Как найти скорость с ускорением формула. Нормальное ускорение

Хотите провести эксперимент? Да запросто. Возьмите длинную линейку, положите ее горизонтально и приподнимите один конец. У вас получится наклонная плоскость. А теперь возьмите монетку и положите на верхний конец линейки. Монетка начнет скользить вниз по линейке, проследите, как будет двигаться монетка с одинаковой скоростью или нет.

Вы заметите, что скорость монетки будет постепенно возрастать. И изменение скорости будет напрямую зависеть от угла наклона линейки. Чем угол наклона круче, тем большую скорость будет набирать монетка к концу пути.

Изменение скорости монетки

Можно попытаться узнать, как меняется скорость монетки за каждый одинаковый промежуток времени. В случае с линейкой и монеткой в домашних условиях это трудно проделать, но в условиях лаборатории можно зафиксировать, что при постоянном угле наклона скользящая монетка за каждую секунду изменяет свою скорость на одинаковую величину.

Такое движение тела, когда его скорость за любые равные промежутки времени меняется одинаково, а тело при этом движется по прямой линии, называется в физике прямолинейным равноускоренным движением. Под скоростью в данном случае понимается скорость в каждый конкретный момент времени.

Такая скорость называется мгновенной скоростью. Мгновенная скорость тела может меняться по-разному: быстрее, медленнее, может возрастать, а может уменьшаться. Для того чтобы охарактеризовать это изменение скорости, вводят величину, называемую ускорением.

Понятие ускорения: формула

Ускорение это физическая величина, показывающая, насколько изменилась скорость тела за каждый равный промежуток времени. Если скорость меняется одинаковым образом, то ускорение будет величиной постоянной. Так происходит в случае прямолинейного равноускоренного движения. Формула для ускорения выглядит следующим образом:

a = (v - v_0)/ t,

где a ускорение, v конечная скорость, v_0 начальная скорость, t время.

Измеряется ускорение в метрах на секунду в квадрате (1 м/с2). Немного странная на первый взгляд единица очень легко объясняется: ускорение= скорость/время=(м/с)/с, откуда и выводится такая единица.

Ускорение величина векторная. Оно может быть направлена либо в ту же сторону, что и скорость, если скорость возрастает, либо в противоположную сторону, если скорость уменьшается. Пример второго варианта это торможение. Если, например, автомобиль тормозит, то скорость его уменьшается. Тогда ускорение будет являться отрицательной величиной, и направлено оно будет не по ходу движения автомобиля, а в обратную сторону.

В случаях, когда скорость у нас меняется от нуля до какой-либо величины, например, при старте ракеты, либо в случае, когда скорость наоборот уменьшается до нуля, например, при торможении поезда до полной остановки, можно использовать в расчетах только одно значение скорости. Формула тогда примет вид: a =v /t для первого случая либо же: a = v_0 /t для второго.

При прямолинейном равноускоренном движении тело

  1. двигается вдоль условной прямой линии,
  2. его скорость постепенно увеличивается или уменьшается,
  3. за равные промежутки времени скорость меняется на равную величину.

Например, автомобиль из состояния покоя начинает двигаться по прямой дороге, и до скорости, скажем, в 72 км/ч он двигается равноускоренно. Когда заданная скорость достигнута, то авто движется без изменения скорости, т. е. равномерно. При равноускоренном движении его скорость возрастала от 0 до 72 км/ч. И пусть за каждую секунду движения скорость увеличивалась на 3,6 км/ч. Тогда время равноускоренного движения авто будет равно 20 секундам. Поскольку ускорение в СИ измеряется в метрах на секунду в квадрате, то надо ускорение 3,6 км/ч за секунду перевести в соответствующие единицы измерения. Оно будет равно (3,6 * 1000 м) / (3600 с * 1 с) = 1 м/с 2 .

Допустим, через какое-то время езды с постоянной скоростью автомобиль начал тормозить, чтобы остановиться. Движение при торможении тоже было равноускоренным (за равные промежутки времени скорость уменьшалась на одинаковую величину). В данном случае вектор ускорения будет противоположен вектору скорости. Можно сказать, что ускорение отрицательно.

Итак, если начальная скорость тела нулевая, то его скорость через время в t секунд будет равно произведению ускорения на это время:

При падении тела «работает» ускорение свободного падения, и скорость тела у самой поверхности земли будет определяться по формуле:

Если известна текущая скорость тела и время, которое понадобилось, чтобы развить такую скорость из состояния покоя, то можно определить ускорение (т. е. как быстро менялась скорость), разделив скорость на время:

Однако тело могло начать равноускоренное движение не из состояния покоя, а уже обладая какой-то скоростью (или ему придали начальную скорость). Допустим, вы бросаете камень с башни вертикально вниз с приложением силы. На такое тело действует ускорение свободного падения, равное 9,8 м/с 2 . Однако ваша сила придала камню еще скорости. Таким образом, конечная скорость (в момент касания земли) будет складываться из скорости, развившийся в результате ускорения и начальной скорости. Таким образом, конечная скорость будет находиться по формуле:

Однако, если камень бросали вверх. То начальная его скорость направлена вверх, а ускорение свободного падения вниз. То есть вектора скоростей направлены в противоположные стороны. В этом случае (а также при торможении) произведение ускорения на время надо вычитать из начальной скорости:

Получим из этих формул формулы ускорения. В случае ускорения:

at = v – v 0
a = (v – v 0)/t

В случае торможения:

at = v 0 – v
a = (v 0 – v)/t

В случае, когда тело равноускоренно останавливается, то в момент остановки его скорость равна 0. Тогда формула сокращается до такого вида:

Зная начальную скорость тела и ускорение торможения, определяется время, через которое тело остановится:

Теперь выведем формулы для пути, которое тело проходит при прямолинейном равноускоренном движении . Графиком зависимость скорости от времени при прямолинейном равномерном движении является отрезок, параллельный оси времени (обычно берется ось x). Путь при этом вычисляется как площадь прямоугольника под отрезком. То есть умножением скорости на время (s = vt). При прямолинейном равноускоренном движении графиком является прямая, но не параллельная оси времени. Эта прямая либо возрастает в случае ускорения, либо убывает в случае торможения. Однако путь также определяется как площадь фигуры под графиком.

При прямолинейном равноускоренном движении эта фигура представляет собой трапецию. Ее основаниями являются отрезок на оси y (скорость) и отрезок, соединяющий точку конца графика с ее проекцией на ось x. Боковыми сторонами являются сам график зависимости скорости от времени и его проекция на ось x (ось времени). Проекция на ось x - это не только боковая сторона, но еще и высота трапеции, т. к. перпендикулярна его основаниям.

Как известно, площадь трапеции равна полусумме оснований на высоту. Длина первого основания равна начальной скорости (v 0), длина второго основания равна конечной скорости (v), высота равна времени. Таким образом получаем:

s = ½ * (v 0 + v) * t

Выше была дана формула зависимости конечной скорости от начальной и ускорения (v = v 0 + at). Поэтому в формуле пути мы можем заменить v:

s = ½ * (v 0 + v 0 + at) * t = ½ * (2v 0 + at) * t = ½ * t * 2v 0 + ½ * t * at = v 0 t + 1/2at 2

Итак, пройденный путь определяется по формуле:

s = v 0 t + at 2 /2

(К данной формуле можно прийти, рассматривая не площадь трапеции, а суммируя площади прямоугольника и прямоугольного треугольника, на которые разбивается трапеция.)

Если тело начало двигаться равноускоренно из состояния покоя (v 0 = 0), то формула пути упрощается до s = at 2 /2.

Если вектор ускорения был противоположен скорости, то произведение at 2 /2 надо вычитать. Понятно, что при этом разность v 0 t и at 2 /2 не должна стать отрицательной. Когда она станет равной нулю, тело остановится. Будет найден путь торможения. Выше была приведена формула времени до полной остановки (t = v 0 /a). Если подставить в формулу пути значение t, то путь торможения приводится к такой формуле.

Перемеще́ние (в кинематике) - изменение местоположения физического тела в пространстве относительно выбранной системы отсчёта. Также перемещениемназывают вектор, характеризующий это изменение. Обладает свойством аддитивности.

Ско́рость (часто обозначается , от англ. velocity или фр. vitesse) - векторная физическая величина, характеризующая быстротуперемещения и направления движения материальной точки в пространстве относительно выбранной системы отсчёта (например, угловая скорость).

Ускоре́ние (обычно обозначается , в теоретической механике ) - производная скорости по времени, векторная величина, показывающая, насколько изменяется вектор скорости точки (тела) при её движении за единицу времени (т.е. ускорение учитывает не только изменение величины скорости, но и её направления).

Тангенциальное (касательное) ускорение – это составляющая вектора ускорения, направленная вдоль касательной к траектории в данной точке траектории движения. Тангенциальное ускорение характеризует изменение скорости по модулю при криволинейном движении.

Рис. 1.10. Тангенциальное ускорение.

Направление вектора тангенциального ускорения τ (см. рис. 1.10) совпадает с направлением линейной скорости или противоположно ему. То есть вектор тангенциального ускорения лежит на одной оси с касательной окружности, которая является траекторией движения тела.

Нормальное ускорение

Нормальное ускорение – это составляющая вектора ускорения, направленная вдоль нормали к траектории движения в данной точке на траектории движения тела. То есть вектор нормального ускорения перпендикулярен линейной скорости движения (см. рис. 1.10). Нормальное ускорение характеризует изменение скорости по направлению и обозначается буквой n . Вектор нормального ускорения направлен по радиусу кривизны траектории.

Полное ускорение

Полное ускорение при криволинейном движении складывается из тангенциального и нормального ускорений по правилу сложения векторов и определяется формулой:

(согласно теореме Пифагора для прямоугольно прямоугольника).

Направление полного ускорения также определяется правилом сложения векторов:

    Сила. Масса. Законы Ньютона.

Си́ла - векторная физическая величина, являющаяся мерой интенсивности воздействия на данное тело других тел, а также полей. Приложенная к массивному телу сила является причиной изменения его скорости или возникновения в нём деформаций.

Ма́сса (от греч. μάζα) - скалярная физическая величина, одна из важнейших величин в физике. Первоначально (XVII-XIX века) она характеризовала «количество вещества» в физическом объекте, от которого, по представлениям того времени, зависели как способность объекта сопротивляться приложенной силе (инертность), так и гравитационные свойства - вес. Тесно связана с понятиями «энергия» и «импульс» (по современным представлениям - масса эквивалентна энергии покоя).

Первый закон Ньютона

Существуют такие системы отсчёта, называемые инерциальными, относительно которых материальная точка при отсутствии внешних воздействий сохраняет величину и направление своей скорости неограниченно долго.

Второй закон Ньютона

В инерциальной системе отсчёта ускорение, которое получает материальная точка, прямо пропорционально равнодействующей всех приложенных к ней сил и обратно пропорционально её массе.

Третий закон Ньютона

Материальные точки попарно действуют друг на друга с силами, имеющими одинаковую природу, направленными вдоль прямой, соединяющей эти точки, равными по модулю и противоположными по направлению:

    Импульс. Закон сохранения импульса. Упругие и неупругие удары.

И́мпульс (Количество движения) - векторная физическая величина, характеризующая меру механического движения тела. В классической механике импульс тела равен произведению массы m этого тела на его скорость v, направление импульса совпадает с направлением вектора скорости:

Зако́н сохране́ния и́мпульса (Зако́н сохране́ния количества движения) утверждает, что векторная сумма импульсов всех тел (или частиц) замкнутой системы есть величина постоянная.

В классической механике закон сохранения импульса обычно выводится как следствие законов Ньютона. Из законов Ньютона можно показать, что при движении в пустом пространстве импульс сохраняется во времени, а при наличии взаимодействия скорость его изменения определяется суммой приложенных сил.

Как и любой из фундаментальных законов сохранения, закон сохранения импульса описывает одну из фундаментальных симметрий, - однородность пространства.

Абсолютно неупругим ударом называют такое ударное взаимодействие, при котором тела соединяются (слипаются) друг с другом и движутся дальше как одно тело.

При абсолютно неупругом ударе механическая энергия не сохраняется. Она частично или полностью переходит во внутреннюю энергию тел (нагревание).

Абсолютно упругим ударом называется столкновение, при котором сохраняется механическая энергия системы тел.

Во многих случаях столкновения атомов, молекул и элементарных частиц подчиняются законам абсолютно упругого удара.

При абсолютно упругом ударе наряду с законом сохранения импульса выполняется закон сохранения механической энергии.

4. Виды механической энергии. Работа. Мощность. Закон сохранения энергии.

В механике различают два вида энергии: кинетическую и потенциальную.

Кинетической энергией называют механическую энергию всякого свободно движущегося тела и измеряют ее той работой, которую могло бы совершить тело при его торможении до полной остановки.

Итак, кинетическая энергия поступательно движущегося тела равна половине произведения массы этого тела на квадрат его скорости:

Потенциальная энергия – это механическая энергия системы тел, определяемая их взаимным расположением и характером сил взаимодействия между ними. Численно потенциальная энергия системы в данном ее положении равна работе, которую произведут действующие на систему силы при перемещении системы из этого положения в то, где потенциальная энергия условно принимается равной нулю (E n = 0). Понятие «потенциальная энергия» имеет место только для консервативных систем, т.е. систем, у которых работа действующих сил зависит только от начального и конечного положения системы.

Так, для груза весом P, поднятого на высоту h, потенциальная энергия будет равна E n = Ph (E n = 0 при h = 0); для груза, прикрепленного к пружине, E n = kΔl 2 / 2, где Δl - удлинение (сжатие) пружины, k – ее коэффициент жесткости (E n = 0 при l = 0); для двух частиц с массами m 1 и m 2 , притягивающимися по закону всемирного тяготения, , где γ – гравитационная постоянная, r – расстояние между частицами (E n = 0 при r → ∞).

Термин "работа" в механике имеет два смысла: работа как процесс, при котором сила перемещает тело, действуя под углом, отличном от 90°; работа - физическая величина, равная произведению силы, перемещения и косинуса угла между направлением действия силы и перемещением:

Работа равна нулю, когда тело движется по инерции (F = 0), когда нет перемещения (s = 0) или когда угол между перемещением и силой равен 90° (cos а = 0). Единицей работы в СИ служит джоуль (Дж).

1 джоуль - это такая работа, которая совершается силой 1 Н при перемещении тела на 1 м по линии действия силы. Для определения быстроты совершения работы вводят величину "мощность".

Мо́щность - физическая величина, равная отношению работы, выполняемой за некоторый промежуток времени, к этому промежутку времени.

Различают среднюю мощность за промежуток времени :

и мгновенную мощность в данный момент времени:

Так как работа является мерой изменения энергии, мощность можно определить также как скорость изменения энергии системы.

В системе СИ единицей измерения мощности является ватт, равный одному джоулю, делённому на секунду.

Зако́н сохране́ния эне́ргии - фундаментальный закон природы, установленный эмпирически и заключающийся в том, что для изолированной физической системыможет быть введена скалярная физическая величина, являющаяся функцией параметров системы и называемая энергией, которая сохраняется с течением времени. Поскольку закон сохранения энергии относится не к конкретным величинам и явлениям, а отражает общую, применимую везде и всегда, закономерность, то его можно именовать не законом, а принципом сохранения энергии.

Термин «ускорение» один из немногих, смысл которого понятен тем, кто говорит по-русски. Он обозначает величину, которой измеряют вектор скорости точки по ее направлению и числовому значению. Ускорение зависит от приложенной к этой точке силы, оно прямо пропорционально ей, но обратно пропорционально массе этой самой точки. Вот основные критерии того, как найти ускорение.

Исходить следует из того, где именно применяется ускорение. Напомним, что оно обозначается как «а». В интернациональной системе единиц принято считать единицей ускорения величину, которая состоит из показателя 1 м/с 2 (метр на секунду в квадрате): ускорение, при котором за каждую секунду скорость тела изменяется на 1 м в секунду (1м/с). Допустим, ускорение тела составляет 10м/ с 2 . Значит, в течение каждой секунды, его скорость изменяется на 10 м/с. Что в 10 раз быстрее, если бы ускорение было 1м/с 2 . Другими словами, скорость означает физическую величину, характеризующую путь, пройденный телом, за определенное время.

Отвечая на вопрос о том, как находить ускорение, надо знать путь движение тела, его траекторию – прямолинейная или криволинейная, и скорость – равномерная или неравномерная. Относительно последней характеристики. т.е. скорости, необходимо помнить, что она может меняться векторно или по модулю, тем самым, придавая движению тела ускорение.

Зачем нужна формула ускорения

Вот пример того, как найти ускорение по скорости, если тело начинает равноускоренное движение: необходимо разделить изменение скорости на тот отрезок времени, в течение которого и произошло изменение скорости. Поможет решить задачу, как найти ускорение, формула ускорения a = (v -v0) / ?t = ?v / ?t, где начальная скорость тела v0, конечная– v, промежуток времени - ?t.

На конкретном примере это выглядит следующим образом: допустим, автомобиль начинает движение, трогаясь с места, и за 7 секунд набирает скорость 98 м/с. Используя вышеприведенную формулу, определяется ускорение автомобиля, т.е. взяв исходные данные v= 98 м/с,v0 = 0, ?t =7с, надо найти, чему равна а. Вот ответ: a=(v-v0)/ ?t =(98м/с – 0м/с)/7с = 14 м/с 2 . Получаем 14 м/с 2 .

Поиск ускорения свободного падения

А как найти ускорение свободного падения? Сам принцип поиска хорошо виден на таком примере. Достаточно взять металлический тело, т.е. предмет из металла, закрепить его на высоте, которую можно измерить в метрах, причем, при выборе высоты надо учитывать сопротивление воздуха, причем, такое, которым можно пренебречь. Оптимально это высота 2-4 м. Внизу должна быть установлена платформа, специально под этот предмет. Теперь можно отсоединить металлическое тело от кронштейна. Естественно, оно начнет свободное падение. Зафиксировать время приземления тела необходимо в секундах. Все, можно найти ускорение предмета в свободном падении. Для этого заданную высоту надо разделить на время полета тела. Только это время необходимо взять во второй степени. Полученный результат следует умножить на 2. Это и будет ускорение, точнее – значение ускорения тела в свободном падении, выраженное в м/с 2 .

Можно определить ускорение свободного падения, используя силу тяжести. Измерив весами массу тела в кг, соблюдая предельную точность, подвесить затем это тело на динамометре. Полученный результат силы тяжести будет в ньютонах. Разделив значение силы тяжести на массу тела, которое только что подвешивалось на динамометр, получится ускорение свободного падения.

Ускорение определяет маятник

Поможет установить ускорение свободного падения и математический маятник. Он представляет собой тело, закрепленное и подвешенное на нити достаточной длины, которая заранее измерена. Теперь надо привести маятник в состояние колебания. И с помощью секундомера сосчитать количество колебаний за определенное время. Затем разделить это зафиксированное количество колебаний на время (оно – в секундах). Число, полученное после деления, возвести во вторую степень, умножить на длину нити маятника и число 39,48. Результат: определилось ускорение свободного падения.

Приборы для измерения ускорения

Логично завершить этот информационный блок об ускорении тем, что измеряется оно специальными приборами: акселерометрами. Они бывают механические, электромеханические, электрические и оптические. Диапазон, который им под силу, - от 1 см/с 2 до 30 км/с 2 , что означает O,OOlg - 3000g.Если воспользоваться вторым законом Ньютона, вычислить ускорение можно нахождением частного от деления силы F, действующей на точку, на ее массу m: а=F/m.

Как изменяются показания спидометра в начале движения и при торможении автомобиля?
Какая физическая величина характеризует изменение скорости?

При движении тел их скорости обычно меняются либо по модулю, либо по направлению, либо жеодновременно как по модулю, так и по направлению.

Скорость шайбы, скользящей по льду, уменьшается с течением времени до полной остановки. Если взять в руки камень и разжать пальцы, то при падении камня его скорость постепенно нарастает. Скорость любой точки окружности точильного круга при неизменном числе оборотов в единицу времени меняется только по направлению, оставаясь постоянной по модулю (рис 1.26). Если бросить камень под углом к горизонту, то его скорость будет меняться и по модулю, и по направлению.

Изменение скорости тела может происходить как очень быстро (движение пули в канале ствола при выстреле из винтовки), так и сравнительно медленно (движение поезда при его отправлении).

Физическая величина, характеризующая быстроту изменения скорости, называется ускорением .

Рассмотрим случай криволинейного и неравномерного движения точки. В этом случае её скорость с течением времени изменяется как по модулю, так и по направлению. Пусть в некоторый момент времени t точка занимает положение М и имеет скорость (рис. 1.27). Спустя промежуток времени Δt точка займёт положение М 1 и будет иметь скорость 1 . Изменение скорости за время Δt 1 равно Δ 1 = 1 - . Вычитание вектора можно произвести путём прибавления к вектору 1 вектора (-):

Δ 1 = 1 - = 1 + (-).

Согласно правилу сложения векторов вектор изменения скорости Δ 1 направлен из начала вектора 1 в конец вектора (-), как это показано на рисунке 1.28.

Поделив вектор Δ 1 на промежуток времени Δt 1 получим вектор, направленный так же, как и вектор изменения скорости Δ 1 . Этот вектор называют средним ускорением точки за промежуток времени Δt 1 . Обозначив его через cр1 , запишем:


По аналогии с определением мгновенной скорости определим мгновенное ускорение . Для этого найдём теперь средние ускорения точки за всё меньшие и меньшие промежутки времени:

При уменьшении промежутка времени Δt вектор Δ уменьшается по модулю и меняется по направлению (рис. 1.29). Соответственно средние ускорения также меняются по модулю и направлению. Но при стремлении промежутка времени Δt к нулю отношение изменения скорости к изменению времени стремится к определённому вектору как к своему предельному значению. В механике эту величину называют ускорением точки в данный момент времени или просто ускорением и обозначают .

Ускорение точки - это предел отношения изменения скорости Δ к промежутку времени Δt, в течение которого это изменение произошло, при стремлении Δt к нулю.

Ускорение направлено так, как направлен вектор изменения скорости Δ при стремлении промежутка времени Δt к нулю. В отличие от направления скорости, направление вектора ускорения нельзя определить, зная траекторию точки и направление движения точки по траектории. В дальнейшем на простых примерах мы увидим, как можно определить направление ускорения точки при прямолинейном и криволинейном движениях.

В общем случае ускорение направлено под углом к вектору скорости (рис. 1.30). Полное ускорение характеризует изменение скорости и по модулю, и по направлению. Часто полное ускорение считается равным векторной сумме двух ускорений - касательного ( к) и центростремительного ( цс). Касательное ускорение к характеризует изменение скорости по модулю и направлено по касательной к траектории движения. Центростремительное ускорение цс характеризует изменение скорости по направлению и перпендикулярно касательной, т. е. направлено к центру кривизны траектории в данной точке. В дальнейшем мы рассмотрим два частных случая: точка движется по прямой и скорость изменяется только по модулю; точка движется равномерно по окружности и скорость изменяется только по направлению.

Единица ускорения.

Движение точки может происходить как с переменным, так и с постоянным ускорением. Если ускорение точки постоянно, то отношение изменения скорости к промежутку времени, за которое это изменение произошло, будет одним и тем же для любого интервала времени. Поэтому обозначив через Δt некоторый произвольный промежуток времени, а через Δ - изменение скорости за этот промежуток, можно записать:

Так как промежуток времени Δt - величина положительная, то из этой формулы следует, что если ускорение точки с течением времени не изменяется, то оно направлено так же, как и вектор изменения скорости. Таким образом, если ускорение постоянно, то его можно истолковать как изменение скорости в единицу времени. Это позволяет установить единицы модуля ускорения и его проекций.

Запишем выражение для модуля ускорения:

Отсюда следует, что:
модуль ускорения численно равен единице, если за единицу времени модуль вектора изменения скорости изменяется на единицу.
Если время измерено в секундах, а скорость - в метрах в секунду, то единица ускорения - м/с 2 (метр на секунду в квадрате).



Просмотров