Что такое масса в физике. Что такое масса, как ее вычислить, и чем она отличается от веса

Что такое масса. Определение "массы". Инертная масса, гравитационная масса.

Что такое "масса"?

МАССА (от латинского massa - глыба, ком, кусок), фундаментальная физическая величина, одна из основных характеристик материи, определяющая инертные и гравитационные свойства всех тел - от макроскопических тел до атомов и элементарных частиц. Соответственно различают Массу инертную и Массу гравитационную (тяжелую, тяготеющую).

Понятие Масса было введено в механику И. Ньютоном. В классической механике Ньютона Масса входит в определение импульса (количества движения) тела: импульс р пропорционален скорости движения тела v , p = mv (1). Коэффициент пропорциональности - постоянная для данного тела величина m - и есть Масса тела. Эквивалентное определение Массы получается из уравнения движения классической механики f = ma (2). Здесь Масса - коэффициент пропорциональности между действующей на тело силой f и вызываемым ею ускорением тела a . Определенная соотношениями (1) и (2) Масса называется инерциальной массой, или инертной массой; она характеризует динамические свойства тела, является мерой инерции тела: при постоянной силе чем больше Масса тела, тем меньшее ускорение оно приобретает, т. е. тем медленнее меняется состояние его движения (тем больше его инерция). Действуя на различные тела одной и той же силой и измеряя их ускорения, можно определить отношения Масса этих тел: m1: m2: m3... = а1: а2: а3... ; если одну из Масс принять за единицу измерения, можно найти Массу остальных тел.

В теории гравитации Ньютона Масса выступает в другой форме - как источник поля тяготения. Каждое тело создает поле тяготения, пропорциональное Массе тела (и испытывает воздействие поля тяготения, создаваемого другими телами, сила которого также пропорциональна Массе тел). Это поле вызывает притяжение любого другого тела к данному телу с силой, определяемой законом тяготения Ньютона:

где r - расстояние между телами, G - универсальная гравитационная постоянная, a m1 и m2 - Массы притягивающихся тел. Из формулы (3) легко получить формулу для веса Р тела массы m в поле тяготения Земли: Р = mg (4).

Здесь g = G*M/r 2 - ускорение свободного падения в гравитационном поле Земли, а r примерно равен R - радиусу Земли. Масса, определяемая соотношениями (3) и (4), называется гравитационной массой тела. В принципе ниоткуда не следует, что Масса, создающая поле тяготения, определяет и инерцию того же тела. Однако опыт показал, что инертная Масса и гравитационная Масса пропорциональны друг другу (а при обычном выборе единиц измерения численно равны). Этот фундаментальный закон природы называется принципом эквивалентности. Его открытие связано с именем Г. Галилея, установившего, что все тела на Земле падают с одинаковым ускорением. А. Эйнштейн положил этот принцип (им впервые сформулированный) в основу общей теории относительности. Экспериментально принцип эквивалентности установлен с очень большой точностью. Впервые (1890-1906) прецизионная проверка равенства инертной и гравитационной Масс была произведена Л. Этвешем, который нашел, что Массы совпадают с ошибкой ~ 10 -8 . В 1959-64 годах американские физики Р. Дикке, Р. Кротков и П. Ролл уменьшили ошибку до 10 -11 , а в 1971 году советские физики В.Б. Брагинский и В.И. Панов - до 10 -12 .

Принцип эквивалентности позволяет наиболее естественно определять Массу тела взвешиванием.

Первоначально Масса рассматривалась (например, Ньютоном) как мера количества вещества. Такое определение имеет ясный смысл только для сравнения однородных тел, построенных из одного материала. Оно подчеркивает аддитивность Массы - Масса тела равна сумме Массы его частей. Масса однородного тела пропорциональна его объему, поэтому можно ввести понятие плотности - Массы единицы объема тела.

