Цветная кодировка резисторов. Как расшифровывается цветовая и кодовая маркировка резисторов. Назначение полос в цветовой маркировке резисторов

Резисторы относятся к наиболее простым, с точки зрения понимания и конструктивного исполнения, радиоэлектронным элементам. Однако при этом они занимают лидирующее место по применению в схемах различных электронных устройств. Поэтому очень важно научится применять их в практических целях, уметь самостоятельно рассчитать необходимые параметры и правильно выбрать резистор с соответствующими характеристиками. Этим и другим вопросам посвящена данная статья.

Основное назначение резисторов – ограничивать величину тока и напряжения в электрической цепи с целью обеспечения нормального режима работы остальных электронных компонентов электрической схемы, таких как транзисторы, диоды, светодиоды, микросхемы и т.п.

Первооткрывателей такого свойства электрической цепи, как сопротивление является выдающийся немецкий ученый Георг Симон Ом, поэтому за единицу измерения электрического сопротивления приняли Ом . Наиболее практическое применение получили килоомы , мегаомы и гигаомы .

Расширенный список сокращений и приставок системы СИ физических величин, используемых в радиоэлектронике. Максимальное значение 1018 – экса, а минимальное – 10-18 – атто. Надеюсь, приведенная таблица станет полезной.

Условно резисторы подразделяются на два больших подвида: постоянные и переменные.

Постоянные резисторы

Постоянные резисторы могут иметь различное конструктивное исполнение, в основном отличающееся внешним видом и размерами. Характерной особенностью постоянных резисторов является постоянное значение сопротивления, которое не предусматривается изменять в процессе эксплуатации радиоэлектронной аппаратуры.

Подстроечные резисторы

Подстроечные резисторы применяются для тонкой настройки отдельных узлов радиоэлектронной аппаратуры на этапе ее окончательной регулировки перед выдачей в эксплуатацию. Чаще всего подстроечные резисторы не имеют специальной регулировочной рукоятки, а изменение сопротивления выполняется с помощью отвертки, что предотвращает самопроизвольное изменение положения регулировочного узла, а соответственно и сопротивления.

В некоторых устройствах после окончательной их регулировки на корпус и поворотный винт подстроечного резистора наносится краска, которая предотвращает поворот винта при наличии вибраций. Также метка, нанесенная краской, служит одновременно и индикатором самопроизвольного поворота регулировочного винта, что можно визуально определить по срыву краски в месте поворотного и стационарного элементов корпуса.

В современных электронных устройствах получили широкое применение многооборотные подстроечные резисторы, позволяющие более тонко выполнять регулировку аппаратуры. Как правило, они имеют синий пластиковый корпус прямоугольной формы.

Переменные резисторы

Переменные резисторы применяются для изменения электрических параметров в схеме устройства непосредственно в процессе работы, например для изменения яркости света светодиодных ламп или громкости звука приемника. Часто, вместо «переменный резистор» говорят потенциометр или реостат .

Также к переменным резисторам относятся радиоэлементы, имеющие всего два вывода, а сопротивление их изменяется в зависимости от освещенности или температуры, например фоторезисторы или терморезисторы.
Потенциометры применяются для изменения величины силы тока или напряжения. Регулируемый параметр зависит от схемы включения.

Если переменный либо подстроечный резистор используется в качестве регулятора тока , но его называют реостатом .

Ниже приведены две схемы, в которых реостат применяется для регулировки величины тока, протекающего через светодиод VD. В конечном итоге изменяется яркость свечения светодиода.

Обратите внимание, в первой цепи задействованы все три вывода реостата, а во второй – только два – средний (регулирующий) и один крайний. Обе схемы полностью работоспособны и выполняют возлагаемые на них функции. Однако вторую цепь применять менее предпочтительно, поскольку свободный вывод реостата, как антенна, может «поймать» различные электромагнитные излучения, что повлечет за собой изменение параметров электрической цепи. Особенно не рекомендуется применять такую электрическую цепь в усилительных каскадах, где даже незначительная электромагнитная наводка приведет к непредсказуемой работе аппаратуры. Поэтому берем за основу первую схему.

Изменять величину напряжения потенциометром можно по такой схеме: параллельно источнику питания подключается два крайних вывода; между одним крайним и средним выводами можно плавно регулировать напряжение от 0 до напряжения источника питания. В данном случае, от нуля до 12 В. Потенциометр служит делителем напряжения, которому более подробно уделено внимание в отдельной статье.

Условное графическое обозначение (УГО) резисторов

На чертежах электрических схем в независимости от внешнего вида резистора его обозначают прямоугольником. Прямоугольник подписывается латинской буквой R с цифрой, обозначающей порядковый номер данного элемента на чертеже. Ниже указывается номинальное значение сопротивления.

В некоторых государствах УГО резистора имеет следующий вид.

Резистор, как и любой другой элемент, обладающий активным сопротивлением, подвержен нагреву при протекании через него тока. Природа нагрева заключается в том, что при движении электроны встречают на своем пути препятствия и ударяются об них. В результате столкновений кинетическая энергия электрона передается препятствиям, что вызывает нагрев последних. Аналогично нагревается гвоздь, когда по нему долго бьют молотком.

Мощность рассеивания нормируемый параметр для любого резистора и если ее не выдерживать, то он перегреется и сгорит.

Мощность рассеивания P линейно зависит от сопротивления R и в квадрате от тока I

P=I 2 R

Значение допустимой P показывает, какую мощность способен рассеять резистор не перегреваясь выше допустимой температуры в течение длительного времени.

Как правило, чем выше P , тем большие размеры имеет резистор, чтобы отвести и рассеять больше тепла.

На чертежах электрических схем этот параметр наносится в виде определенных меток.

Если прямоугольник пустой – значит мощность рассеивания не нормирована, поэтому можно применять самый «маленький» резистор.

Более наглядные примеры расчета P можно посмотреть здесь .

Классы точности и номиналы резисторов

Ни один радиоэлектронный элемент невозможно выполнить со сто процентным соблюдением требуемых характеристик, так как точность связана с рядом параметров и технологических процессов, которым присуща погрешность, в основном связана с точностью производственного оборудования. Поэтому любая деталь или отдельный элемент имеют отклонение от заданных размеров или характеристик. Причем, чем меньший разброс характеристик, тем точнее производственное оборудование и выше конечная стоимость изделия. Поэтому далеко не всегда оправдано применение изделий с минимальными отклонениями характеристик. В связи с этим введены классы точности. В радиолюбительской практике наибольшее применение находят резисторы трех классов точности: I, II и III. Последним временем резисторы второго и третьего классов точности встречаются довольно редко, но мы их рассмотрим в качестве примера.

К I-му классу относится допуск отклонения сопротивления от номинального значения ±5%, II –му – ±10%, III –му – ±20%. Например, при номинальном значении сопротивления 100 Ом резистора I класса, допустимое отклонение может находиться в диапазоне 95…105 Ом; для II-го – 90…110 Ом; для III -го – 80…120 Ом.
Резисторы более высокого класса точности, с допуском 1% и менее, относятся к прецизионным. Они имеют более высокую стоимость, поэтому их применение оправдано только в измерительной и высокоточной технике.

Все стандартные значения сопротивлений I…III классов точности приведены выше в таблице, значения из которой могут умножаться на 0,1; 1, 10, 100, 1000 и т.д. Например, резисторы I-го класса изготавливаются со значениями 1,3; 13; 130; 1300; 13000; 130000 Ом и т.п.

В зависимости от класса точности, номинальные значения выпускаемых промышленностью резисторов строго стандартизированы. Например, если потребуется сопротивление 17 Ом I-го класса, то вы его не найдете, поскольку данный номинал не изготавливается в соответствующем классе точности. Вместо него следует выбрать ближайший номинал – 16 Ом или 18 Ом.

Маркировка резисторов служит для визуального восприятия ряда параметров, характерных для данных электронных элементов. Среди прочих параметров следует выделить три основных: номинальное значение сопротивления, и . Именно на эти параметры в первую очередь обращают внимание при выборе рассматриваемых радиоэлементов.

На протяжении долгих лет существовало много типов маркировки, однако постепенно, по мере развития технологических процессов, пару типов маркировки вытеснили все остальные.

На корпусах советских резисторов, которые все еще широко используются, наносится маркировка в виде цифр и букв. Латинские буквы «E» и «R», стоящие рядом с цифрами или только цифры, обозначают сопротивление в омах, например 21; 21E, 21R – 21 Ом. Буквы «k» и «M» означают соответственно килоомы и мегаомы. Например, если буква стоит перед цифрами или посреди них, то она одновременно служит десятичной точкой: 68к – 68 кОм; 6к8 – 6,8 кОм; к68 – 0,68 кОм.

Для большинства радиоэлектронных элементов сейчас применяется цветовая маркировка. Такой подход является вполне рациональный, поскольку цветные метки проще рассмотреть, чем цифры и буквы, поэтому хорошо распознаются даже на самых мелких корпусах.

Цветная маркировка резисторов наносится на корпус в виде четырех или пяти цветных колец или полос. В первом случае (4 полосы) первые две полосы обозначают мантису, а во втором (5 полос) – мантису обозначают три полосы. Третье или соответственно 4-е кольцо указывают множитель. Четвертое или пятое – допустимое отклонение в процентах от номинального сопротивления.

По моему мнению и личному опыту, гораздо удобней, проще и практичней измерять сопротивление мультиметром. Здесь наименьшая вероятность допустить ошибку, поскольку цвета колец не всегда четко различимы. Например, красный цвет можно принять за оранжевый и наоборот. Однако, выполняя измерения, следует избегать касания пальцами щупов мультиметра и выводов резистора. В противном случае тело человека зашунтирует резистор, и результаты измерений будут заниженные.

Характерной особенностью SMD резисторов по сравнению с выводными аналогами являются минимальные габариты при сохранении необходимых характеристик.

В SMD компонентах отсутствуют гибкие выводы, вместо них имеются контактные площадки, посредством которых производится пайка SMD детали на аналогичные поверхности, предусмотренные на печатной плате. По этой причине SMD компоненты называют компонентами для поверхностного монтажа.

Благодаря смене традиционного корпуса на SMD упростился процесс автоматизации изготовления печатных плат, что позволило значительно снизить затраты время на изготовление электронного изделия, его массы и габаритов.

Маркировка SMD резисторов чаще всего состоит из трех цифр. Первые две указывают мантису,а третья – множитель или количество нулей, следующих после двух предыдущих цифр. Например, маркировка 681 означает 68×101 = 680 Ом, то есть после числа 68 нужно прибавить один ноль.

Если все три цифры – нули, то это перемычка, сопротивление такого SMD резистора близкое к нулю.

Для резисторов с точностью 20 % используют маркировку с тремя полосками, для резисторов с точностью 10 % и 5 % маркировку с четырьмя полосками, для более точных резисторов с пятью или шестью полосками. Первые две полоски всегда означают первые два знака номинала. Если полосок 3 или 4, третья полоска означает десятичный множитель, то есть степень десятки, которая умножается на число, состоящее из двух цифр, указанное первыми двумя полосками. Если полосок 4, последняя указывает точность резистора. Если полосок 5, третья означает третий знак сопротивления, четвёртая - десятичный множитель, пятая - точность. Шестая полоска, если она есть, указывает температурный коэффициент сопротивления (ТКС). Если эта полоска в 1,5 раза шире остальных, то она указывает надёжность резистора (% отказов на 1000 часов работы)

Следует отметить, что иногда встречаются резисторы с 5 полосами, но стандартной (5 или 10 %) точностью. В этом случае первые две полосы задают первые знаки номинала, третья - множитель, четвёртая - точность, а пятая - температурный коэффициент.

Маркировка в виде 4 колец


Маркировка в виде 5 колец


Калькулятор номиналов SMD-резисторов

Кодирование 3-я цифрами

Кодирование 4-я цифрами

  • Похожие статьи

Войти с помощью:

Случайные статьи

  • 05.10.2014

    Данный предусилитель прост и имеет хорошие параметры. Эта схема основана на TCA5550, содержащий двойной усилитель и выходы для регулировки громкости и выравнивания ВЧ, НЧ, громкости, баланса. Схема потребляет очень малый ток. Регуляторы необходимо как можно ближе расположить к микросхеме, чтобы уменьшить помехи, наводки и шум. Элементная база R1-2-3-4=100 Kohms C3-4=100nF …

  • 16.11.2014

    На рисунке показана схема простого 2-х ваттного усилителя (стерео). Схема проста в сборке и имеет низкую стоимость. Напряжение питания 12 В. Сопротивление нагрузки 8 Ом. Схема усилителя Рисунок печатной платы (стерео)

  • 20.09.2014

    Его смысл pазличен для pазных моделей винчестеpов. В отличие от высокоуpовневого фоpматиpования — создания pазделов и файловой стpуктуpы, низкоуpовневое фоpматиpование означает базовую pазметку повеpхностей дисков. Для винчестеpов pанних моделей, котоpые поставлялись с чистыми повеpхностями, такое фоpматиpование создает только инфоpмационные сектоpы и может быть выполнено контpоллеpом винчестеpа под упpавлением соответствующей пpогpаммы. …

Ниже приведена программа для определения номинала сопротивления резистора и его точности по цветной маркировке на корпусе резистора. Чтобы правильно задать маркировку необходимо соблюсти ряд условий:

    Крайнее кольцо на корпусе резистора указывает на точность, выберете соответствующий цвет в крайней правой форме

    Для указания цвета других колец также воспользуйтесь соответствующими формами

    ВНИМАНИЕ!!! Программа рассчитана только на маркировку с 4-мя и 5-ю кольцами!!!

    Если Вам необходимо узнать маркировку для 4-ех кольцевого обозначения, то в первой слева форме выберете значение - "полоса отсутствует" .

Черный Коричневый Красный Оранжевый Желтый Зеленый Синий Фиолетовый Серый Белый Полосы нет Черный Коричневый Красный Оранжевый Желтый Зеленый Синий Фиолетовый Серый Белый Черный Коричневый Красный Оранжевый Желтый Зеленый Синий Фиолетовый Серый Белый Черный Коричневый Красный Оранжевый Желтый Зеленый Синий Фиолетовый Серый Белый Золотая Серебрянная Фиолетовый Синий Зеленый Коричневый Красный Золотая Серебрянная Полосы нет

Кодированное обозначение номинального сопротивления, допуска и примеры обозначения

Кодовая маркировка резисторов состоит из трёх или четырёх знаков: две цифры и буква или три цифры и буква. Буква кода является множителем, обозначающим сопротивление в Омах, и определяет положение запятой десятичного знака. Кодовое обозначение допускаемого отклонения состоит из буквы латинского алфавита.

Пример кодовой маркировки резистора: код 3R9J - состоит из четырех символов, буква R в данном случае является, что-то наподобие разделительной запятой, т.о. получаем число 3,9. Последняя буква указывает, согласно таблице, на допуск в 5%, в итоге получаем резистор 3,9 Ом +-%5 .
Разберем еще один пример: код 12K4F - состоит из 5-ти символов, числа формируют значение сопротивления, буква K - является разделителем и множителем одновременно, ориентируясь на таблицу получаем 12,4 103 Ом, буква F указывает на точность +-1%, в итоге получаем 12,4 кОМ±1%

Цветовая маркировка номинального сопротивления и допуска отечественных резисторов.

Цветовая маркировка резисторов обозначается, как 3 или более цветных полосок на корпусе резистора. Каждый цвет формирует числовое значение сопротивления резистора, согласно таблице ниже. Как правило последняя полоска указывает на величину допуска резистора, а первые полоски формируют величину сопротивления, к примеру у четырех полостной маркировки, первые две полосы указывают на величину сопротивления в Омах, а третья полоса является множителем для этой величины.

Цвет знака Первая
цифра
Вторая
цифра
Третья
цифра
Множитель Допуск,
%
ТКС
Серебристый 10 -2 ±10
Золотистый 10 -1 ±5
Черный 0 0 1
Коричневый 1 1 1 10 ±1 100
Красный 2 2 2 10 2 ±2 50
Оранжевый 3 3 3 10 3 15
Желтый 4 4 4 10 4 25
Зеленый 5 5 5 10 5 ±0,5
Голубой 6 6 6 10 6 ±0,25 10
Фиолетовый 7 7 7 10 7 ±0,1 5
Серый 8 8 8 10 8 ±0,05
Белый 9 9 9 10 9 1

Кодовая маркировка отечественных резисторов

Согласно ГОСТ 11076-69 и требованиями Публикаций 62 и 115-2 IЕС в кодовой маркировке первые 3-и или 4-е символа указывают на значение номинального сопротивления резистора, которое определяется по базовому значению из рядов ЕЗ...Е192, и множитель. Символ который стоит в конце кода обозначает допуск- класс точности резистора. Требования данного ГОСТа и IEC практически совпадают с иностранным стандартом BS1852 (British Standart).

Следует добавить, что часто на корпусе резистора дополнительно, кроме основного кода, добавляют код несущий информацию о типе резистора, его номинальной мощности, и т.п.

Наиболее популярной деталью для электронных схем является резистор – пассивный элемент, основным параметром которого является сопротивление протекающему току. Единица измерения – Ом.

Резисторы могут быть фиксированными и регулируемыми (потенциометры). В эту группу включаются также фоторезисторы, варисторы и термисторы, в которых сопротивление определяется освещением, напряжением или температурой.

Фиксированные резисторы изготавливаются по разным технологиям. Наиболее популярные:

  • слоистые;
  • объемные;
  • проволочные.

Определение сопротивления

Производители дают только самые важные параметры в определении резистивных элементов:

  • номинальное сопротивление;
  • допуск, выраженный в процентах, соответствующих классу точности;
  • номинальная мощность.

Как определить сопротивление резистора, зависит от системы кодирования. В случае небольших элементов, где нет места, используется кодовая маркировка резисторов: символы из чисел и букв или цветные полосы. Отметки цветом применяются еще потому, что цифры легко стираются, такую надпись часто труднее разобрать.

Буквенное кодирование предусматривает два стандарта:

  1. Обозначение резисторов в системе IEK. Для множителя используют букву: R = 1, K = 1000, M = 1000000;
  2. В стандарте MIL третья цифра обозначает коэффициент, на который умножаются два первых числа.

Примеры, как узнать сопротивление резистора в разных системах:

  1. R47 – IEK, R47 –MIL, номинал резистора – 0,47 Ом;
  2. 6R8 – IEK, 6R8 – MIL, R = 6,8 Ом;
  3. 27R – IEK, 270 – MIL, говорит о значении номинального сопротивления 27 Ом;
  4. 820R, K82 – IEK, 821 – MIL, R = 820 Ом;
  5. 47K – IEK, 473 – MIL, R = 47 кОм;
  6. 100R – IEK, 101 – MIL, R = 100 Ом;
  7. 2M7 – IEK, 275 – MIL, R = 2,7 мОм;
  8. 56М – IEK, 566 – MIL, R = 56 мОм.

Цветовое кодирование

Более распространенным способом кодирования является цветовая маркировка резисторов. Все расшифровки содержатся в публикуемых таблицах.

Международную систему цветных кодов приняли много лет назад, как простой и максимально быстрый способ определения омического значения резистора вне зависимости от его размера.

Важно! Маркировка всегда читается по одной полосе поочередно, начиная от левого конца детали. Каждый цвет ассоциируется с числом, соответствующим ему в таблице.

Элемент идентифицируется цветными полосками: от 3-х до 6-ти. Определение номинала резистора по цветовой маркировке зависит от числа полос:

  1. Три полоски. Первые две – значения сопротивления резистора, третья – коэффициент, на который умножаются цифры, определяемые двумя кольцами. Допуск для таких деталей имеет общую величину 20%;
  2. Четырехполосный код. Номинал резистора считывается по цветам аналогично, четвертая полоса означает допуск. Четырехдиапазонный вариант является самым распространенным. Если четвертой отметки нет, он превращается в трехдиапазонный, где сопротивление неизменное, но погрешность 20%;
  3. Резистор с пятью полосами. Относится к точным элементам. Первые три столбца – сопротивление, четвертый – множительный коэффициент, 5-й – допуск. К примеру, красный, желтый, зеленый, синий – R = 24 x 10 = 240 Ом, ± 0,25%;
  4. Шестиполосный код используется для высокоточных деталей. Пять полос расшифровываются, как и ранее, шестая указывает температурный коэффициент (ppm/° C). Этот показатель важен для некоторых схем. Коэффициент сообщает, на сколько процентов варьируется сопротивление при температурных изменениях в 1° C. Значение ТКС может указываться в ppm/К.

По цветной маркировке нельзя узнать о мощности, которую будет рассеивать элемент. Можно классифицировать резисторы по мощности, исходя из размера детали. Коммерческие резисторы рассеивают 1/4 Вт, 1/2 Вт, 1 Вт, 2 Вт и т. д. Больший размер элемента говорит о большей рассеиваемой мощности.

Для чего служат допуски

Чем меньше значение допуска, тем ближе сопротивление к желаемому значению.

Иногда схема содержит резисторы, сопротивления которых не очень распространены, и их сложно найти на рынке. С допуском можно приблизиться к нужной величине.

На рисунке представлен образец сопротивления. Он содержит цветовую кодировку. Если расшифровать символы, получаются следующие цифры:

  1. Данное сопротивление составляет 590 Ом с допуском 5%;
  2. Значит, можно определить максимальную и минимальную величину. Таким образом, резистор обладает любым сопротивлением между 619,5 Ом и 560, 5 Ом.

Важно! У проволочных деталей существуют некоторые различия в цветовом коде. Тип такого резистора можно узнать по первоначальному расширенному белому кольцу. Остальные кольца по цвету соответствуют стандартным обозначениям, но заключительное может указывать на повышенную сопротивляемость теплу.

Для таких деталей имеется отдельная таблица данных, в которой можно заметить другие цвета и для погрешностей.

Отклонения от стандарта

  1. Надежность. Этот показатель встречается в виде исключения в кодах, где 5 полос, и показывает процент отказов за тысячечасовой временной промежуток;
  1. Одно черное кольцо. Резистор, имеющий нулевое сопротивление. Такие элементы используются для соединения трасс на печатной плате;
  2. Замена цветов. Резисторные элементы, рассчитанные на высокое напряжение, маркируются желтым на месте золотого и серым на месте серебряного. Это делают из соображений безопасности, чтобы на внешнем покрове не присутствовало частиц металла.

SMD-резисторы

Для резисторов поверхностного монтажа не используют систему цветового маркирования из-за их микроскопических размеров, но иногда кодируют цифрами. Обычно три числа соответствуют:

  • первые два – сообщают о величине сопротивления;
  • третье – коэффициент, на который она умножается.

Никаких дополнительных данных не приводится, так как невозможно вместить больше цифр.

Декодер цветовой маркировки резисторов можно найти в удобном режиме, чтобы не заниматься поиском по таблицам. Существует онлайн калькулятор, куда заносится цветная маркировка резисторов с обозначением колец, и в результате вычисляется величина сопротивления. Причем можно рассчитать, как номинал резистора, так и произвести обратную операцию: узнать по сопротивлению цветовой код.

Перед чтением кодов желательно проверить документацию производителя, если есть возможность, чтобы не было сомнений в используемом стандарте. Для контрольной проверки сопротивления служит мультиметр.

Видео

И сегодня наш разговор будем посвящен одному компоненту, без которого невозможно представить ни одну электрическую цепь, а именно резистору 🙂

Итак, начнем с основного определения резистора. Резистор – это, в первую очередь, пассивный элемент электрической цепи, который имеет определенное значение сопротивления (оно может быть постоянным и переменным). Предназначен этот элемент для линейного преобразования силы тока в напряжения и наоборот, ведь как мы помним из , напряжение и сила тока связаны друг с другом как раз через величину сопротивления:

Являются одними из самых широко используемых компонентов – редко можно встретить схему, в которой бы не было ни одного резистора 😉 Основным параметром резистора, как уже понятно из определения, является его электрическое сопротивление, измеряемое в Омах (Ом).

Обозначение резисторов на схеме.

Давайте рассмотрим обозначение резисторов на схемах . Существуют два возможных варианта:

Кроме того, используются немного измененные символы, которые характеризуют резисторы на схеме по величине номинальной мощности рассеивания . Тут возникает вполне закономерный вопрос – а что это за параметр такой – номинальная мощность рассеивания? При протекании тока через резистор в нем будет выделяться , что приведет к нагреву резистора. И если мощность будет превышать допустимую величину, то резистор будет перегреваться и просто сгорит. Таким образом, номинальная рассеиваемая мощность – это величина мощности, которая может рассеиваться резистором без превышения предельно допустимой температуры. То есть если мощность в цепи будет меньше или равна номинальной, то с резистором все будет в порядке 🙂 Итак, вернемся к обозначению резисторов:

Вот так обозначаются наиболее часто встречающиеся на схемах резисторы в зависимости от их номинальной рассеиваемой мощности, тут даже особо нечего дополнительно комментировать =)

Сопротивление резистора на схемах указывается рядом с условным обозначением, причем единицу измерения обычно опускают. Если увидите на схеме рядом с резистором число 68, то не сомневайтесь ни секунды – сопротивление резистора равно 68 Омам. Если же величина сопротивления составляет, к примеру, 1500 Ом (1,5 КОм), то на схеме будет обозначение “1.5 К”:

С этим все просто… Несколько сложнее ситуация обстоит с цветовой маркировкой резисторов. Сейчас мы разберемся и с этим моментом 😉

Цветовая маркировка резисторов.

Большинство резисторов имеют цветовую маркировку , такую как на этом рисунке. Она представляет из себя 4 или 5 полос (чаще всего, хотя их может быть, например, и 6) определенных цветов, и каждая из этих полос несет определенный смысл. Первые две полоски абсолютно всегда обозначают первые две цифры номинального сопротивления резистора. Если полосок всего 3 или 4, то третья полоса будет означать множитель, на который необходимо умножить число, полученное из первых двух полос, для определения величины сопротивления. Если всего на резисторе 4 полосы, то 4 будет указывать на точность резистора. Если полос всего пять, то ситуация несколько меняется – первые три полосы означают три цифры сопротивления резистора, четвертая – множитель, пятая – точность. Соответствие цифр цветам приведено в таблице:

Тут есть еще один немаловажный момент – а какую именно полосу считать первой? 🙂 Чаще всего первой считается та полоса, которая находится ближе к краю резистора. Кроме того, можно заметить, что золотая и серебряная полосы не могут быть первыми, поскольку не несут информации о величине сопротивления. Поэтому если на резисторе есть полосы этого цвета и они расположены с краю, то можно точно утверждать, что первая полоса находится с противоположной стороны. Давайте рассмотрим практический пример:

Поскольку у нас здесь 5 полос, то первые три указывают на сопротивление резистора. Посмотрев нужные значения в таблице, мы получаем величину 510. Четвертая полоса – множитель – в данном случае он равен . И, наконец, пятая полоса – погрешность – 10 %. В итоге мы получаем резистор 510 КОм, 10 %.

В принципе, если нет желания разбираться с цветами и значениями, то можно обратиться к какому-нибудь автоматизированному сервису, определяющему сопротивление по цветовой маркировке, которых сейчас полно в интернете. Там нужно будет только выбрать цвета, которые нанесены на резистор и сервис сам выдаст величину сопротивления и точность.

Итак, с цветовой маркировкой резисторов мы разобрались, переходим к следующему вопросу 🙂

Помимо цветовой маркировки используется так называемая кодовая – для обозначения номинала резистора в данном случае используются буквы и цифры (четыре или пять знаков). Первые знаки (все, кроме последнего) используются для обозначения номинала резистора и включают в себя две или три цифры и букву. Буква определяет положение запятой десятичного знака, а также множитель. Последний же символ определяет допустимое отклонение сопротивления резистора. Возможны следующие значения:

Для букв, обозначающих множитель возможны такие варианты:

Давайте для наглядности рассмотрим несколько примеров:

С этим типом маркировки мы разобрались, давайте теперь изучим всевозможные способы маркировки SMD резисторов.

Маркировка SMD резисторов.

Для SMD резисторов также существуют разные варианты обозначения номиналов. Итак, давайте разбираться:

  • Маркировка тремя цифрами – в данном случае первые две цифры – это величина сопротивления в Омах, а третья цифра – множитель. То есть величину в Омах нужно умножить на десять в соответствующей множителю степени.
  • Маркировка четырьмя цифрами. Тут все похоже на предыдущий вариант, вот только для обозначения номинала сопротивления в Омах используются первые три цифры, а не две. Четвертая цифра – множитель.
  • Маркировка двумя цифрами и символом. В данном случае две цифры определяют сопротивление резистора, но не напрямую, а через специальный код. Ниже я приведу таблицу всех возможных кодов. Если на резисторе указан код “02”, то из таблицы мы получаем значение 102 Ома. Но и это не является финальным значением сопротивления 🙂 Нужно еще учесть третий символ, который является множителем. Для этого символа возможны такие варианты: S=10 -2 ; R=10 -1 ; B=10; C=10 2 ; D=10 3 ; E=10 4 ;

Таблица соответствия кодов величине сопротивления:

Клик левой кнопкой мыши – для увеличения.

В первых двух вариантах маркировки возможно также использование латинской буквы “R” – она ставится для обозначения положения десятичной запятой.

По традиции рассмотрим пару примеров:

Сопротивления резисторов не являются произвольными числами. Существуют специальные ряды номиналов , которые представляют из себя значения от 0 до 10. Так вот номиналы резисторов (значения сопротивления) могут иметь величины, которые определяются как значение из соответствующего ряда, умноженное на 10 в целой степени. Рассмотрим основные ряды – E3, E6, E12 и E24:

Цифра в названии ряда означает количество чисел ряда номиналов в диапазоне от 0 до 10. В ряде E3 – три числа – 1.0, 2.2, 4.7, аналогично, и в других рядах. Таким образом, если резистор из ряда E3, то его номинал (сопротивление) может быть равно 1 Ом, 2.2 Ом, 4.7 Ом, 10 Ом, 22 Ом, 47 Ом…..1 КОм……22 КОм и т. д.Также существуют номинальные ряды Е48, Е96, Е192 – их отличие от рассмотренного нами ряда состоит лишь в том, что допустимых значений еще больше 🙂

На этом мы заканчиваем нашу статью, мы рассмотрели основные моменты, которые будут важны при работе с резисторами, а в одной из следующих статей мы продолжим разговор о резисторах и на очереди будут переменные резисторы, так что следите за обновлениями и заходите на наш сайт!



Просмотров