Химия подготовка к зно и дпа комплексное издание. Степени окисления - это какая величина? Как определить степень окисления элементов

Цель: Продолжить изучение валентности. Дать понятие степени окисления. Рассмотреть виды степеней окисления: положительная, отрицательная, нулевой значение. Научиться правильно, определять степени окисления атома в соединении. Научить приемам сравнения и обобщения изучаемых понятий; отработать умения и навыки в определении степени окисления по химическим формулам; продолжить развитие навыков самостоятельной работы; способствовать развитию логического мышления. Формировать чувство толерантности (терпимости и уважения к чужому мнению) взаимопомощи; осуществлять эстетическое воспитание (через оформление доски и тетрадей, при применении презентаций).

Ход урока

I . Организационный момент

Проверка учащихся к уроку.

II . Подготовка к уроку.

К уроку понадобятся: Периодическая система Д.И.Менделеева, учебник, рабочие тетради, ручки, карандаши.

III . Проверка домашнего задания .

Фронтальный опрос, некоторые будут работать у доски по карточкам, проведение теста, и подведением данного этапа будет интеллектуальная игра.

1. Работа с карточками.

1 карточка

Определить массовые доли (%) углерода и кислорода в углекислом газе (СО 2 ) .

2 карточка

Определить тип связи в молекуле Н 2 S. Написать структурную и электронную формулы молекулы.

2. Фронтальный опрос

  1. Что называется химической связью?
  2. Какие виды химических связей вы знаете?
  3. Какая связь называется ковалентной связью?
  4. Какие ковалентные связи выделяют?
  5. Что такое валентность?
  6. Как мы определяем валентность?
  7. Какие элементы (металлы и неметаллы) имеют изменчивую валентность?

3. Тестирование

1. В каких молекулах существует неполярная ковалентная связь?

2 . У какой молекулы при образовании ковалентно-неполярной связи образуется тройная связь?

3 . Как называется положительно заряженные ионы?

А) катионы

Б) молекулы

В) анионы

Г) кристаллы

4. В каком ряду располагаются вещества ионного соединения?

А) СН 4 , NН 3 , Мg

Б) СI 2 , МgО, NаСI

В) МgF 2 , NаСI, СаСI 2

Г) Н 2 S, НСI, Н 2 О

5 . Валентность определяются по:

А) по номеру группы

Б) по числу неспаренных электронов

В) по типу химической связи

Г) по номеру периода.

4. Интеллектуальная игра «Крестики-нолики »

Найдите вещества с ковалентно-полярной связь.

IV . Изучение нового материала

Степень окисления является важной характеристикой состояния атома в молекуле. Валентность, определяется по числу неспаренных электронов в атоме, орбиталями с неподеленными электронными парами, только в процессе возбуждения атома. Высшая валентность элемента, как правило, равна номеру группы. Степень окисления в соединениях с разными химическими связями образуется неодинаково.

Как образуется степень окисления у молекул с разными химическими связями?

1) В соединениях с ионной связью степени окисления элементов равно зарядам ионов.

2) В соединениях с ковалентной неполярной связью (в молекулах простых веществ) степень окисления элементов равно 0.

Н 2 0 , С I 2 0 , F 2 0 , S 0 , AI 0

3) У молекул с ковалентно-полярной связью степень окисления определяется подобно молекулам с ионной химической связью.

Степень окисления элемента – это условный заряд его атома, в молекуле, если считать, что молекула состоит из ионов.

Степень окисления атома в отличие от валентности имеет знак. Она может быть положительной, отрицательной и нулевой.

Валентность обозначатся римскими цифрами сверху символа элемента:

II

I

IV

Fe

Cu

S ,

а степень окисления обозначается арабскими цифрами с зарядом над символам элемента (М g +2 , Са +2 , N а +1 , CI ˉ¹).

Положительная степень окисления – равна числу электронов, отданных данным атомам. Атом может отдать все валентные электроны (для главных групп это электроны внешнего уровня) соответствующее номеру группы, в котором находится элемент, проявляя при этом высшую степень окисления (исключение ОF 2).Например: высшая степень окисления главной подгруппы II группы равна +2 (Zn +2) Положительную степень проявляют как металлы и неметаллы, кроме F, He, Ne.Например: С+4 , Na +1 , Al +3

Отрицательная степень окисления равна числу электронов, принятых данным атомом, ее проявляют только неметаллы. Атомы неметаллов присоединяют столько электронов, сколько их не хватает до завершения внешнего уровня, проявляя при этом отрицательную степень.

У элементов главных подгрупп IV-VII групп минимальная степень окисления численно равна

Например:

Значение степени окисления между высшим и низшим степенями окислений называется промежуточными:

Высшая

Промежуточные

Низшая

С +3 , С +2 ,С 0 ,С -2

В соединениях с ковалентной неполярной связью (в молекулах простых веществ) степень окисления элементов равно 0: Н 2 0 , С I 2 0 , F 2 0 , S 0 , AI 0

Для определения степени окисления атома в соединении следует учитывать ряд положений:

1. Степень окисления F во всех соединениях равна « -1». Na +1 F -1 , H +1 F -1

2. Степень окисления кислорода в большинстве соединений равна (-2) исключение: О F 2 , где степень окисления О +2 F -1

3. Водород в большинстве соединений имеет степень окисления +1, кроме соединения с активными металлами, где степень окисления (-1) : Na +1 H -1

4.Степень окисления металлов главных подгрупп I , II , III групп во всех соединениях равна +1,+2,+3.

Элементы с постоянной степенью окисления это:

А) щелочные металлы (Li, Na, K, Pb, Si, Fr) - степень окисления +1

Б) элементы II главной подгруппы группы кроме (Hg): Be, Mg, Ca, Sr, Ra, Zn, Cd - степень окисления +2

В) элемент III группы: Al - степень окисления +3

Алгоритм составления формулы в соединениях:

1 способ

1 . На первом месте пишется элемент с меньшей электроотрицательностью, на втором с большей электроотрицательностью.

2 . Элемент, написанный на первом месте имеет положительный заряд «+», а на втором с отрицательным зарядом «-».

3 . Указать для каждого элемента степень окисления.

4 . Найти общее кратное значение степеней окисления.

5. Разделить наименьшее общее кратное на значение степеней окисления и полученные индексы приписать внизу справа после символа соответствующего элемента.

6. Если степень окисления четное – нечетное, то они становятся рядом с символом справа внизу крест – накрест без знака «+» и «-»:

7. Если степень окисления имеет четное значение, то их сначала нужно сократить на наименьшее значение степени окисления и поставить крест – накрест без знака «+» и «-»: С +4 О -2

2 способ

1 . Обозначим степень окисления N через Х, указать степень окисления О: N 2 x O 3 -2

2 . Определить сумму отрицательных зарядов, для этого степень окисления кислорода умножаем на индекс кислорода: 3· (-2)= -6

3 .Чтобы молекула была электронейтральной нужно определить сумму положительных зарядов: Х2 = 2Х

4 .Составить алгебраическое уравнение:

N 2 + 3 O 3 –2

V . Закрепление

1) Проведение закрепления темы игрой, которое называется «Змейка».

Правила игры: учитель раздает карточки. На каждой карточке написан один вопрос и один ответ на другой вопрос.

Учитель начинает игру. Зачитает вопрос, ученик, у которого на карточке есть, ответ на мой вопрос поднимает руку и говорит ответ. Если ответ правильный, то он читает свой вопрос и у того ученика у которого есть ответ на этот вопрос поднимает руку и отвечает и т.д. Образуется змейка правильных ответов.

  1. Как и где обозначается степень окисления у атома химического элемента?
    Ответ : арабской цифрой над символом элемента с зарядом «+» и «-».
  2. Какие виды степеней окисления выделяют у атомов химических элементов?
    Ответ : промежуточная
  3. Какую степень проявляет металлы?
    Ответ : положительная, отрицательная, нулевая.
  4. Какую степень проявляют простые вещества или молекулы с неполярной ковалентной связью.
    Ответ : положительная
  5. Какой заряд имеют катионы и анионы?
    Ответ : нулевое.
  6. Как называется степень окисления, которая стоит между положительным и отрицательным степенями окисления.
    Ответ : положительный,отрицательный

2) Написать формулы веществ состоящих из следующих элементов

  1. N и H
  2. Р и О
  3. Zn и Cl

3) Найти и зачеркнуть вещества, не имеющие переменчивую степень окисления.

Na, Cr, Fe, K, N, Hg, S, Al, C

VI . Итог урока.

Выставление оценок с комментариями

VII . Домашнее задание

§23, стр.67-72, задание после §23-стр 72 №1-4 выполнить.

Во многих школьных учебниках и пособиях учат составлять формулы по валентностям, даже для соединений с ионными связями. Для упрощения процедуры составления формул это, на наш взгляд, допустимо. Но нужно понимать, что это не совсем корректно ввиду вышеизложенной причины.

Более универсальным понятием является понятие о степени окисления. По значениям степеней окисления атомов так же как и по значениям валентности можно составлять химические формулы и записывать формульные единицы.

Степень окисления - это условный заряд атома в частице (молекуле, ионе, радикале), вычисленный в приближении того, что все связи в частице являются ионными.

Прежде чем определять степени окисления, необходимо сравнить электроотрицательности связуемых атомов. Атом с большим значением электроотрицательности имеет отрицательную степень окисления, а с меньшим положительную.


С целью объективного сравнения значений электроотрицательности атомов при расчёте степеней окисления, в 2013 году IUPAC дал рекомендацию использовать шкалу Аллена.

* Так, например, по шкале Аллена электроотрицательность азота 3,066, а хлора 2,869.

Проиллюстрируем данное выше определение на примерах. Составим структурную формулу молекулы воды.

Ковалентные полярные связи O-H обозначены синим цветом.

Представим, что обе связи являются не ковалентными, а ионными. Если бы они были ионными, то с каждого атома водорода на более электроотрицательный атом кислорода перешло бы по одному электрону. Обозначим эти переходы синими стрелками.

*В этом примере, стрелка служит для наглядной иллюстрации полного перехода электронов, а не для иллюстрации индуктивного эффекта.

Легко заметить, что число стрелок показывает количество перешедших электронов, а их направление - направление перехода электронов.

На атом кислорода направлено две стрелки, это значит, что к атому кислорода переходит два электрона: 0 + (-2) = -2. На атоме кислорода образуется заряд равный -2. Это и есть степень окисления кислорода в молекуле воды.

С каждого атома водорода уходит по одному электрону: 0 - (-1) = +1. Значит, атомы водорода имеют степень окисления равную +1.

Сумма степеней окисления всегда равняется общему заряду частицы.

Например, сумма степеней окисления в молекуле воды равна: +1(2) + (-2) = 0. Молекула - электронейтральная частица.

Если мы вычисляем степени окисления в ионе, то сумма степеней окисления, соответственно, равна его заряду.

Значение степени окисления принято указывать в верхнем правом углу от символа элемента. Причём, знак пишут впереди числа . Если знак стоит после числа - то это заряд иона.


Например, S -2 - атом серы в степени окисления -2, S 2- - анион серы с зарядом -2.

S +6 O -2 4 2- - значения степеней окисления атомов в сульфат-анионе (заряд иона выделен зелёным цветом).

Теперь рассмотрим случай, когда соединение имеет смешанные связи: Na 2 SO 4 . Связь между сульфат-анионом и катионами натрия - ионная, связи между атомом серы и атомами кислорода в сульфат-ионе - ковалентные полярные. Запишем графическую формулу сульфата натрия, а стрелками укажем направление перехода электронов.

*Структурная формула отображает порядок ковалентных связей в частице (молекуле, ионе, радикале). Структурные формулы применяют только для частиц с ковалентными связями. Для частиц с ионными связями понятие структурной формулы не имеет смысла. Если в частице имеются ионные связи, то применяют графическую формулу.

Видим, что от центрального атома серы уходит шесть электронов, значит степень окисления серы 0 - (-6) = +6.

Концевые атомы кислорода принимают по два электрона, значит их степени окисления 0 + (-2) = -2

Мостиковые атомы кислорода принимают по два электрона, их степень окисления равна -2.

Определить степени окисления возможно и по структурно-графической формуле, где черточками указывают ковалентные связи, а у ионов указывают заряд.

В этой формуле мостиковые атомы кислорода уже имеют единичные отрицательные заряды и к ним дополнительно приходит по электрону от атома серы -1 + (-1) = -2, значит их степени окисления равны -2.


Степень окисления ионов натрия равна их заряду, а т.е. +1.

Определим степени окисления элементов в надпероксиде (супероксиде) калия. Для этого составим графическую формулу супероксида калия, стрелочкой покажем перераспределение электронов. Связь O-O является ковалентной неполярной, поэтому в ней перераспределение электронов не указывается.

* Надпероксид-анион является ион-радикалом. Формальный заряд одного атома кислорода равен -1, а другого, с неспаренным электроном, 0.

Видим, что степень окисления калия равна +1. Степень окисления атома кислорода, записанного в формуле напротив калия, равна -1. Степень окисления второго атома кислорода равна 0.

Точно также можно определить степени окисления и по структурно-графической формуле.

В кружочках указаны формальные заряды иона калия и одного из атомов кислорода. При этом значения формальных зарядов совпадают со значениями степеней окисления.

Так как оба атома кислорода в надпероксид-анионе имеют разные значения степени окисления, то можно вычислить средне-арифметическую степень окисления кислорода.


Она будет равна / 2 = - 1/2 = -0,5.

Значения среднеарифметических степеней окисления обычно указывают в брутто-формулах или формульных единицах, чтобы показать что сумма степеней окисления равна общему заряду системы.

Для случая с надпероксидом: +1 + 2(-0,5) = 0

Легко определить степени окисления используя электронно-точечные формулы, в которых указывают точками неподеленные электронные пары и электроны ковалентных связей.

Кислород - элемент VIА - группы, следовательно в его атоме 6 валентных электронов. Представим, что в молекуле воды связи ионные, в этом случае атом кислорода получил бы октет электронов.

Степень окисления кислорода соответственно равна: 6 - 8 = -2.

А атомов водорода: 1 - 0 = +1

Умение определять степени окисления по графическим формулам бесценно для понимания сущности этого понятия, так же это умение потребуется в курсе органической химии. Если же мы имеем дело с неорганическими веществами, то необходимо уметь определять степени окисления по молекулярным формулам и формульным единицам.

Для этого прежде всего нужно понять, что степени окисления бывают постоянными и переменными. Элементы, проявляющие постоянную степень окисления необходимо запомнить.

Любой химический элемент характеризуется высшей и низшей степенями окисления.

Низшая степень окисления - это заряд, который приобретает атом в результате приёма максимального количества электронов на внешний электронный слой.


Ввиду этого, низшая степень окисления имеет отрицательное значение, за исключением металлов, атомы которых электроны никогда не принимают ввиду низких значений электроотрицательности. Металлы имеют низшую степень окисления равную 0.


Большинство неметаллов главных подгрупп старается заполнить свой внешний электронный слой до восьми электронов, после этого атом приобретает устойчивую конфигурацию (правило октета ). Поэтому, чтобы определить низшую степень окисления, необходимо понять сколько атому не хватает валентных электронов до октета.

Например, азот - элемент VА группы, это значит, что в атоме азота пять валентных электронов. До октета атому азота не хватает трёх электронов. Значит низшая степень окисления азота равна: 0 + (-3) = -3

Видеокурс «Получи пятерку» включает все темы, необходимые для успешной сдачи ЕГЭ по математике на 60-65 баллов. Полностью все задачи 1-13 Профильного ЕГЭ по математике. Подходит также для сдачи Базового ЕГЭ по математике. Если вы хотите сдать ЕГЭ на 90-100 баллов, вам надо решать часть 1 за 30 минут и без ошибок!

Курс подготовки к ЕГЭ для 10-11 класса, а также для преподавателей. Все необходимое, чтобы решить часть 1 ЕГЭ по математике (первые 12 задач) и задачу 13 (тригонометрия). А это более 70 баллов на ЕГЭ, и без них не обойтись ни стобалльнику, ни гуманитарию.

Вся необходимая теория. Быстрые способы решения, ловушки и секреты ЕГЭ. Разобраны все актуальные задания части 1 из Банка заданий ФИПИ. Курс полностью соответствует требованиям ЕГЭ-2018.

Курс содержит 5 больших тем, по 2,5 часа каждая. Каждая тема дается с нуля, просто и понятно.

Сотни заданий ЕГЭ. Текстовые задачи и теория вероятностей. Простые и легко запоминаемые алгоритмы решения задач. Геометрия. Теория, справочный материал, разбор всех типов заданий ЕГЭ. Стереометрия. Хитрые приемы решения, полезные шпаргалки, развитие пространственного воображения. Тригонометрия с нуля - до задачи 13. Понимание вместо зубрежки. Наглядное объяснение сложных понятий. Алгебра. Корни, степени и логарифмы, функция и производная. База для решения сложных задач 2 части ЕГЭ.

В школе химия до сих пор занимает место одного из самых сложных предметов, который, ввиду того, что скрывает множество затруднений, вызывает у учеников (обычно это в период с 8 по 9 классы) больше ненависти и безразличия к изучению, чем интереса. Всё это снижает качество и количество знаний по предмету, хотя во многих сферах по сей день требуются специалисты в этой области. Да, сложных моментов и непонятных правил в химии иногда даже больше, чем кажется. Один из вопросов, которые волнуют большинство учеников, это что такое степень окисления и как определять степени окисления элементов.

Важное правило – правило расстановки, алгоритмы

Здесь много говорится о таких соединениях, как оксиды. Для начала, любой ученик должен выучить определение оксидов - это сложные соединения из двух элементов, в их составе находится кислород. К классу бинарных соединений оксиды относят по той причине, что в алгоритме кислород стоит вторым по очереди. При определении показателя важно знать правила расстановки и рассчитать алгоритм.

Алгоритмы для кислотных оксидов

Степени окисления - это численные выражения валентности элементов. К примеру, кислотные оксиды образованы по определённому алгоритму: сначала идут неметаллы или металлы (их валентность обычно от 4 до 7), а после идёт кислород, как и должно быть, вторым по порядку, его валентность равняется двум. Определяется она легко - по периодической таблице химических элементов Менделеева. Также важно знать то, что степень окисления элементов - это показатель, который предполагает либо положительное, либо отрицательное число .

В начале алгоритма, как правило, неметалл, и его степень окисления - положительная. Неметалл кислород в оксидных соединениях имеет стабильное значение, которое равняется -2. Чтобы определить верность расстановки всех значений, нужно умножить все имеющиеся цифры на индексы у одного конкретного элемента, если произведение с учётом всех минусов и плюсов равняется 0, то расстановка достоверна.

Расстановка в кислотах, содержащих кислород

Кислоты являются сложными веществами , они связаны с каким-либо кислотным остатком и содержат в себе один или несколько атомов водорода. Здесь, для вычисления степени, требуются навыки в математике, так как показатели, необходимые для вычисления, цифровые. У водорода или протона он всегда одинаков – +1. У отрицательного иона кислорода отрицательная степень окисления -2.

После проведения всех этих действий можно определить степень окисления и центрального элемента формулы. Выражение для её вычисления представляет собой формулу в виде уравнения. Например, для серной кислоты уравнение будет с одним неизвестным.

Основные термины в ОВР

ОВР – это восстановительно-окислительные реакции .

  • Степень окисления любого атома - характеризует способность этого атома присоединять или отдавать другим атомам электроны ионов (или атомов);
  • Принято считать окислителями либо заряженные атомы, либо незаряженные ионы;
  • Восстановителем в этом случае будут заряженные ионы или же, напротив, незаряженные атомы, которые теряют свои электроны в процессе химического взаимодействия;
  • Окисление заключается в отдаче электронов.

Как расставлять степень окисления в солях

Соли состоят из одного металла и одного или нескольких кислотных остатков. Методика определения такая же, как и в кислотосодержащих кислотах.

Металл, который непосредственно образует соль, располагается в главной подгруппе, его степень будет равна номеру его группы, то есть всегда будет оставаться стабильным, положительным показателем.

В качестве примера можно рассмотреть расстановку степеней окисления в нитрате натрия. Соль образуется с помощью элемента главной подгруппы 1 группы, соответственно, степень окисления будет являться положительной и равна единице. В нитратах кислород имеет одного значение – -2. Для того чтобы получить численное значение, для начала составляется уравнение с одним неизвестным, учитывая все минусы и плюсы у значений: +1+Х-6=0. Решив уравнение, можно прийти к тому факту, что численный показатель положителен и равен + 5. Это показатель азота. Важный ключ чтобы высчитать степень окисления – таблица .

Правило расстановки в основных оксидах

  • Оксиды типичных металлов в любых соединениях имеют стабильный показатель окисления, он всегда не больше +1, или в других случаях +2;
  • Цифровой показатель металла вычисляется при помощи периодической таблицы. Если элемент содержится в главной подгруппе 1 группы, то его значение будет +1;
  • Значение оксидов, учитывая и их индексы, после умножения суммировано должны быть равны нулю, т.к. молекула в них нейтральна, частица, лишённая заряда;
  • Металлы основной подгруппы 2 группы также имеют устойчивый положительный показатель, который равен +2.

Для характеристики состояния элементов в соединениях введено понятие степени окисления.

ОПРЕДЕЛЕНИЕ

Число электронов, смещенных от атома данного элемента или к атому данного элемента в соединении называют степенью окисления .

Положительная степень окисления обозначает число электронов, которые смещаются от данного атома, а отрицательная - число электронов, которые смещаются к данному атому.

Из этого определения следует, что в соединениях с неполярными связями степень окисления элементов равна нулю. Примерами таких соединений могут служить молекулы, состоящие из одинаковых атомов (N 2 , H 2 , Cl 2).

Степень окисления металлов в элементарном состоянии равна нулю, так как распределение электронной плотности в них равномерно.

В простых ионных соединениях степень окисления входящих в них элементов равна электрическому заряду, поскольку при образовании этих соединений происходит практически полный переход электронов от одного атома к другому: Na +1 I -1 , Mg +2 Cl -1 2 , Al +3 F -1 3 , Zr +4 Br -1 4 .

При определении степени окисления элементов в соединениях с полярными ковалентными связями сравнивают значениях их электроотрицательностей. Поскольку при образовании химической связи электроны смещаются к атомам более электроотрицательных элементов, то последние имеют в соединениях отрицательную степень окисления.

Высшая степень окисления

Для элементов, проявляющих в своих соединениях различные степени окисления, существуют понятия высшей (максимальной положительной) и низшей (минимальной отрицательной) степеней окисления. Высшая степень окисления химического элемента обычно численно совпадает с номером группы в Периодической системе Д. И. Менделеева. Исключения составляют фтор (степень окисления равна -1, а элемент расположен в VIIA группе), кислород (степень окисления равна +2, а элемент расположен в VIA группе), гелий, неон, аргон (степень окисления равна 0, а элементы расположены в VIII группе), а также элементы подгруппы кобальта и никеля (степень окисления равна +2, а элементы расположены в VIII группе), для которых высшая степень окисления выражается числом, значение которого ниже, чем номер группы, к которой они относятся. У элементов подгруппы меди, наоборот, высшая степень окисления больше единицы, хотя они и относятся к I группе (максимальная положительная степень окисления меди и серебра равна +2, золота +3).

Примеры решения задач

ПРИМЕР 1

Ответ Будем поочередно определять степень окисления серы в каждой из предложенных схем превращений, а затем выберем верный вариант ответа.
  • В сероводороде степень окисления серы равна (-2), а в простом веществе - сере - 0:

Изменение степени окисления серы: -2 → 0, т.е. шестой вариант ответа.

  • В простом веществе - сере — степень окисления серы равна 0, а в SO 3 - (+6):

Изменение степени окисления серы: 0 → +6, т.е. четвертый вариант ответа.

  • В сернистой кислоте степень окисления серы равна (+4), а в простом веществе - сере - 0:

1×2 +x+ 3×(-2) =0;

Изменение степени окисления серы: +4 → 0, т.е. третий вариант ответа.

ПРИМЕР 2

Задание Валентность III и степень окисления (-3) азот проявляет в соединении: а) N 2 H 4 ; б) NH 3 ; в) NH 4 Cl; г) N 2 O 5
Решение Для того, чтобы дать верный ответ на поставленный вопрос будем поочередно определять валентность и степень окисления азота в предложенных соединениях.

а) валентность водорода всегда равна I. Общее число единиц валентности водорода равно 4-м (1×4 = 4). Разделим полученное значение на число атомов азота в молекуле: 4/2 = 2, следовательно, валентность азота равна II. Этот вариант ответа неверный.

б) валентность водорода всегда равна I. Общее число единиц валентности водорода равно 3-м (1×3 = 3). Разделим полученное значение на число атомов азота в молекуле: 3/1 = 2, следовательно, валентность азота равна III. Степень окисления азота в аммиаке равна (-3):

Это верный ответ.

Ответ Вариант (б)


Просмотров