В классической физике считалось, что Масса тела не изменяется ни в каких процессах. Этому соответствовал закон сохранения Массы (вещества), открытый М.В.Ломоносовым и А.Л.Лавуазье. В частности, этот закон утверждал, что в любой химической реакции сумма Масс исходных компонентов равна сумме Масс конечных компонентов. Понятие Масса приобрело более глубокий смысл в механике специальной теории относительности А. Эйнштейна, рассматривающей движение тел (или частиц) с очень большими скоростями - сравнимыми со скоростью света с ~ 3x10 10 см/сек. В новой механике - она называется релятивистской механикой - связь между импульсом и скоростью частицы дается соотношением:

При малых скоростях (v << c ) это соотношение переходит в Ньютоново соотношение р = mv . Поэтому величину m 0 называют массой покоя, а Массу движущейся частицы m определяют как зависящий от скорости коэффициент пропорциональности между p и v :

Имея в виду, в частности, эту формулу, говорят, что Масса частицы (тела) растет с увеличением ее скорости. Такое релятивистское возрастание Массы частицы по мере повышения ее скорости необходимо учитывать при конструировании ускорителей заряженных частиц высоких энергий. Масса покоя m 0 (Масса в системе отсчета, связанной с частицей) является важнейшей внутренней характеристикой частицы. Все элементарные частицы обладают строго определенными значениями m 0 , присущими данному сорту частиц.

Следует отметить, что в релятивистской механике определение Массы из уравнения движения (2) не эквивалентно определению Массы как коэффициента пропорциональности между импульсом и скоростью частицы, так как ускорение перестает быть параллельным вызвавшей его силе и Масса получается зависящей от направления скорости частицы.

Согласно теории относительности, Масса частицы m связана с ее энергией Е соотношением:

Масса покоя определяет внутреннюю энергию частицы - так называемую энергию покоя E 0 = m 0 с 2 . Таким образом, с Массой всегда связана энергия (и наоборот). Поэтому не существует по отдельности (как в классической физике) закона сохранения Массы и закона сохранения энергии - они слиты в единый закон сохранения полной (т. е. включающей энергию покоя частиц) энергии. Приближенное разделение на закон сохранения энергии и закон сохранения Массы возможно лишь в классической физике, когда скорости частиц малы (v << c ) и не происходят процессы превращения частиц.

В релятивистской механике Масса не является аддитивной характеристикой тела. Когда две частицы соединяются, образуя одно составное устойчивое состояние, то при этом выделяется избыток энергии (равный энергии связи) D Е , который соответствует Массе D m = D E/с 2 . Поэтому Масса составной частицы меньше суммы Масс образующих его частиц на величину D E/с 2 (так называемый дефект масс). Этот эффект проявляется особенно сильно в ядерных реакциях. Например, Масса дейтрона (d ) меньше суммы Масс протона (p ) и нейтрона (n ); дефект Масс D m связан с энергией Е g гамма-кванта ( g ), рождающегося при образовании дейтрона: р + n -> d + g , E g = D mc 2 . Дефект Массы, возникающий при образовании составной частицы, отражает органическую связь Массы и энергии.

Единицей Массы в СГС системе единиц служит грамм , а в Международной системе единиц СИ - килограмм . Масса атомов и молекул обычно измеряется в атомных единицах массы. Масса элементарных частиц принято выражать либо в единицах Массы электрона m e , либо в энергетических единицах, указывая энергию покоя соответствующей частицы. Так, Масса электрона составляет 0,511 Мэв, Масса протона - 1836,1 m e , или 938,2 Мэв и т. д.

Природа Массы - одна из важнейших нерешенных задач современной физики. Принято считать, что Масса элементарной частицы определяется полями, которые с ней связаны (электромагнитным, ядерным и другими). Однако количественная теория Массы еще не создана. Не существует также теории, объясняющей, почему Масса элементарных частиц образуют дискретный спектр значений, и тем более позволяющей определить этот спектр.

В астрофизике Масса тела, создающего гравитационное поле, определяет так называемый гравитационный радиус тела R гр = 2GM/c 2 . Вследствие гравитационного притяжения никакое излучение, в том числе световое, не может выйти наружу, за поверхность тела с радиусом R =. Звезды таких размеров будут невидимы; поэтому их назвали "черными дырами".

мера инертности (см. Инерция) и гравитационных (см. Гравитация) свойств тел. От массы тела зависят: ускорения, которые приобретаются телом под действием разных сил и 2) силы гравитационного воздействия (притяжения) на данное тело со стороны других тел.

Отличное определение

Неполное определение ↓

МАССЫ

термин, обозначающий широкие круги населения. Он употребляется в двух более или менее явно выраженных противоположных смыслах: 1) в положительном, когда массы фактически отождествляются с народом (««народные массы»); 2) в отрицательном смысле, когда массы противопоставляются творческому меньшинству (в некоторых случаях – «элите»). Следует отличать понятие «масса» от понятия «толпа»: второе может иметь специальный социально-психологический смысл (случайное собрание людей, охваченных одними, чаще всего разрушительными, негативными эмоциями) либо использоваться в социальной философии как метафора («темная масса», т. е. Необразованная, стихийно действующая) .

Отличное определение

Неполное определение ↓

1)в естественнонаучном смысле количество вещества, содержащегося в теле; сопротивление тела изменению своего движения (инерция) называют инертной массой; физической единицей массы является инертная масса 1 см3 воды, что составляет 1 г (грамм массы). Каждое тело обладает также тяжелой массой, которая количественно соответствует инертной массе и которая определяет явление гравитации; см. также Энергия, Поля теория; 2) в социологическом смысле группа людей, внутри которой индивиды до известной степени теряют свою индивидуальность и благодаря взаимному влиянию приобретают схожие чувства, инстинкты, побуждения, волевые движения (см. Коллектив). Массы образуются под давлением экономической или духовной необходимости ("омассовление" индивидов). Образуется и действует масса в соответствии с закономерностью, изучение которой является задачей психологии масс и социологии. Буржуазное общество уже примерно с сер. 19 в., вследствие все более быстрого роста населения, стало приходить к убеждению, что оно преобразуется в общество масс. Эту форму общества многие социологи считали единственно возможной для европейской (т.е. для "современной") сферы цивилизации. Для такого общества характерны: массовая потребность в материальных и культурных благах и соответствующее массовое потребление, которое должно направляться частично техническим коллективом, частично государством (которое со своей стороны принимает характер организации масс). Это развитие ведет "в своем конечном результате к прогрессирующей всеобщей механизации, автоматизации и распределению функций во всех областях жизни, к законченной функциональной системе, состоящей из вещной аппаратуры и человеческих носителей этих функций. Все воспринятые под этим углом зрения явления (т.е. экономические, социальные и культурные) в возрастающей степени принимают характер чего-то субстанционально-опустошенного, в ценностном отношении нейтрального, короче говоря - чисто функциональный характер. Эти явления, т.о., выступают в жизни современного общества только в качестве функций др. функций, в совершенно определенных связях и процессах. Но они уже не обладают своей собственной, автономной силой воздействия и способностью самостоятельно формировать др. явления.

Отличное определение

Неполное определение ↓

от лат. massa – глыба, масса) – мера инертных и гравитац. свойств материальных объектов. Филос. значение понятия М. определяется его тесной связью с категориями материи, движения, пространства и времени. Исторически понятие М. формировалось в связи с понятием материи, ее меры и движения. Поиски меры материи связаны с определ. идеями о ее структуре и сохранении. Античный атомизм трактовал принцип неуничтожимости и несотворимости материи как сохранение неделимых, вечно существующих атомов. Опираясь на идеи атомизма, Ньютон ввел понятие М., или количества материи, как меры таковой, пропорциональной плотности и объему тела. Задача определения М. тела в принципе сводится здесь к тому или иному способу счета неделимых частиц материи в единице объема. Поиски законов движения материи вели к открытию фундаментальных свойств материальных объектов. Тела отличаются друг от друга не только числом частиц (количество материи), но, в частности, и свойством и н е р ц и и. Инерция трактовалась в классич. физике как свойство – атрибут, присущий атому и, следовательно, макроскопич. телу, составленному из этих атомов. М. как число атомов в данном теле естественно выступала как мера инерции тела. Инерция рассматривалась как косность материи, как ее полная пассивность по отношению к движению. Принцип инерции позволил придать понятию M. форму физич. величины, измеряемой в эксперименте. Понятие М. формировалось и в связи с исследованием гравитационных взаимодействий. Понятие гравитационной М. по своему содержанию не зависимо от понятия инертной М. Проблема состоит в том, чтобы выяснить, откуда и на каких основаниях было введено в закон тяготения понятие гравитационной М. Инертная и гравитационная М. пропорциональны, а при соответств. выборе единиц равны. На этом основании можно было бы считать, как иногда допускается, что понятие M. берется из второго закона Ньютона Однако такое решение вопроса логически несостоятельно, ибо сама возможность пропорциональности инертной и гравитационной М. реализуется только тогда, когда введено понятие гравитационной М. В силу этого понятие гравитационной М. могло быть введено только на основаниях, лежащих вне системы механич. понятий. И действительно, открытию законов механич. движения предшествовало открытие закона тяготения. Заслуга Ньютона заключалась именно в том, что он смело ввел понятие М., опираясь на атомистич. идеи. Формирование понятия М. способствовало открытию закона тяготения: Т.о., понятие М. уже в классич. физике складывается из трех структурных элементов общего понятия - М. как число материальных частиц, М. гравитационная и М. инертная. Каждый из них имеет относительно независимое содержание. Их связь физически проявляется в упомянутой пропорциональности гравитационной и инертной М. В общей теории относительности пропорциональность инертной и гравитационной М. послужила исходным принципом (принцип эквивалентности) в построении совр. теории гравитации. Эта пропорциональность, в свою очередь, может быть понята в свете данных совр. науки на основе единства пространства и времени. Гравитация, согласно теории относительности, взаимосвязана с геометрич. свойствами пространства. Инертная М., в свою очередь, оказывается в тесной связи со временем. Глубокая связь пространства и времени может служить теоретич. объяснением родства инертной и гравитационной М. Развитие понятия М. определялось в процессе познания развитием научных знаний о видах материи и ее структуре. Исследование электромагнитных явлений привело к открытию нового вида материи – электромагнитного поля. Совр. физика позволяет рассматривать и другого рода поля как материальные объекты. В связи с исследованием движения электрич. заряженных частиц в электромагнитном поле возникла необходимость ввести понятие электромагнитной М. При этом оказалось, что электромагнитная М., напр., электрона изменяется в зависимости от скорости его движения. Это изменение электромагнитной М. открывало возможность объяснить инерцию на пути исследования электромагнитных процессов. Предполагалось, что у электрона остается механич. неизменная М. наряду с электромагнитной М., обусловленной его электрич. зарядом. При этом фактич. зависимость суммарных инертных свойств электрона экспериментально, как полагали, не должна совпадать с законом изменения одной только электромагнитной М., ибо электромагнитная М. – величина изменяющаяся, а механич. М. электрона считалась в то время неизменной. Но в экспериментах, поставленных в начале века, электроны вели себя так, словно их М. имеет целиком полевую природу. Это послужило основанием для заявлений о полном сведении М. электрона к электромагнитной М. А т.к. с понятием неизменной М. в классич. смысле связывалось представление о материи, то обнаруженные факты дали повод говорить о сведении материи к электричеству. В дальнейшем, однако, выяснилось, что сущность М. электрона, как и др. частиц, не исчерпывается электромагнитной природой. Это следовало уже из теории относительности. Эйнштейн открыл общий закон изменения М. со скоростью движения, применимый для любых частиц, обладающих собств. М., вне зависимости от наличия или отсутствия у них электрич. заряда. Этот закон по математич. форме совпадает с законом зависимости электромагнитной М. от скорости движения. Из него следует, что поскольку закон зависимости массы электрона один и тот же как для механич., так и для электромагнитной М., то вывод, что М. электрона имеет исключительно электромагнитную природу, нельзя считать достоверным. Совр. квантовая теория полей показывает, что не только электромагнитное поле, но и поля другой природы вносят нек-рый вклад в полную М. частицы; однако она не дает оценки относит. вклада тех или иных полей в М. частицы. Вопрос о природе М. в этом смысле остается нерешенной проблемой. Общий закон зависимости М. от скорости движения указывает на глубокую связь М. с энергией. Известно, что чем больше скорость тела, тем больше кинетич. энергия и вместе с тем, как это следует из закона зависимости М. от скорости, тем больше М. тела. В силу закона взаимосвязи М. и энергии (Е=mс2) М. оказывается не только мерой инерции и гравитации, но может выступать и как мера энергии. Закон изменения М. тела со скоростью его движения и закон взаимосвязи М. и энергии внесли изменение в понятие М. и в др. отношении. Существуют частицы, имеющие М. покоя, или собств. М. При движении этих частиц с нек-рой скоростью у них возникает дополнит. М., к-рая при приближении этой скорости к скорости света неограниченно возрастает. Общая М. таких частиц складывается из этих двух родов масс. М. частицы в системе, связанной с самой частицей, будет иметь вполне определ. фиксиров. значение. Это и будет собств. М. частицы, являющаяся ее специфич. характеристикой, отличающей данную частицу от других. Но т.к. частицы движутся по отношению к др. системам, то они вместе с тем обладают еще и динамич. массой. М. покоя инвариантна по отношению к пространств. перемещениям частицы как чего-то целого, в то время как динамич. масса – изменяющаяся в этом отношении величина. Однако М. покоя – не абсолютно неизменная величина. Она неинвариантна по отношению к структурным изменениям материи. Если частицы с определ. собств. М. входят как часть в целое структурное образование, то собств. М. этого целого не равна простой сумме собств. М. частиц, составляющих это целое. Ядро имеет вполне определ. по величине собств. М., к-рая, однако, не равна сумме собств. М. составляющих его частей – протонов и нейтронов. Это изменение собств. М. получило название дефекта М. Таким образом, М. покоя оказывается изменяющейся величиной и величина этого изменения служит характеристикой структурных связей элементарных частиц, образующих более сложные устойчивые дискретные единицы материи – ядра, ионы, атомы, молекулы. Величина дефекта М. может быть выражена через величину энергии. Это обстоятельство служит порой поводом к тому, чтобы явление дефекта М. описывать как явление превращения М. или даже материи в энергию. Эти утверждения противоречат фактич. содержанию понятий M. и энергии. Такой вывод можно было бы сделать лишь в том случае, если, во-первых, под М. понимать только М. покоя и, во-вторых, если рассматривать энергию ядерных реакций вне связи с М., как чистую энергию. Обнаружение изменчивости динамич. М. со скоростью движения, выяснение изменчивости собств. М. в связи со структурными изменениями материи не отменяет общего понятия М., но выявляет лишь сложный состав этого понятия. Подобно тому, как общее понятие энергии предполагает специфич. формы ее проявления, общее понятие М. также может проявляться в специфич. формах. Если при этом учитывать закон взаимосвязи М. и энергии, то неизбежен вывод, что не существует чистой энергии как таковой. Энергия в любой форме всегда связана с соответств. типом М. В силу этого нет логич. оснований утверждать, что M., a тем более материя, может превращаться в энергию. М. и энергия – два взаимосвязанных, не отделимых друг от друга свойства материальных объектов. В свете совр. атомистики М. уже не может рассматриваться как количество материи, ибо элементарные частицы не являются неизменными структурными элементами материи, как это представлялось в классич. атомизме. Можно говорить лишь о различных аспектах единого понятия М. – структурном, инерционном, гравитационном. М. может выступать в качестве меры инерции и гравитации в силу того, что она подчиняется соответствующему закону сохранения. При этом закон сохранения М. может выполняться лишь для полной М., включающей в себя все специфич. типы М. – М. покоя, динамич. М. и М., соответствующую дефекту М. в ядерных реакциях. Дефект может реализоваться либо в форме динамич. М., либо в форме М. квантов поля, напр. М. фотонов. В силу этого можно говорить о законе сохранения и превращения массы. Т.к. М. выступает как мера фундаментальных свойств материи – инерции и гравитации, а энергия есть мера движения, в законе взаимосвязи M. и энергии проявляется неразрывность материи и движения. Лит.: Энгельс Ф., Диалектика природы, М., 1955; Ленин В. И., Материализм и эмпириокритицизм, Соч., 4 изд., т. 14; Max Э., Механика, [СПБ ], 1909; Эйнштейн?., Зависит ли инерция тела от содержащейся в нем энергии, в кн.: Принцип относительности. Сб. работ классиков релятивизма, М.–Л., 1935; Ньютон И., Матем. начала натуральной философии, в кн.: Крылов А. Н., Собр. трудов, т. 7, М., 1936; Декарт Р., Начала философии, Избр. произв., [М. ], 1950; Ломоносов М., [Письмо ] Л. Эйлеру, Избр. филос. произв., [М. ], 1950; Усп. физич. наук, т. 48, вып. 2, 1952; Лоренц Г. ?., Теория электронов, пер. с англ., 2 изд., М., 1956; Овчинников?. ?., Понятия массы и энергии в их историч. развитии и филос. значении, М., 1957; Павлов А. И., О количественной определенности материи физ. объектов, в сб.: Уч. зап. Череповец. пед. ин-та, т. 2, [Вологда ], 1959; Jammer M., Concepts of mass in classical and modern physics, Camb. (Mass.), 1961. H. Овчинников. Москва.

количество кого-чего-нибудь Масса Одна из основных физических характеристик материи, определяющая ее инертные и гравитационные свойства Spec Масса Совокупность чего-нибудь Масса Тестообразное, бесформенное вещество, густая смесь Масса Что-нибудь большое, сосредоточенное в одном месте Масса Широкие слои трудящегося населения

Масса в Энциклопедическом словаре:
Масса - (Massa) - город в Центр. Италии, в обл. Тоскана, административныйцентр пров. Масса-э-Каррара. 67 тыс. жителей (1985). Производство изделийиз каррарского мрамора. Металлургия, химическая промышленность. одна из основных физических характеристик материи, определяющая ееинертные и гравитационные свойства. В классической механике масса равнаотношению действующей на тело к вызываемому ею ускорению (2-й законНьютона) - в этом случае масса называется инертной; кроме того, массасоздает поле тяготения - гравитационная, или тяжелая, масса. Инертная итяжелая массы равны друг другу (эквивалентности принцип). (Massa) Исаак (1587-1635) - нидерландский купец. Жил в Москве в нач.17 в. Автор ""Краткого известия о Московии в начале XVII в."".

Значение слова Масса по словарю медицинских терминов:
Масса - Вудлонгана схема (Е. Masse, франц. хирург и анатом 19-20 вв.; Woodlonghan, франц. хирург и анатом 19-20 вв.) - схема краниоцеребральной топографии для определения проекции центральной и латеральной борозд, согласно которой их расположение соответствует прямым, соединяющим определенные точки на горизонтальной (экватор) и сагиттальной (меридиан) дугах, проведенных через переносицу и большой затылочный бугор. Синонимы к слову Масса: масса см. кусок, много, толпа, чернь

Значение слова Масса по словарю Ушакова:
МАССА
массы, ж. (латин. massa). 1. Множество, большое количество. Масса народу. Устал от массы впечатлений. Масса хлопот. 2. чаще мн. Широкие круги трудящихся, населения. Трудящиеся массы. Не отрываться от масс. Насущные интересы крестьянской массы....Советы являются наиболее мощными органами революционной борьбы масс... Сталин. Связь с массами, укрепление этой связи, готовность прислушиваться к голосу масс, - вот в чем сила и непобедимость большевистского руководства. Сталин.... Изменения в избирательной системе означают усиление контроля масс в отношении советских органов и усиление ответственности советских органов в отношении масс (из резолюции пленума ЦК ВКП(б), март 1937 г.). 3. Груда, громада. К берегу приближалась темная масса броненосца. || Сконцентрированная часть чего-н., подавляющее количество. Основная масса артиллерии расположена на фланге. 4. Смесь, тестообразное вещество, являющееся полуфабрикатом в различных производствах (тех.). Древесная масса. Фарфоровая масса. Бумажная масса. (из к-рой выделываются листы бумаги). 5. Весомость и инерция, свойственные материи и энергии (физ.). В массе - в большинстве своем.

Значение слова Масса по словарю Даля:
Масса
лучше маса ж. лат. вещество, тело, материя; | толща, совокупность вещества в известном теле, вещественность его. Объем атмосферы обширен, а масса ничтожная. Такая масса все задавит. Масса товару, куча, пропасть. | Купеч. все имущество несостоятельного должника. Массивный, вальяжный, толстый и прочный; грубой отделки; топорный, тяжелый на вид; величественый, по толще размеров. -ность, свойство, состояние массивного.

Определение слова «Масса» по БСