Характеристика процесса горения

Образцы выполнения с/р2

ХИМИЧЕСКАЯ ТЕРМОДИНАМИКА. РАВНОВЕСИЕ. КИНЕТИКА.

ЗАДАЧА 1. Теплота сгорания топлива.

Имеем газовую топливную смесь: 50%СН 4 + 50%С 4 Н 10 .

Суммарный объем V=1000 л=1м 3 .

1. Напишите химические уравнения реакций горения газовых составляющих заданной топливной смеси.

Реакция горения метана:

СН 4 (г) + 2О 2 (г) ® СО 2 (г) + 2Н 2 О (ж)

Реакция горения бутана:

С 4 Н 10 (г) + 13/2О 2 (г) ® 4СО 2 (г) + 5Н 2 О (ж) .

Энтальпия Δ r Н 0 298 этих химических реакций является теплотой сгорания газового топлива ΔН 0 сг.

2. Рассчитайте, сколько теплоты можно получить при сжигании заданного объема топливной смеси заданного состава (объемные %), условия считать нормальными.

С использованием закона Гесса рассчитаем теплоту сгорания газового топлива ΔН 0 сг при стандартном состоянии и 298 К, используя табличные данные (см. приложение, табл.) теплоты образования всех веществ, участвующих в реакции горения (Δ f Н 0 298):

для метана

ΔН 0 сг СН4 = Δ r Н 0 298 = Δ f Н 0 СО2 + Δ f Н 0 Н2О - Δ f Н 0 СН4 - 2Δ f Н 0 О2 =

393,62 + 2 . (-285,84) – (-74,78) - 0 = -802,28 кДж/моль.

для бутана

ΔН 0 сг С4Н10 = Δ r Н 0 298 = 4Δ f Н 0 СО2 + 5Δ f Н 0 Н2О - Δ f Н 0 С4Н10 - 13/2Δ f Н 0 О2 =

4 . (- 393,62) + 5 . (-285,84) – (-126,15) - 0 = -2877,53 кДж/моль.

Удельная теплота сгорания Q Т газового топлива:

Q T = - (ΔН сг. 1000/22,4) , кДж/м 3 ,

где 22,4 л/моль – молярный объем газа при н.у.

для метана

Q T , СН4 = - (-802,28 . 1000 / 22,4) =35816 кДж/м 3 .

для бутана

Q T , С4Н10 = - (-2877,53 . 1000 / 22,4) =128461 кДж/м 3 .

Суммарное количество теплоты, полученное при сгорании данной топливной смеси с учетом объемов газов:

Q = Q T , СН4 . V СН4 + Q T , С4Н10 . V С4Н10 =

35816 . (1 . 0,5)+128461 . (1 . 0,5) =82138,5 кДж.

3. Из заданной топливной смеси выберите наиболее энергоэффективное топливо. Рассчитайте удельную теплоту сгорания этого топлива Q T , кДж/м 3 . Рассчитайте минимальный объем этого топлива для получения 100 МДж теплоты.

Наиболее энергоэффективное топливо в данной топливной смеси – бутан, удельная теплота сгорания Q T , С4Н10 = 128461 кДж/м 3 .

Для получения 100 МДж теплоты необходимо сжечь:

V С4Н10 = Q / Q T , С4Н10 =100000/128461=0,778 м 3 = 778 л.

ЗАДАЧА 2. Химическая термодинамика.

1. Напишите термохимические уравнения реакций, тепловой эффект которых является теплотой образования всех реагентов заданной химической реакции.

Для химической реакции

СO 2 (г) + C (к) « 2CО (г)

Вещество C (к) – простое, устойчивое при 298 К и давлении 100 кПа, энтальпия его образования DH 0 f , 298 , = 0.

Термохимические уравнения реакций, тепловой эффект которых является теплотой образования реагентов заданной химической реакции СO 2 (г) и CО (г) :

O 2 (г) + C (к) « CО 2 (г) , DH 0 f , 298 = -393,51 кДж/моль,

(см. табл.);

1/2 O 2 (г) + C (к) « CО (г) , DH 0 f , 298 = -110,5 кДж/моль,

(см. табл.).

2. Рассчитайте величины энтальпии D r H 0 298 , энтропии D r S 0 298 . табл. к задачам 1, 2) при стандартном состоянии (с.с.) всех реагентов и температуре 298 К. Сделайте вывод о тепловом эффекте реакции.

По табличным данным (см. табл.) запишем термодинамические функции состояния реагентов заданной химической реакции при стандартном состоянии и 298 К

С использованием закона Гесса рассчитаем энтальпию Δ r Н 0 298 , энтропию r S 0 298 и энергию Гиббса Δ r G 0 298 химической реакции при стандартном состоянии и 298 К:

Δ r Н 0 298 = 2Δ f Н 0 298 СОг - Δ f Н 0 298 Ск - Δ f Н 0 298 СО2г =

2(-110,5) – 0 – (-393,5) = 172,5 кДж.

Δ r Н 0 298 >0 - реакция эндотермическая, идет с поглощением теплоты.

r S 0 298 = 2 S 0 f , 298,СО(г) - S 0 f , 298,С(к) - S 0 f , 298,СО2(г) = 2(197,54) – 5,74 – 213,68 =

175,66 Дж/К.

r S 0 298 >0 – система стала более неупорядоченной вследствие образования дополнительного количества газа.

3. Рассчитайте величину энергии Гиббса D r G 0 298 заданной химической реакции (п.1 . табл. к задачам 1, 2) при стандартном состоянии (с.с.) всех реагентов и температуре 298 К. Определите, в каком направлении будет самопроизвольно протекать данная реакция при стандартном состоянии всех реагентов и температуре 298 К.

Δ r G 0 298 = 2Δ f G 0 298 СОг - Δ f G 0 298 Ск - Δ f G 0 298 СО2г =

2(-137,14) – 0 – (-394,38) = 120,15 кДж.

Δ r G 0 298 >0 – самопроизвольное протекание реакции в прямом направлении при стандартном состоянии и 298 К невозможно. Реакция протекает в обратном направлении.

4. Определите область температур, при которых возможно самопроизвольное протекание прямой реакции при стандартном состоянии всех реагентов без учета зависимости D r H 0 и D r S 0 от температуры. Постройте график зависимости энергии Гиббса реакции от температуры D r G 0 = f (Т ).

Возможность самопроизвольного протекания реакции при стандартном состоянии определяется неравенством r G 0 T < 0.

Т.е. , если

r G 0 T = ∆ r H 0 298 +∆ r с 0 p dT - Т r S 0 298 - Т r с 0 p / T )dT < 0

r G 0 T ≈ ∆ r H 0 298 - Т r S 0 298 < 0

r G 0 Т = (172,5 – Т . 175,66 . 10 -3) < 0 , отсюда Т > 982 К.

График зависимости D r G 0 = f (Т ):

r G 0 Т

298 982 2300 Т

С учетом температурных интервалов существования реагентов температурная область самопроизвольного протекания реакции при стандартном состоянии 982 < Т < 2300 К.

5. Рассчитайте величину энергии Гиббса D r G 298 химической реакции при заданных значениях парциальных давлений газов (п.2 . табл. к задачам 1, 2) и температуре 298 К. Определите, изменится ли направление протекания процесса при 298 К при изменении парциальных давлений газов по сравнению со стандартным состоянием.

Расчет энергии Гиббса химической реакции при любой температуре и любых относительных парциальных давлениях газов производится по уравнению изотермы Вант-Гоффа:

Δ r G Т = r G 0 Т + RT ln .

Рассчитаем Δ r G 298 при 298 К и давлениях газов: р СО = 2 . 10 3 Па,

р СО2 = 8 . 10 5 Па.

Относительные парциальные давления газов:

СО = 2 . 10 3 Па/10 5 Па = 0,02; СО2 = 8 . 10 5 Па/10 5 Па = 8.

Δ r G 298 = Δ r G 0 298 + RTln (р 2 СО /р СО2) = 120,15 +8,31 . 10 -3 . 298 . ln (0,02/8) =

Δ r G 298 >0 – самопроизвольное протекание реакции в прямом направлении при заданных парциальных давлениях газов и 298 К невозможно. Реакция протекает в обратном направлении.

6. Определите, как нужно (теоретически) изменить парциальное давление любого из исходных газов (р А или р В ) для изменения направления протекания процесса по сравнению со стандартным состоянием при 298 К и стандартном парциальном давлении всех других компонентов химической реакции.

При стандартном состоянии и 298 К возможно самопроизвольное протекание реакции в обратном направлении, т.к. Δ r G 0 298 >0.

Для изменения направления протекания процесса по сравнению состандартным состояниемпри 298 К можно изменить парциальное давление СО 2 , (состояние всех других компонентов стандартное). Условием самопроизвольного протекания реакции в прямом направлении является Δ r G 298 < 0.

По уравнению изотермы Вант-Гоффа:

Δ r G Т = r G 0 Т + RT ln< 0

Δ r G 298 = 120,15 + 8,31 . 10 -3. 298 ln < 0

Решаем неравенство ln < - 48,5и получаем: < 10 -21 .

Таким образом,р СО < р СО2 ≈ в 10 5 раз.

Таким образом, для изменения направления протекания процесса по сравнению состандартным состояниемпри 298 К и давлении р СО = 10 5 Па нужно увеличить парциальное давление СО 2 в 10 5 раз, т.е. парциальное давление СО 2 должно быть: р СО2 > 10 25 Па.

При таком давлении СО 2 заданная химическая реакция может самопроизвольно протекать в прямом направлении при 298 К.

ЗАДАЧА 2. Химическое равновесие.

Для химической реакции

СO 2 (г) + C (к) « 2CО (г)

1. Рассчитайте энергию Гиббса D r G 0 Т и константу равновесия К р данной реакции при стандартном состоянии и температурах 298 К, 500 К, 800 К, 1000 К с учетом зависимости D r H 0 Т и D r S 0 Т от температуры при постоянной величине удельной теплоемкости веществ с р = const . Постройте график зависимости

К р = f (Т ).

Рассчитаем изменение теплоемкости системы (∆ r c 0 р = const):

r с 0 р = 2с 0 р 298СОг – с 0 р 298Ск – с 0 р 298СО2г =

2 . (29,14)–8,54–37,41 =12,33 Дж/К.

Рассчитаем энергию Гиббса химической реакции при стандартном состоянии и заданных температурах 298 К, 500 К, 800 К, 1000 К с учетом зависимости ∆ r H 0 Т и ∆ r S 0 Т от температуры, считая постоянной величину удельной теплоемкости веществ с р , по формуле:

r G 0 T = ∆ r H 0 Т – Т . r S 0 Т = r G 0 298 + r с 0 р (Т - 298) Т . ∆ r с 0 р ln (Т / 298).

r G 0 298 =120,15 кДж;

r G 0 500 =120,15+12,33 . 10 -3 . (500-298) - 500 . 12,33 . 10 -3 . ln (500/298)=

r G 0 800 =120,15+12,33 . 10 -3 . (800-298) - 800 . 12,33 . 10 -3 . ln (800/298)=

r G 0 1000 =120,15+12,33 . 10 -3 . (1000-298) - 1000 . 12,33 . 10 -3 . ln (1000/298) =

Термодинамическое условие химического равновесия: r G T = 0.

Энергия Гиббса химической реакции при стандартном состоянии

r G 0 Т связана с константой равновесия К р по соотношению:

r G 0 Т = - RT lnК р

Рассчитав величину r G 0 T реакции, рассчитаем константу равновесия К р по формуле:

K p = exp(-∆G 0 Т /RT ) ,

где R =8,31 Дж/моль. К - универсальная газовая постоянная.

K p, 298 = exp(-∆G 0 Т , 298 / R . 298) = exp(-120,15/8,31 . 10 -3. 298) =8 . 10 -22 ;

K p, 500 = exp(-∆G 0 Т , 500 / R . 500) = exp(-84,67/8,31 . 10 -3. 500) =1,4 . 10 -9 ;

K p, 800 = exp(-∆G 0 Т , 800 / R . 800) = exp(-31,97/8,31 . 10 -3. 800) =8,1 . 10 -3 ;

K p, 1000 = exp(-∆G 0 Т , 1000 / R . 1000) = exp(3,16/8,31 . 10 -3. 1000) =1,46.

При увеличении температуры увеличивается константа равновесия, что объясняется эндотермическим тепловым эффектом данной реакции

(Δ r Н 0 Т >0).

2. Выберите любую температуру из области самопроизвольного протекания реакции в прямом направлении. При этой температуре рассчитайте равновесные концентрации газообразных реагентов, если их исходные концентрации были равны, соответственно, (см. п.3. табл. к задачам 1,2).

При Т =1000 К реакция протекает самопроизвольно в прямом направлении, т.к. r G 0 1000 = - 3,16 кДж <0, K p , 1000 = 1,46.

Выберем температуру Т =1000 для расчета равновесных концентраций газообразных реагентов, если исходные концентрации газообразных реагентов СО 2 и СО были равны: с СО2 = 0,5 моль/л, с СО =0.

Выражения для констант равновесия, выраженных через относительные равновесные парциальные давления газов (р равн ) и равновесные концентрации (с равн) :

К р =
; К с =

K p и K с связаны через уравнение газового состояния:

K с, 1000 =
=
= 0,018

где R =0,082 л. атм/моль. К - универсальная газовая постоянная;

∆ν = 2-1= 1 (изменение числа молей газообразных веществ в ходе реакции).

Таблица материального баланса:

Подставляем равновесные концентрации газообразных реагентов в выражение для K с и решаем алгебраическое уравнение относительно х :

К с =
= 0,018 , х = 0,0387моль/л

С СО равн = 2 . 0,0387 = 0,0774моль/л

С СО2равн = 0,5 - 0,0387 = 0,4613 моль/л.

Горение – сложный физико-химический процесс, основу которого составляют химические реакции окислительно-восстановительного типа, приводящие к перераспределению валентных электронов между атомами взаимодействующих молекул.

Примеры реакций горения

метана : СН 4 + 2О 2 = СО 2 + 2Н 2 О;

ацетилена: С 2 Н 2 + 2,5О 2 = 2СО 2 + Н 2 О;

натрия: 2Na + Cl 2 = 2NaCl;

водорода: Н 2 + Cl 2 = 2НCl, 2Н 2 + О 2 = 2Н 2 О;

тротила: С 6 Н 2 (NO 2) 3 CH 3 = 2,5H 2 O + 3,5CO + 3,5C +1,5N 2 .

Сущность окисления – отдача окисляющимся веществом валентных электронов окислителю, который, принимая электроны, восстанавливается, Сущность восстановления – присоединение восстанавливающимся веществом электронов восстановителя, который, отдавая электроны, окисляется. В результате передачи электронов изменяется структура внешнего (валентного) электронного уровня атома. Каждый атом при этом переходит в наиболее устойчивое в данных условиях состояние.

В химических процессах электроны могут полностью переходить из электронной оболочки атомов одного вещества (элемента) в оболочку атомов другого.

Так, при горении металлического натрия в хлоре атомы натрия отдают по одному электрону атомам хлора. При этом на внешнем электронном уровне атома натрия оказывается восемь электронов (устойчивая структура), а атом, лишившийся одного электрона, превращается в положительно заряженный ион. У атома хлора, получившего один электрон, внешний уровень заполняется восемью электронами, и атом превращается в отрицательно заряженный ион. В результате действия кулоновских электростатических сил происходит сближение разноименно заряженных ионов и образуется молекула хлорида натрия (ионная связь):



2Mg + O 2 = 2Mg 2+ O 2– .

Таким образом, горение магния (окисление) сопровождается переходом его электронов к кислороду. В других процессах электроны внешних оболочек двух разных атомов поступают как бы в общее пользование, стягивая тем самым атомы молекул (ковалентная или атомная связь):

.

И, наконец, один атом может отдавать в общее пользование свою пару электронов (молекулярная связь):



.

Выводы из положений современной теории окисления–восстановления:

1. Сущность окисления заключается в потере электронов атомами или ионами окисляющегося вещества, а сущность восстановления – в присоединении электронов к атомам или ионами восстанавливающегося вещества. Процесс, при котором вещество теряет электроны, называется окислением , а присоединение электронов – восстановление .

2. Окисление какого-либо вещества не может произойти без одновременного восстановления другого вещества. Например, при горении магния в кислороде или воздухе происходит окисление магния и одновременно – восстановление кислорода. При полном сгорании образуются продукты, неспособные к дальнейшему горению (СО 2 , Н 2 О, НСl и т.д.), при неполном – получившиеся продукты способны к дальнейшему горению (CO, H 2 S, HCN, NH 3 , альдегиды и т.д.). Схема: спирт – альдегид – кислота.

Горением называется реакция окисления, протекающая с высокой скоростью, которая сопровождается выделением тепла в большом количестве и, как правило, ярким свечением, которое мы называем пламенем. Процесс горения изучает физическая химия, в которой к горению принято относить все экзотермические процессы, имеющие самоускоряющуюся реакцию. Такое самоускорение может происходить из-за повышения температуры (т. е. иметь тепловой механизм) или накопления активных частиц (иметь диффузионную природу).

Реакция горения имеет наглядную особенность - наличие высокотемпературной области (пламени), ограниченной пространственно, где и происходит большая часть преобразования исходных веществ (топлива) в Данный процесс сопровождается выбросом большого количества Для начала реакции (появления пламени) требуется затратить некоторое количество энергии на поджигание, затем процесс идет самопроизвольно. Его скорость зависит от химических свойств веществ, участвующих в реакции, а также от газодинамических процессов при сгорании. Реакция горения имеет определенные характеристики, важнейшие из которых - теплотворная способность смеси и та температура (называемая адиабатической), которая теоретически могла бы достигаться при полном сгорании без учета теплопотерь.

Гомогенное горение является наиболее простым, имеет постоянную скорость, зависящую от состава и молекулярной теплопроводности смеси, температуры и давления.

Гетерогенное горение наиболее распространено как в природе, так и в искусственных условиях. Скорость его зависит от конкретных условий процесса сжигания и от физических характеристик ингредиентов. У жидких горючих на скорость сгорания большое влияние оказывает скорость испарения, у твердых - скорость газификации. Например, при сгорании угля процесс образует две стадии. На первой из них (в случае сравнительно медленного нагрева) выделяются летучие компоненты вещества (угля), на второй догорает коксовый остаток.

Горение газов (например, горение этана) имеет свои особенности. В газовой среде пламя может распространяться на обширное расстояние. Оно может двигаться по газу с дозвуковой скоростью, причем данное свойство присуще не только газовой среде, но и мелкодисперсной смеси жидких и твердых горючих частиц, смешанной с окислителем. Для обеспечения устойчивого горения в таких случаях требуется специальная конструкция устройства топки.

Последствия, которые вызывает реакция горения в газовой среде, бывают двух видов. Первый - это турбулизация газового потока, приводящая к резкому увеличению скорости процесса. Возникающие при этом акустические возмущения потока могут привести к следующей стадии - зарождению ведущей к детонации смеси. Переход горения в стадию детонации зависит не только от собственных свойств газа, но и от размеров системы и параметров распространения.

Сгорание топлива используется в технике и промышленности. Основной задачей при этом является достижение максимальной полноты сгорания (т. е. оптимизация тепловыделения) за заданный промежуток. Используется горение, например, в горном деле - методы разработки различных полезных ископаемых основаны на использовании горючего процесса. Но в определенных природных и геологических условиях явление горения может стать фактором, несущим серьезную опасность. Реальную опасность, например, представляет процесс самовозгорания торфа, приводящий к возникновению эндогенных пожаров.


Горение - это сложный физико-химический процесс взаимодействия горючих компонентов топлива с окислителем, в частности, горение топлива - это реакция быстрого окисления его компонентов, сопровождающаяся интенсивным тепловыделением и резким повышением температуры.

Рассмотрим реакцию горения метана как основного компонента из числа составляющих природного газа:

СН 4 + 2О 2 = СО 2 + 2Н 2 О.

Из уравнения этой реакции следует, что для окисления одной молекулы метана необходимы две молекулы кислорода, т.е. для полного сгорания 1 м 3 метана требуется 2 м 3 кислорода.

В качестве окислителя используется атмосферный воздух, который представляет собой сложную смесь веществ, в числе которых 21 об. % О 2 , 78 об. % N 2 и 1 об. % СО 2 , инертных газов и др. Для технических расчетов обычно принимают условный состав воздуха из двух компонентов: кислорода (21 об. %) и азота (79 об. %). С учетом такого состава воздуха для проведения любой реакции горения на воздухе для полного сжигания топлива потребуется воздуха по объему в 100/21 = 4,76 раза больше, чем кислорода.

Продуктами полного сгорания природного газа являются: диоксид углерода СО 2 , водяные пары Н 2 О, некоторое количество избыточного кислорода О 2 и азот N 2 . Избыточный кислород содержится в продуктах горения только в тех случаях, когда горение происходит с избытком воздуха, а азот в продуктах сгорания содержится всегда, так как является составной частью воздуха и не принимает участия в горении. Продуктами неполного сгорания газа являются: оксид углерода СО, несгоревшие водород Н 2 и метан СН 4 , тяжелые углеводороды С m Н n и сажа. Таким образом, чем больше в продуктах сгорания диоксида углерода СО 2 , тем меньше будет в них оксида углерода СО, т. е. тем полнее будет сгорание. Введено понятие максимально содержание СО 2 в продуктах сгорания – это количество СО 2 , которое можно было бы получить в сухих продуктах сгорания при полном сгорании газа без избытка воздуха.

Наиболее совершенный способ контроля поступления воздуха в топку и полноты его сгорания – анализ продуктов сгорания с помощью автоматических газоанализаторов. Газоанализаторы периодически отбирают пробу отходящих газов и определяют содержание в них диоксида углерода,а также сумму оксида углерода и несгоревшего водорода (СО + Н 2) в объемных процентах. Если показания по стрелке по шкале (СО + Н 2) равны 0, значит горение полное, и в продуктах сгорания нет (СО + Н 2). Если стрелка отклонилась от нуля вправо, то в продуктах сгорания есть (СО + Н 2), т.е. происходит неполное сгорание. На другой шкале стрелка газоанализаторы должна показывать максимальное содержание СО 2 max в продуктах сгорания. Полное сгорание происходит при максимальном проценте диоксида углерода и нулевом содержании (СО + Н 2).

Горение – одно из интереснейших и жизненно необходимых для людей явлений природы. Горение является полезным для человека до тех пор, пока оно не выходит из подчинения его разумной воле. В противном случае оно может привести к пожару. Пожар - это неконтролируемое горение, причиняющее материальный ущерб, вред жизни и здоровью граждан, интересам общества и государства. Для предотвращения пожара и его ликвидации необходимы знания о процессе горения.

Горение – это химическая реакция окисления, сопровождающаяся выделением тепла. Для возникновения горения необходимо наличие горючего вещества, окислителя и источника зажигания.

Горючее вещество – это всякое твёрдое, жидкое или газообразное вещество, способное окисляться с выделением тепла.

Окислителями могут быть хлор, фтор, бром, йод, окислы азота и другие вещества. В большинстве случаев при пожаре окисление горючих веществ происходит кислородом воздуха.

Источник зажигания обеспечивает энергетическое воздействие на горючее вещество и окислитель, приводящее к возникновению горения. Источники зажигания принято делить на открытые (светящиеся) – молния, пламя, искры, накалённые предметы, световое излучение; и скрытые (несветящиеся) – тепло химических реакций, микробиологические процессы, адиабатическое сжатие, трение, удары и т. п. Они имеют различную температуру пламени и нагрева. Всякий источник зажигания должен иметь достаточный запас теплоты или энергии, передаваемой реагирующим веществам. Поэтому на процесс возникновения горения влияет и продолжительность воздействия источника зажигания. После начала процесса горения оно поддерживается тепловым излучением из его зоны.

Горючее вещество и окислитель образуют горючую систему , которая может быть химически неоднородной или однородной. В химически неоднородной системе горючее вещество и окислитель не перемешаны и имеют поверхность раздела (твёрдые и жидкие горючие вещества, струи горючих газов и паров, поступающих в воздух). При горении таких систем кислород воздуха непрерывно диффундирует сквозь продукты горения к горючему веществу и затем вступает в химическую реакцию. Такое горение называется диффузионным . Скорость диффузионного горения невелика, так как она замедляется процессом диффузии. Если горючее вещество в газообразном, парообразном или пылеобразном состоянии уже перемешано с воздухом (до поджигания его), то такая горючая система является однородной и процесс её горения зависит только от скорости химической реакции. В этом случае горение протекает быстро и называется кинетическим .

Горение может быть полным и неполным. Полное горение происходит в том случае, когда кислород поступает в зону горения в достаточном количестве. Если кислорода недостаточно для окисления всех продуктов, участвующих в реакции, происходит неполное горение. К продуктам полного горения относятся углекислый и сернистый газы, пары воды, азот, которые не способны к дальнейшему окислению и горению. Продукты неполного горения – окись углерода, сажа и продукты разложения вещества под действием тепла. В большинстве случаев горение сопровождается возникновением интенсивного светового излучения – пламенем.

Различают ряд видов возникновения горения: вспышка, возгорание, воспламенение, самовозгорание, самовоспламенение, взрыв.

Вспышка – это быстрое сгорание горючей смеси без образования повышенного давления газов. Количества тепла, которое образуется при вспышке, недостаточно для продолжения горения.

Возгорание – это возникновение горения под воздействием источника зажигания.

Воспламенение – возгорание, сопровождающееся появлением пламени. При этом вся остальная масса горючего вещества остаётся относительно холодной.

Самовозгорание – явление резкого увеличения скорости экзотермических реакций окисления в веществе, приводящее к возникновению его горения при отсутствии внешнего источника зажигания. В зависимости от внутренних причин процессы самовозгорания делятся на химические, микробиологические и тепловые. Химическое самовозгорание происходит от воздействия на вещества кислорода воздуха, воды или от взаимодействия веществ. Самовозгораются промасленные тряпки, спецодежда, вата и даже металлическая стружка. Причиной самовозгорания промасленных волокнистых материалов является распределение жировых веществ тонким слоем на их поверхности и поглощение кислорода из воздуха. Окисление масла сопровождается выделением тепла. Если образуется тепла больше, чем теплопотери в окружающую среду, то возможно возникновение горения без всякого подвода тепла. Некоторые вещества самовозгораются при взаимодействии с водой. К ним относятся калий, натрий, карбид кальция и карбиды щелочных металлов. Кальций загорается при взаимодействии с горячей водой. Окись кальция (негашеная известь) при взаимодействии с небольшим количеством воды сильно разогревается и может воспламенить соприкасающиеся с ней горючие материалы (например, дерево). Некоторые вещества самовозгораются при смешивании с другими. К ним относятся в первую очередь сильные окислители (хлор, бром, фтор, йод), которые, контактируя с некоторыми органическими веществами, вызывают их самовозгорание. Ацетилен, водород, метан, этилен, скипидар под действием хлора самовозгораются на свету. Азотная кислота, также являясь сильным окислителем, может вызывать самовозгорание древесной стружки, соломы, хлопка. Микробиологическое самовозгорание заключается в том, что при соответствующей влажности и температуре в растительных продуктах, торфе интенсифицируется жизнедеятельность микроорганизмов. При этом повышается температура и может возникнуть процесс горения. Тепловое самовозгорание происходит в результате продолжительного действия незначительного источника тепла. При этом вещества разлагаются и в результате усиления окислительных процессов самонагреваются. Полувысыхающие растительные масла (подсолнечное, хлопковое и др.), касторовая олифа, скипидарные лаки, краски и грунтовки, древесина и ДВП, кровельный картон, нитролинолеум и некоторые другие материалы и вещества могут самовозгораться при температуре окружающей среды 80 - 100 ?С.

Самовоспламенение - это самовозгорание, сопровождающееся появлением пламени. Самовоспламеняться могут твёрдые и жидкие вещества, пары, газы и пыли в смеси с воздухом.

Взрыв (взрывное горение) - это чрезвычайно быстрое горение, которое сопровождается выделением большого количества энергии и образованием сжатых газов, способных производить механические разрушения.

Виды горения характеризуются температурными параметрами, основными из них являются следующие. Температура вспышки – это наименьшая температура горючего вещества, при которой над его поверхностью образуются пары или газы, способные кратковременно вспыхнуть в воздухе от источника зажигания. Однако скорость образования паров или газов ещё недостаточна для продолжения горения. Температура воспламенения – это наименьшая температура горючего вещества, при которой оно выделяет горючие пары или газы с такой скоростью, что после воспламенения их от источника зажигания возникает устойчивое горение. Температура самовоспламенения – это самая низкая температура вещества, при которой происходит резкое увеличение скорости экзотермических реакций, заканчивающееся воспламенением. Температура самовоспламенения у исследованных твёрдых горючих материалов и веществ 30 – 670 °С. Самую низкую температуру самовоспламенения имеет белый фосфор, самую высокую - магний. У большинства пород древесины эта температура равна 330 – 470 ?С.

Конспект по безопасности жизнедеятельности



Просмотров