный цвет кожи и слизистых оболочек от серого до черно-синего) не уменьшатся, с последующей подкожной инъекцией 1 смі 1%-ного раствора атропина;

в) при попадании аммиачной воды в глаза возможна перфорация (прободение) роговицы и гибель глаза. Необходимо немедленное промывание глаз большим количеством воды или 0,5…1,0%-ным раствором квасцов и консультация офтальмолога, даже если нет боли. Пораженную кожу промыть водой и сделать примочку 5%-ным раствором уксусной, лимонной, винной или салициловой кислоты. Сердечные препараты и транквилизаторы (психотропные успокаивающие средства) принимать по назначению врача.

Хлор (Cl 2 ) -- газ желто-зеленого цвета с резким запахом чеснока, тяжелее воздуха в 2,5 раза, скапливается в подвалах, на нижних этажах зданий, в оврагах. Применяется в бумажной, текстильной промышленности и в производстве искусственного волокна для отбеливания, в химической промышленности, а также для хлорирования воды и дезинфекции отходов. Раздражает и повреждает слизистые оболочки и дыхательные пути, с влагой тела образует кислоты, вызывает отек легких со жгучей болью, кашлем до рвоты с кровью, головной болью и за грудиной, недомоганием, беспокойством, чувством удушья. При высоких концентрациях (300 мг/м 3 и более) действует удушающе, вызывая спазмы мускулов гортани и опухание слизистых оболочек, падает кровяное давление и через несколько минут останавливается сердце; смерть может наступить от 1 ? 2 вдохов; при несколько меньших концентрациях дыхание останавливается через 5 ? 25 минут. При длительном воздействии небольших концентраций возможно заболевание бронхов и предрасположенность к туберкулезу, "хлорная угреватость", повреждение эмали зубов. Хлор образует горючие и взрывчатые смеси с водородом, а реакции с углеводородами и спиртами могут иметь взрывной экзотермический характер. Хлор в атмосфере можно определить по запаху и своевременно покинуть зараженное место.

Первая помощь при поражении хлором: 1) гражданский противогаз (ГП-5, ГП-7); 2) эвакуация из зараженной зоны, вызов врача; 3) ни в коем случае не нейтрализовать хлор другими веществами; 4) брызги жидкого хлора или хлорной воды разъедают одежду, а в случае прилегания ее к телу вызывают раздражение и ожоги. Запачканную одежду снять, а кожу и слизистые оболочки обильно промыть водой с мылом или 2% ? ным содовым раствором; 5) при ингаляционном поражении (через дыхательные пути), если пострадавший в сознании, перенести его в безопасное место и уложить, приподняв верхнюю часть тела. Расстегнуть воротник, пояс и укрыть; давать обильное питье; 6) если пострадавший потерял сознание, но дышит, также давать вдыхать кислород до прихода врача; 7) если пострадавший не дышит, быстро уложить его на землю, по возможности на мягкую подстилку, расстегнуть воротник, пояс и немедленно делать искусственное дыхание с использованием кислорода до прихода врача.

2.4 Защита населения при чрезвычайных ситуациях

Социальные меры по защите персонала и населения на случай аварии на РОО: 1) автоматизация контроля радиационной обстановки и создание системы оповещения в радиусе 30 км; 2) строительство защитных сооружений (ЗС) в 30 километровой зоне от АЭС и постоянная их готовность; готовность других ЗС -- через 12 часов; 3) определение численности населения, подлежащего защите на месте или эвакуации; 4) создание запасов медикаментов, СИЗ, продовольствия, одежды; 5) создание на РОО формирований ГО и обучение их аварийно-спасательным и другим неотложным работам (АСДНР); 6) периодические учения по защите персонала РОО и населения.

На РОО заранее разрабатывается план мероприятий по радиационной безопасности на случай аварии. Население должно знать о нем и иметь простые инструкции о мерах по защите при выбросе РВ в атмосферу. В начале аварии население информируется о срочных мероприятиях по защите.

На начальном этапе аварии переоблучение может быть от ядерной установки и факела, выпадений РВ на одежду, кожу, почву, растения и т.п. Необходимы противогазы или простейшие СИЗ органов дыхания (эффективность повышается смачиванием). Кожу и волосяной покров защищают головными уборами, куртками, плащами, перчатками, сапогами и т.п. Работники и население укрываются в ЗСГО или домах на время формирования следа РВ. В домах щели дверей и окон должны быть заткнуты мокрой бумагой или тканью. Как можно раньше проводится 7 ? суточная профилактика стабильным йодом -- йодистым калием в таблетках по 0,125 г 1 раз в день или 5%-ным спиртовым раствором йода по 3 ? 5 капель на стакан молока или воды после еды 3 раза в день. Это предупреждает накопление радионуклидов йода в щитовидной железе и способствует их выведению из организма. Детям до двух лет доза уменьшается в два раза. Беременные женщины принимают йодистый калий одновременно с перхлоратом калия, ослабляющим влияние йодистого калия на плод. Проводится санитарная обработка кожи и одежды (вытрясти или заменить), после этого -- контроль на полноту дезактивации (удаления).

На этапе первичной ликвидации последствий аварии основным источником поступления РВ в организм становятся пища и вода. Если мощность дозы излучения высока, то население эвакуируется в 2 этапа: на первом -- до границы зоны загрязнения, а на втором -- пересаживается на незагрязненный РВ транспорт. При въезде на незагрязненную территорию контролируются люди и транспорт. Лица с загрязнением свыше 1000 мкР/ч направляются на полную санитарную обработку, затем на дозиметрию щитовидной железы для решения вопроса о госпитализации. При необходимости проводится дезактивация транспорта. Оставшиеся персонал и население должны питаться продуктами с незараженной территории и продолжать йодную профилактику под медконтролем, так как применение стабильного йода после накопления его изотопов в щитовидной железе может привести к нежелательным последствиям. Защитные мероприятия для критической группы населения (дети, беременные и кормящие женщины) требуют особого внимания. С населением должна проводиться работа для снятия стресса, доведения до каждого цели и значимости проводимых мероприятий.

...

Подобные документы

    Химические вещества и опасные объекты. Общий порядок действия при авариях на химически опасных объектах и с выбросом сильнодействующих ядовитых веществ. Крупнейшие потребители аварийно химически опасных веществ. Первая неотложная помощь при поражениях.

    презентация , добавлен 26.10.2014

    Предмет и методы инженерной охраны труда. Правовые, нормативно-технические и организационные основы обеспечения безопасности жизнедеятельности. Требования производственной санитарии, электро-, пожаробезопасности, защиты от излучений и вредных веществ.

    курс лекций , добавлен 05.06.2014

    Способы и средства ликвидации химически опасных аварий. Укрытие и защита населения при химическом загрязнении, обеспечение средствами индивидуальной защиты. Характеристика средств защиты органов дыхания (фильтрующие противогазы и респираторы) и кожи.

    реферат , добавлен 04.05.2011

    Понятие чрезвычайной ситуации техногенного характера. Классификация производственных аварий по их тяжести и масштабности. Пожары, взрывы, угрозы взрывов. Аварии с выбросом радиоактивных веществ, химически опасных веществ. Гидродинамические аварии.

    презентация , добавлен 09.02.2012

    Правовые основы законодательства в области обеспечения безопасности жизнедеятельности. Экологическая безопасность, формирование и укрепление экологического правопорядка. Основы законодательства Российской Федерации об охране труда. Чрезвычайные ситуации.

    реферат , добавлен 24.03.2009

    Влияние среды обитания и окружающей природной среды на жизнедеятельность человека. Основы физиологии труда. Воздействие на человека опасных и вредных факторов среды. Основы техники безопасности. Правовое обеспечение безопасности жизнедеятельности.

    методичка , добавлен 17.05.2012

    Основные понятия, термины и задачи предмета "Безопасность жизнедеятельности". Классификация опасных и чрезвычайных ситуаций (ЧС). Правовое регулирование национальной безопасности и единая государственная система предупреждения и ликвидации ЧС.

    реферат , добавлен 10.03.2009

    Факторы и ситуации, оказывающие отрицательное влияние на человека. Системно-структурная модель основ безопасности жизнедеятельности (ОБЖ) как науки, её цели. Классификация и характеристика опасностей. Определение приемлемого риска и системы безопасности.

    презентация , добавлен 17.12.2014

    Три основные задачи Безопасности жизнедеятельности. Воздействие среды жизнедеятельности на здоровье человека. Причины производственного травматизма и профессиональных заболеваний. Нормативная и техническая документация, регламентирующая условия труда.

    контрольная работа , добавлен 02.05.2013

    Химически опасные объекты и аварии на них. Очаг и зона химического заражения. Безопасность на ХОО и предупреждение аварий. Организация ликвидаций химически опасных аварий. Токсичность химически опасных веществ и их воздействие на организм человека.

Как отмечалось выше, под понятием индивидуального риска (Ш) понимают вероятность поражения отдельного человека в течение определенного периода времени в результате воздействия исследуемых факторов опасности при реализации неблагоприятного случайного события с учетом вероятности ее пребывания в зоне поражения.

С математической точки зрения индивидуальный риск определяется как произведение вероятности гибели человека, находящегося в данном регионе, от возможных источников опасности и вероятности ее пребывания в зоне поражения.

Индивидуальный риск рассматривают как основное понятие, во-первых, в связи с приоритетностью человеческой жизни как высшей ценности, во-вторых, в связи с тем, что именно индивидуальный риск может быть оценен с большими выборками с достаточным уровнем достоверности, что дает возможность определить другие важные категории риска во время анализа опасностей и устанавливать приемлемые и неприемлемые уровни риска.

В общем случае количественно индивидуальный риск выражается отношением числа пострадавших людей из определенной причины к общему числу людей, рискующих за определенный период времени (апостериорное определение).

Английские ученые предложили при определении индивидуального риска вместо критерия "гибель человека" использовать критерий "получение человеком того или иного степени поражения".

Например, можно определить такое значение интенсивности того или иного фактора поражения, за действия которого значительное количество людей получит серьезные повреждения, которые потребуют длительного лечения; возможны смертельные случаи для небольшого количества людей с повышенной чувствительностью к воздействиям факторов поражения. Конкретное значение интенсивности того или иного фактора поражения названное "опасной дозой", т.е. дозой, которая может повлечь смерть человека, однако это происходит не обязательно, поскольку люди в зависимости от возраста, пола, состояния здоровья и т.п. имеют разные восприимчивость и сопротивляемость организма. В этом случае под индивидуальным риском понимают частоту воздействия "опасной дозы" на конкретного человека в определенном месте.

Во время расчета распределения риска по территории вокруг объекта (картирование риска) индивидуальный риск определяется потенциальным территориальным риском и вероятностью нахождения человека в районе возможного действия опасных факторов.

В общем случае индивидуальный риск от некоторой опасности, рассчитывается для определенной территории исследования, характеризуются вероятностью гибели отдельного лица из населения за период времени 1 год. Так, если имеется достаточно статистических данных, оценку индивидуального риска (Ш) можно получить по формуле

где п - количество смертей за год по определенной причине; N - численность населения на исследуемой территории в оцениваемом году.

В практической деятельности этот вид расчета риска является наиболее распространенным. В общем случае в зависимости от задач анализа п можно понимать как общее число пострадавших, так и число смертельно травмированных или другой показатель тяжести последствий.

Трактовать понятие индивидуальный риск с учетом конкретных видов деятельности и статистических данных о несчастных (смертельных) случаев за определенный период времени, возникшие в результате этой деятельности. Например, если специалисты определили, что индивидуальный риск для пассажиров гражданской авиации составляет 1*10 -5 (1/год), то в статистическом плане это означает, что следует ожидать один смертельный случай в результате несчастного случая, связанного с отказом самолета, на 100 тысяч пассажиров за год.

В любом районе, где проживает население, независимо от наличия или отсутствия каких-либо техногенных объектов всегда существует некоторая вероятность того, что человек погибнет в результате несчастного случая в быту, преступного нападения или другой неестественной события. Среднегодовое значение риска для конкретного человека зависит от источников опасности и времени их воздействия.

В большинстве стран мира статистические данные о индивидуальные или коллективные риски от различных несчастных случаев систематически собираются и публикуются.

Значение индивидуального риска разделены на 3 категории: 1-бытовые риски (риски, которым подвергается каждый житель страны независимо от профессии и образа жизни); 2 - професйні риски (риски, связанные с профессией человека); 3 - добровольные риски (риски, которые касаются личной жизни, в частности непрофессиональные занятия альпинизмом, прыжки с парашютом и т.д.); добровольные риски можно рассматривать как собственные интересы и плату за удовольствие. Заметим, что наибольшие риски в категории 1 связаны с болезнями, за ними следуют несчастные случаи; в категории 2 - работа на морских платформах при разработке месторождений континентального шельфа; в категории 3 - занятия альпинизмом.

Профессиональные риски реализуются в условиях нарушения технологического режима на ПОО, на которых оборудование достигло предела износа, вследствие ошибок персонала и т.д. Любая технология несет определенный риск как для человека, так и для окружающей среды. Однако человек может выбрать, работать в условиях повышенного риска, или найти себе другую работу.

Аналогично бытовые риски также являются добровольными. Определены индивидуальные риски несчастных случаев, убийств, самоубийств, отравлений, заболеваний, потери трудоспособности в Украине. Так, индивидуальный риск смертности от несчастных случаев, связанных с транспортными средствами, по состоянию на 2005 г. составлял 2,06-10 -4 , а риск смертности группы вследствие различных отравлений, в том числе алкоголем - 2,83 10- 4 , риск самоубийств - 2,25 10 -4 , риск погибнуть от огня и пламени - 5,8 10- 5 . Как видим, риск смертности населения от несчастных случаев в быту очень высокий. Особое беспокойство вызывает риск смертности вследствие различных отравлений и самоубийств, поскольку они имеют наибольшие значения среди других причин несчастных случаев.

Индивидуальный риск во многом определяется квалификацией и готовностью индивидуума к действиям в опасной ситуации, его защищенностью. Индивидуальный риск, как правило, следует определять не для каждого человека, а для групп людей, которые примерно одинаковое время находятся в различных опасных зонах и имеют одинаковые средства защиты. Рекомендуется оценивать индивидуальный риск для персонала объекта и населения прилегающей территории.

Если оценивается риск для какой-либо группы людей определенной профессии или специального рода деятельности, которая связана с повышенной опасностью, этот риск целесообразно определить в пересчете на конкретный рабочее время (на один час работы или один технологический цикл).

Оценим зоны индивидуального риска для потенциально опасного объекта и транспортной магистрали по которой осуществляется перевозка опасных грузов.

Индивидуальный риск это свойство местности, исследуется, в пределах которой существует вероятность неблагоприятного события (эта вероятность создается потенциально опасным объектом),поэтому индивидуальный риск является удобной характеристикой для пространственного планирования деятельности вокруг потенциально опасного объекта, как правило он показывается контурами одинаковых значений риска вокруг объекта (рис. 5.1).

Необходимо отметить, что общепризнанных критических значений индивидуального риска для тех или иных производственных объектов нет. Выбор конкретного значения в интервале, рекомендуется различными учеными, - от 10 -8 до 5х 10 -5 зависит от особенностей производственного объекта, уровня аварийности, уровня экономического развития. Как правило, приемлемая величина недобровольного индивидуального риска равна 10 -6 (за год). Неприемлемый риск имеет вероятность реализации негативного события более 10 -3 . При значениях риска от 10 -3 до 10 -6 принято различать переходную область значений риска. Характерные значения индивидуального риска естественной и принудительной смерти людей от воздействия условий жизни и деятельности приведены ниже в табл. 6.2.

Таблица 5.2

Характерные значения индивидуального риска

Для видов деятельности, для которых существенным является количественная оценка риска может быть предложена структура оценки приемлемости риска, что показана на рис. 5.2. Устанавливается значение, выше которого риск считается абсолютно неприемлемым (верхний уровень), и значение, ниже которого риск считается абсолютно приемлемым (нижний уровень).

По сути, "лимит приемлемости риска" определяется уровнем, выше которого риск не может быть оправдан, кроме экстраординарных обстоятельств.

Рис. 5.2. Структура оценки приемлемости риска

Однако, всегда необходимо стараться улучшить этот верхний лимит и, по крайней мере, во многих обстоятельствах мочь его достичь. Ниже этот лимит приемлемости риск может допускаться только в ответ на преимущества, которые связываются с деятельностью, которая рассматривается, но только если выполняется требование ALARA (as low as risk acheivable) - до такой степени, насколько это практически целесообразно достичь. Срок целесообразно практически предполагает, что необходимо выполнить некоторые вычисления в плоскости, что связывает риск с возможными последствиями опасности. С совершенствованием практик управления риском и уменьшением риска может быть достигнута точка, в которой стоимость, связанная с дальнейшим снижением риска, будет достаточно высокой, чтобы оправдать дальнейшие преимущества снижение риска. Соответственно, "цель риска" определяется уровнем, ниже которого риск считается широко приемлемым. Как только продемонстрирована соответствие с этим целевым уровнем риска, нужно ожидать, что законодательные.

Существует уровень риска, который можно считать настолько малым, что им можно пренебречь. Если риск от какого объекта не превышает такого уровня, нет смысла принимать дальнейших мер по повышению безопасности, поскольку это требует значительных затрат, а люди и окружающая среда через действие других факторов все равно будут подвергаться почти предыдущем риска. С другой стороны, является уровень максимального приемлемого риска, который нельзя превосходить, которые бы не были расходы. Между двумя этими уровнями лежит область, в которой и нужно уменьшать риск, отыскивая компромисс между социальной выгодой и финансовыми убытками, связанными с повышением безопасности.

Социальный риск определяется количеством потерь (например, погибших среди населения), что, как правило, вычисляется статистически. Он во многих случаях является синонимом коллективного риска. Характеристика социального риска обычно показывается как F N - диаграмма (частота - количество потерь, английском versus Frequency Number of Fatalities): последствия чрезвычайной ситуации (например, в результате аварии) для реципиентов риска (например, для населения) в пределах определенной территории описываются функциональной зависимостью прогнозируемой частоты от величины потерь при ЧС (аварии). F N - диаграмма (еще используется название F N - кривая) является дискретным аналогом этой зависимости, она широко используется при анализе риска и опасностей. F N - диаграмма в случае, если количество данных и диапазон их изменений очень большой, конечно строится в логарифмическом масштабе. На этих диаграммах накопленная (комуля-тивна) частота различных последствий сценария НС (результатов аварий) отображается как функция последствий в виде числа летальных исходов или других видов ущерба от бедствия. Она может быть апрок-симована кривой-графиком непрерывной функции.

таким образом определяется предельная кривая частоты НС (нежелательных последствий), которая может использоваться, прежде всего, для сравнения опасностей и как исходные данные проектировщиками и специалистами по безопасности. Считается, что кривая отделяет верхнюю область недопустимо большого риска от области приемлемого риска, расположенной ниже и влево от кривой. Кривую, таким образом, можно использовать как критерий безопасности, что определяет верхнюю границу допустимой вероятности. Если это условие выполняется, основная цель достигнута. Для определения данных характеристик необходима реальная статистика НС.

Поскольку границы оправданного риска, как правило, трудно рационально обосновать, при решении расчетных или эксплуатационных технических задач следует использовать сравнение с риском в аналогичных ситуациях. При этом в анализе следует принимать во внимание благоприятный случай. Установленный таким образом крайне неблагоприятный случай угрозы нужно сравнить по частоте и величине с аналогичными рисками, что уже ранее имели место. При этом необходимо учитывать, что на частоту влияют как пространственная, так и временная протяженность данных явлений. Кроме того, нужно учитывать продолжительность каждого события и степень стабильности начальных параметров.

Из таблицы 5.3-5.5 видно, что риск летального исхода существует на уровне 10 -7 и выше на человека в год. Таким образом, при проектировании и эксплуатации технических устройств риск на уровне 10 -7 чел/ год может быть принят допустимым при выполнении следующих условий:

Проблема риска проанализирована глубоко и всесторонне;

Анализ проведен до принятия решений и подтверждено имеющимися данными в определенном временном интервале;

После наступления неблагоприятного события анализ и заключение о риске, полученные на основании данных, которые были, не меняются;

Анализ показывает, и результаты контроля все время подтверждают, что угроза не может быть уменьшена цене оправданных расходов.

Принятую оценку допустимого риска и указаны условия нужно выполнять строго и рассматривать как первый шаг к количественного сравнения. При необходимости в дальнейшем, когда будет накоплено больше опыта, эта оценка может быть изменена. Установленную оценку допустимого риска можно воспринимать как оправданную границу; она должна служить лишь основой относительной шкалы рисков, которые принимаются.

Таблица 5.3

Вероятность летального исхода с внепроизводственных причин

Таблица 5.4

Вероятность летального исхода из производственных причин

Продолжение табл. 5.4

Сформулированы положения подтверждают также, что нецелесообразно задавать детерминированную предел риска. Наоборот, более приемлемыми параметрами представляются вероятность р, что отделяет оправданный риск от условно оправданного, и вероятность р и, что отделяет условно оправдан риск, то есть соответствующий определенным условиям, от неоправданного. К условиям, при которых летальный риск р э в диапазоне р и <р э <р и может быть допущен, относятся указанные выше четыре требования к анализу риска. Эти требования должна соблюдать ухвалююча решение лицо, всегда сравнивая риск, что меняется, например, с повышением максимально допустимой эффективности, исключением неблагоприятных ситуаций и т.п. Для летального риска принимают значение оправданного р=10 8 и, с большим безопасным промежутком, неоправданного р и =10~ 5 на человека в год.

Если речь идет исключительно о риск материальных потерь, метод сравнения при оценке риска не вызывает сомнений. В этом случае можно принимать решение, оценивая только экономический эффект.

Сущность нормирования, регулирования и управления обеспечением безопасности при ее основными компонентами (социально-экономическим, военным, научно-техническим, промышленным, экологическим, демографическим) с использованием рисков сводится к требования не превышения величин рисков Я(ґ), которые формируются и реализуются, по выражениям (1) - (5) величин приемлемых рисков на заданном временном интервале £

ч < №)]. (6)

Величина устанавливается и назначается органами высшего государственного управления с учетом возможностей и потенциала страны, уровня научных обгрунтовувань отечественного и мирового опыта.

Реализация требования (6) будет осуществляться, исходя из того, что определяющими рисками Я(ґ) есть две группы рисков:

индивидуальные риски (чел./год) потери жизни и здоровья человека от указанных выше возможных неблагоприятных процессов и явлений;

экономические риски (грн./ч) от неблагоприятных процессов и явлений, учитывающие уязвимость социальной (Л), естественной (5) и техногенной (Т) сфер по выражениям (1) - (4).

В экономические риски Я(ґ) включаются экономические убытки от потери жизни и здоровья людей, от поражения окружающей природной среды и технической инфраструктуры.

Для анализа риска необходимо сформулировать шкалу приемлемых граничных Я с (ґ) рисков и тех, которыми пренебрегают, а также методику оценки стоимости и убытков от потери человеческих жизней.

Научное обоснование приемлемых рисков заключается в разработке методологии определения предельных (недопустимых) рисков Я с (ґ) іпризначення запасов п г для этих рисках в форме:

ик {и)] = ^ . (7)

Для количественной оценки величин рисков Я^) могут использоваться все основные выражения (1) - (5), а величины запасов п к должны быть больше единицы п > 1). Учитывая передовой отечественный и зарубежный опыт, диапазон изменения этих запасов на первых стадиях может быть достаточно широким (2< n R <10).

Идентифицированы количественные критерии риска фатальности приведены ниже в табл. 5.6 (полученные из разных источников). Представленные значения касаются индивидуального риска, однако критерии социального риска также могут быть предложены для использования в некоторых обстоятельствах. Обращает на себя внимание, что стандарты риска, которые предлагаются EPA (Агентство по охране окружающей среды США), является низким в сравнении с рядом других регулятивных нормативов. Принимая во внимание более высокий лимит терпимого риска для работающих в сравнении с тем же для общественности, надлежащим образом ставить ударение, что не берется во внимание то, что стоимость жизни работающего меньше, чем жизнь члена общества. Исторически сложилось так, что для работающих устанавливаются более высокие допустимые риски из-за того, что их сложнее контролировать. Например, работающий с излучениями гораздо ближе к источнику и больше испытывает радиационных опасностей, чем представители общественности, поэтому он неизбежно подвергается более высокому риску последствий воздействия радиации.

Таблица 5.6

Критерии индивидуального риска

Вид риска

Великобритания

Максимальный допустимый индивидуальный риск работника

1 на 1000 человек.

Допустимый риск для тех кто работает с излучением.

от 1 на 4000 ідоіна 20000 человек.

Максимальный допустимый общественный индивидуальный риск

1 на 10000 человек за год

Эталон для нового объекта и разработки

1 на 100000 человек.

Нидерланды

Максимальный допустимый общественный индивидуальный риск для существующих ситуаций

1 на 100000 человек.

Максимальный допустимый общественный индивидуальный риск для нового развития

1 на 1000000 человек.

Продолжение табл. 5.6

Вид риска

Величина риска (усредненная за год)

Максимальный допустимый общественный индивидуальный риск вокруг аэропортов, выше которого требуется переселение.

1 на 20000 человек.

Широко прийнеятний общественный индивидуальный риск

1 на 1000000 человек.

Австралия

Приемлемый риск общественности в жилых зонах, далеко от опасного производства

1 на 1000000 человек.

Приемлемый полный риск внутри опасных индустриальных зон

1 на 10000 человек.

Гонг Конг

Максимальный риск смерти от несчастного случая на опасных установках

1 на 100000 человек.

Основа для лимитов дозы

Приемлемый риск человека, который работает с излучением

1 на 10000 человек.

Приемлемой общественный риск

от 1 на 1000000 чел. до 1 в 100000 человек

Предыдущие нормативы регулирования в США

Декларируемый уровень

4 на 1000 человек, в течение жизни (117500)

Минимальный уровень

1 на миллион человек, в течение жизни (1 на 70000000)

Эксплуатация гражданских энергетических установок

Риск мгновенной фатальности от события на реакторе

1 на 2 млн. лиц.

Индивидуальный риск скрытой фатальности

2 на 1 млн. человек.

Стандарты ЭРА

Риск развития онкологического заболевания для индивида.

10 -6 , в течение жизни (1 на 70000000)

Уровень, при котором повторное воздействие в целом оправдывается.

10 -4 , в течение жизни (1 на 700000)

Хотя выявлены количественные критерии риска для жизни (фатальности) находятся в широком диапазоне числовых значений, некоторые важные моменты могут быть выделены, как указано ниже:

Уровне риска в повседневной жизни является основным эталоном, на который широко ссылаются специалисты регулирования при введении стандартов риска;

События, в результате которых один несчастный случай со смертельным выходом происходит с частотой 10 -6 (1 на млн. чел.), обычно в обществе не замечается, а события с частотой летального исхода 10 -3 расцениваются как несчастные случаи;

эффективный декларируемый уровень индивидуального риска, при котором принимается регулятивная действие по уменьшению общественного риска, может быть идентифицирован в диапазоне 10 -4 ... 5>10 -5 год;

эффективный минимальный уровень индивидуального риска, при котором никогда не принимается регулятивная действие по уменьшению общественного риска, может быть идентифицирован величиной 10 -7 (1 на 10 млн. чел. за год);

эффективный декларируемый уровень может влиять количество населения, находящегося под экспозицией данной опасности, и ряд других факторов, поэтому в некоторых обстоятельствах регулятивная действие может применяться тогда, когда риск ниже, чем 10 -4 ... 5><10 -5 год;

Приемлемый уровень риска для работающих конечно немного выше, чем риск для общественности, он иногда возможен при величине до 10 -3 за год;

Стандарты (нормативы) для новой разработки и эксплуатационной практики обычно устанавливаются несколько выше, чем для существующих ситуаций и вмешательств, принимая во внимание относительную осуществимость снижения риска в этих разных обстоятельствах.

При разработке проектов создания объектов, потенциально опасных для населения, уровень риска целесообразно сравнивать с минимальным уровнем фонового риска на всех уровнях, поскольку недопустимо создавать какой-либо объект лишь на том основании, что уровень риска в данном случае ниже регионального, тогда как он значительно превышает национальный уровень.

Для территории стран бывшего СССР уровень риска (смерть от неестественных причин) близок к 10 -3 /год -1 , что на 3-5 порядков выше нормативный уровень, установленный в странах ЕС. Очевидно, что ориентироваться на этот фоновый уровень не следует. Представляется целесообразным выделить несколько уровней, на которых может быть оценен фоновый риск: мировой, национальный (уровень страны), региональный.

Согласно современным представлениям, мероприятия по обеспечению безопасности людей планируются исходя из предположения о том, что в случае смерти человека экономический ущерб составит сумму, равную экономическом эквивалента человеческой жизни. Фундаментальные исследования этой проблемы следует осуществлять для основного критерия управления риском с использованием показателя стоимости продления жизни. Если на предыдущих стадиях анализа определено, что уровень риска для ряда районов региона превышает допустимые значения, то могут быть проведены оценки социальной значимости риска для населения в терминах суммарного экономического ущерба от гибели, травматизма людей и материальных потерь в результате чрезвычайной ситуации. Экономический эквивалент социального ущерба нелинейно связан со степенью риска. В связи с отмеченным выше положением, для расчета экономического ущерба как реально существующий уровень фонового риска рекомендуется принимать значение 10 -5 /год.

Стандарты (нормативы) для новой разработки и эксплуатационной практики необходимо устанавливать немного выше, чем для существующих ситуаций и вмешательств, принимая во внимание относительную осуществимость снижения риска в этих разных обстоятельствах.

Декларация российского научного общества анализа риска об установлении предельно-допустимого уровня риска даёт полный ответ на вопросы нашей темы:

1. Современный этап развития мирового сообщества характеризуется ростом угроз различной природы, поэтому обеспечение безопасности личности, общества и государства в различных сферах жизнедеятельности является приоритетной задачей государственной политики, научно-практической и общественной деятельности.

2. Уровень безопасности зависит от уровня защищенности личности, общества и государства от угроз, имеющих различную природу (экономическую, политическую, социальную, техногенную и пр.). Наибольшую обеспокоенность вызывают опасности стихийных бедствий и техногенных катастроф, связанных с потенциально опасными промышленными объектами.

3. Международный опыт показывает, что для принятия обоснованных решений в сфере обеспечения безопасности населения, государства, окружающей природной среды используются показатели риска. Под риском понимается количественная мера реализации случайных событий с нежелательными (негативными) последствиями.

4. Обеспечение требуемого уровня безопасности непосредственно связано с достижением приемлемого уровня риска, конкретное значение которого определяется глубиной научных знаний, уровнем социально-экономического и технологического развития страны, развитостью культуры безопасности, национальным менталитетом и рядом других факторов.

5. Обоснование приемлемого уровня осуществляется на основе анализа риска и применения эффективных механизмов управления риском. Анализ риска - процесс идентификации опасностей, определение условий и форм их реализации, а также количественная оценка показателей риска для отдельных лиц или групп населения, имущества или окружающей среды. Управление риском - системный подход к использованию различных механизмов (законодательных, организационных, экономических, инженерно-технических) в решении задач предупреждения или уменьшения опасности для здоровья и жизни человек ущерба имуществу и окружающей среде до приемлемого уровня.

6. Целью Российского научного общества анализа риска (далее Общество) является подготовка обоснованных предложений в сфере обеспечения безопасности населения и окружающей природной среды путем объединения усилий всех заинтересованных сторон. Основные составляющие достижения этой цели - эффективное национальное законодательство, основанное на Конституции Российской Федерации и установление предельных уровней риска, регулирующее опасное воздействие на человека и окружающую среду. В качестве первого шага Общество заявляет о необходимости введения нормативов предельно допустимых уровней риска, связанного с воздействием потенциально опасных промышленных объектов.

7. Исходя из уровня социально-экономического развития Российской Федерации и на основании существующего мирового опыта, Общество предлагает установить нормативы предельно-допустимого уровня индивидуального риска (ПДУ) смерти, а также уровня социального (коллективного) риска. Предлагаемые Обществом нормативы носят рекомендательный и целевой характер, отражают специфику промышленного объекта (эксплуатируемые, вновь вводимые), а также характер опасного воздействия.

8. Для потенциально опасных производственных объектов России в целом целесообразно установление ПДУ индивидуального риска в диапазоне 10 -4 - 10 -5 в год в качестве общего федерального норматива.

9. Указанный норматив должен быть дифференцирован в зависимости от специфики промышленных объектов - источников опасности, и характеру их опасного воздействия на население. Эта дифференциация отражает следующие показатели ПДУ индивидуального риска смерти, являющиеся частными федеральными нормативами:

по критерию новизны промышленного объекта (за исключением специальных объектов):

Не более 10 -4 в год - для действующих объектов

Не более 10 -5 в год - для новых (вновь проектируемых) объектов

по критерию комбинированности опасного воздействия:

Не более 10 -5 в год - для систематического воздействия вредных факторов на здоровье населения (при этом показатель не более 10 -7 в год является нормативной величиной пренебрежимого уровня риска);

Не более 10 -4 в год - для совместного (комбинированного) систематического воздействия различных вредных факторов на здоровье населения (при этом показатель не более 10 -6 в год является нормативной величиной пренебрежимого уровня риска).

10. Нормативную величину предельно допустимого социального риска смерти (гибели) целесообразно установить на уровне 10 -4 случаев в год при максимальном числе жертв равном десяти. При этом показатель не более 10 -6 в год (при том же максимальном числе жертв) является нормативной величиной пренебрежимого уровня социального риска. Наклон нормативных кривых социального риска соответствует 100 кратному уменьшению частоты для кратного увеличения числа жертв.

Предельно-допустимые уровни риска, термины и определения. Риск - возможность реализации случайных событий с негативными (нежелательными) последствиями. Как количественная мера, риск есть функция двух переменных - частоты и последствий нежелательного события: Риск = f (F, C), где F - частота; C - последствия. В частном случае, когда последствие конкретно и измеряется по типу "Да - Нет", "Происходит - Не происходит" (например, жизнь-смерть), тогда риск становится функцией одной переменной, а именно - частоты (F ) нежелательного события: Риск = f (F).

Общий показатель риска дополняется набором вторичных или производных от него показателей, которые вводятся для измерения риска определенных воздействий (радиационных, химических, электромагнитных и др.), определенных последствий (смертные случаи, ущерб для здоровья, повреждение имущества и др.) или для определенных объектов, подлежащих обеспечению безопасности (индивидуум, группы людей, растительный и животный мир, здания и сооружения и др.).

Нормированию часто подлежат именно вторичные показатели. В качестве примера, можно выделить два вторичных наиболее употребительных нормативных показателей риска. Индивидуальный риск представляет собой частоту, с которой индивид может понести определенный ущерб. Обычно показатель индивидуального риска используется для сравнительной оценки риска для населения, живущего вблизи и на определенном отдалении от предприятия - источника риска. Социальный риск представляет собой соотношение между частотой возникновения ущерба более определенной величины и размером ущерба, например, общей численностью погибших или пострадавших людей. Индивидуальный риск от систематического воздействия- риск, создаваемых для населения из-за долговременных поступлений загрязнителей в окружающую среду и постоянного "беспoрoгoвoгo" воздействия загрязняющих веществ на здоровье населения. Индивидуальный риск от совместного воздействия различных факторов - риск смерти для людей в результате совместного действия загрязняющих веществ, радиационного облучения и других факторов. Анализ риска - процесс идентификации опасностей, определение условий и форм их реализации, а также количественная оценка показателей риска для отдельных лиц или групп населения, имущества или окружающей среды. Управление риском - системный подход к использованию различных механизмов (законодательных, организационных, экономических, инженерно-технических) в решении задач предупреждения или уменьшения опасности для жизни человека, заболеваний или травм, ущерба имуществу и окружающей среде до приемлемого уровня.На государственном уровне методология анализа и управления риском, основанная на концепции приемлемого риска , впервые была принята в Нидерландах. Она является тем научным фундаментом, на котором строится практическая деятельность по повышению экологической безопасности территорий и населения, проживающего в районах, насыщенных промышленными объектами, главным образом химической индустрии, газо- и нефтеперерабатывающих заводов.

Голландский подход в последнее время получил широкое распространение в зарубежной практической деятельности по обеспечению безопасности и управлению риском. Согласно этому подходу весь "спектр" значений риска (индивидуального и социального) разбивают на три области в соответствии с так называемым принципом "светофора":

Недопустимого (чрезмерного) риска - "КРАСНАЯ" область;

Приемлемого риска - "ЖЕЛТАЯ" область;

Пренебрежимого риска - "ЗЕЛЕНАЯ" область.

Если при оценке риска установлено, что его величина находится в зоне "неприемлемого" риска, то владельцы предприятия должны принять серьезные меры по снижения риска до приемлемого уровня. Если при оценке риска установлено, что величина риска находится "между двумя линиями", разграничивающими зоны приемлемого и неприемлемого риска, то владельцы предприятия должны принять для снижения риска такие меры, которые считаются разумными с практической точки зрения. Под этим подразумевается, что реализация этих мер не должна требовать неоправданно высоких затрат или неоправданно больших усилий. Это так называемый принцип ALARA (ALARP) (aslowas reasonably applicable/practicable) - подход к управлению риском, который подразумевает его максимально возможное снижение, достигаемое за счет реально имеющихся (ограниченных) ресурсов (см таб. 20 ).

Таким образом, основой используемого в зарубежной практике нормативного подхода является введение понятия «недопустимого» (или «чрезмерного») уровня риска. Введение области «недопустимого» (или «чрезмерного») риска изначально было основано на формулировке понятия о максимально или предельно допустимом уровне (ПДУ) риска для индивидуума. ПДУ риска должен быть достаточно низким, чтобы это не вызывало какого-либо беспокойства индивидуума. Соответственно, установление конкретного численного значения для ПДУ – это, в первую очередь, социальная проблема, решение которой входит в компетенцию социальных наук и политики. Естественно, что ее решение основывается на стремлении установить конкретное численное значение для величины ПДУ на таком низком уровне, какой технически достижим. Однако при этом учитывается, что такое стремление, как показывают практика и расчеты, связано с очень большими экономическими затратами на снижение риска, которые в конечном итоге, как правило, ведут к нерентабельности самой хозяйственной деятельности.

Таким образом, выделяются три области риска:

Область чрезмерного риска : любая деятельность, характеризующаяся для какого-либо индивидуума уровнем риска из этой области, недопустима, если даже она выгодна для общества в целом;

Область пренебрежимого риска : любая деятельность с уровнем риска из этой области не контролируется регулирующим органом;

Область приемлемого риска ; любая деятельность с уровнем риска из этой области является объектом контроля для регулирующего органа. Уровень риска, приемлемый для той или иной деятельности, определяется, исходя из экономических и социальных аспектов в соответствии с принципами управления риском.

Так как проблема установления конкретных численных значений для предельно допустимого (максимального) и пренебрежимого уровней риска является в большей мере политической и социально-экономической, то ее решение во многом зависит от социально-экономических условий, характеризующих социально-экономическую систему. Как следствие этого, численные значения (критерии) для этих уровней риска, принятые или предлагаемые в практической деятельности различными национальными организациями, отличаются от страны к стране. Сравнительный анализ критериев риска, используемых в Великобритании, Нидерландах, Венгрии и Чешской Республике, представлен в таб. 20 . Таблица 20 .

Допустимые значения риска .

Исходя из того, что обусловленная опасностью смерть является исключительно недопустимым событием, под индивидуальным риском, как правило, понимают риск смерти для индивидуума.

Например, в Нидерландах на законодательном уровне для ПДУ индивидуального риска, обусловленного хозяйственной деятельностью, принято значение риска смерти, равное 10 -6 в год. Это решение было принято исходя из следующих положений. За основу был принят риск смерти индивидуума в возрасте 10-15 лет, который согласно статистическим данным по возрастной смертности составляет примерно 10 -4 в год и является минимальным на протяжении всей его жизни. Отметим для сравнения, что максимальный риск смерти для человека соответствует первому году его жизни и равен 2 ´ 10 -2 в год. В Нидерландах, основываясь на этих данных, для ПДУ индивидуального риска принято значение, которое составляет 1 % от риска смерти в возрастном интервале от 10 до 15 лет, т. е. 10 -6 в год. Что же касается численного значения для пренебрежимого риска, то в настоящее время преобладает точка зрения, согласно которой риск смерти для индивидуума менее 10 -8 в год можно рассматривать как пренебрежимый.

В Нидерландах такое значение для уровня пренебрежимого риска обосновывается из условия, что его показатель должен составлять 1 % от принятого в стране значения для ПДУ индивидуального риска. Во многих других экономически развитых странах был использован стандарт, введенный в Нидерландах, который применяется в практике лицензирования потенциально опасных объектов. Этот стандарт задает максимально приемлемые уровни индивидуального техногенного риска для населения, проживающего в регионе размещения этих объектов, в частности, в Чешской Республике.

Необходимо также отметить, что основой регулирования безопасности в Великобритании является Закон об охране здоровья и обеспечении безопасности на производстве. Он требует от работодателя гарантий и доказательств того, что риск для персонала, занятого неполный рабочий день, и населения находится на уровне настолько низком, насколько это практически достижимо (ALARP). Совет по здоровью и безопасности (HSE) публикует время от времени уровни риска, которые рассматриваются как неприемлемые или приемлемые при определенных обстоятельствах. Поскольку эти уровни риска охватывают все виды производств Великобритании, главным инструментом для контроля риска является изменение показателей уровня ALARP.

Как видно из таблицы (таб.19, Приложения), в Европе индивидуальный годовой риск на уровне 10 -5 является верхним пределом для существующих установок. В то же время, в Великобритании недопустимый уровень составляет 10 -4 в год, но применение подхода ALARP строго обязательно, что приводит к тому, что в действительности уровень риска значительно ниже предельного значения. Верхний предел для индивидуального риска для новых установок в Чешской Республике и в Нидерландах после 2010 года установлен на уровне 10 -6 в год.Необходимо также отметить, что индивидуальный риск в руководящих принципах Планирования землепользования (LUP) в Великобритании может быть приведен к индивидуальному риску смерти 3х10 -6 в год. Незначительный (пренебрежимый) уровень риска, определенный в Великобритании равным 10 -7 в год, не подвергается сомнению, и предполагается, что в настоящее время это значение может быть принято всеми странами ЕС.

Введение пределов (критериев) социального риска в Великобритании может быть отнесено к концу 1970-ых годов. Консультативный комитет по крупномасштабным опасностям в 1976 году сформулировал предположение о том, что крупная авария на отдельной промышленной установке может произойти не чаще чем один раз

в 10 000 лет, что могло считаться границей приемлемости риска. Это значение часто принималось как отправная точка на F-N кривой, для которой частота аварии, приводящей к 10 или более смертным случаям не должна превышать значения 1 на 10 000 в год. Во втором отчете Canvey было принято, что событие с 1 500 смертными случаями и частотой 2x10 -4 в год следует считать недопустимым риском. Предложенный наклон F-N кривой, равный -1 (нет неприятия риска), был выбран на основе исторического опыта химической промышленности.

В 1991 году был определен верхний максимально допустимый риск с наклоном -1, проходящий через точку с N = 500 и F = 2x10 -4 в год. В 2001 году предложено, чтобы риск единичной аварии, приводящей к 50 и более смертным случаям с частотой 1 на 5 000 в год, мог рассматриваться как недопустимый. Область общественно приемлемого уровня риска предложена на уровне нижней границы со смещением на три порядка по отношению к верхней линии допустимого уровня риска. Указанная эволюция верхнего - максимально допустимого уровня риска за более чем двадцатилетний период, четко демонстрирует снижение максимально допустимого уровня риска.

В Нидерландах Постановление по требованиям к качеству окружающей среды, определяющее безопасность за пределами объекта, не устанавливает норму социального риска. Поэтому "для оценки безопасности вне объекта было принято решение использовать значения социального риска в качестве ориентировочных неофициальных стандартов".Следует обратить внимание на то, что старый LUP-критерий в Великобритании и старые и новые критерии в Нидерландах фактически совпадают, в то время как критерий, используемый в Чехии для оценки риска для новых сооружений на порядок ниже. Близко значение и критерия британского руководства по обеспечению безопасности при крупных авариях (COMAH).

Для рисков, создаваемых для населения из-за долговременных поступлений загрязнителей в окружающую среду и постоянного "беспoрoгoвoгo" воздействия загрязняющих веществ на здоровье населения, в Нидерландах были установлены пределы индивидуального риска, не зависимые от возраста населения.

Отметим, что голландский подход хорошо согласуется с американской практикой управления пожизненным канцерогенным риском. Введенный нормативный уровень пренебрежимого риска коррелирует с используемым уровнем "deminimis", составляющим 10 -6 за жизнь, что примерно соответствует индивидуальному риску смерти 10 -8 в год. Предельно допустимый риск смерти для людей в результате совместного действия загрязняющих веществ, радиационного облучения и других факторов в Нидерландах установлен таким, что полный риск смерти от всех видов воздействия не должен превышать 10 -5 в год. В то же время риск смерти от каждого из видов воздействия не должен превышать 10 -6 в год. Сравнимые значения были установлены для рисков заболеваний и рисков негативных последствий, вызываемых шумом или неприятными запахами.

Под "смертностью от неестественных причин" понимается смертность, обусловленная не болезнями, а различными внешними воздействиями - умышленными (убийства и самоубийства) или неумышленными (всякого рода несчастные случаи) (таб. 21 ).

Уровнем опасности можно управлять. Для этого введено понятие риска.

Риск – это количественная мера опасности или частота реализации опас­ности, вероятность возникновения одного события при наступлении другого. Риск это безразмерная величина от 0 до 1.

R=п/N, (2.1)

где R – риск;

п – количество неблагоприятных последствий за год;

N – максимально возможное число неблагоприятных последствий за год.

Принято различать риск индивидуальный и общий.

Индивидуальный риск – это ожидаемое значение ущерба человеку за ин­тервал времени Г и отнесённое к группе людей численностью М человек.

Индивидуальный риск характеризует опасность определённого вида для отдельного индивидуума. Его можно рассчитать по формуле

где Т – период времени, лет:

У ожидаемое значение ущерба;

М – численность групп людей, чел.

Общий риск – это риск для группы людей или, иными словами, коллек­тивный риск.

Общий риск рассчитывается по формуле

R общ =У/Т (2.3)

В табл. 2.1 приведены значения риска летальных исходов в год от дейст­вия негативных факторов.

Таблица 2.1 – Риск летальных исходов

Абсолютной безопасности в мире не существует. Сохраняется потенци­альная опасность, остаточный риск. В современном мире принята концепция приемлемого (допустимого) риска – стремление к такой малой безопасности, которую приемлет общество в данный период времени. Количественно прием­лемый риск гибели в большинстве стран равен 10 -6 .

На рис. 2.1 показан пример определения приемлемого риска. При увеличе­нии затрат на безопасность технический риск снижается, а социальный - растёт.

Рис. 2.1. Определение приемлемого риска

Производственный риск – это совершение действий, которые могут привес­ти к несчастным случаям. Риском могут быть ошибочные действия или бездея­тельность, создающие обстановку, когда произойдет авария или гибель людей.

Снижения производственного риска можно добиться совершенствовани­ем системы безопасности, подготовкой и обучением персонала, различными организационными мероприятиями, применением технических и индивидуальных мер защиты работающих, а также экономическими методами, например, льготами, компенсациями, страхованием и т.п.

Для производственных условий выделяют следующие категории опасно­сти: условно безопасная категория (R<10 -4), относительно безопасная (R от 10 -4 до 10 -3), опасная (R от 10 -3 до 10 -2), особо опасная (R>10 -2).

Одна из важнейших мер защиты от опасностей – анализ уже случившихся аварий. Методы определения риска представлены схемой на рис. 2.2.

Анализ риска, обусловленного наличием источника вредного действия, состоит из этапа оценки риска и этапа управления риском.

Этап оценки сопровождается исследованиями, в результате которых ус­танавливают, какие последствия вызывают разные дозы вредного фактора и в разных условиях. На этапе управления риском анализируют разные альтерна­тивы и выбирают наиболее подходящие.

В основе управления риском лежит методика сравнения затрат и полу­чаемых выгод от снижения риска.



Рис. 2.2 Методы определения риска

Решение. Рассчитаем риск по формуле (2.1)

R =4,35 ∙ 10 4 / 1,45-10 8 = 3∙10 4

Вывод . Риск гибели в ДТП для человека составляет 3∙10 4 .

R =8 10 3 /8 ∙10 7 = 1∙10 -4

Вывод. Риск гибели в производственной сфере для человека составляет 1∙10 -4 .



Просмотров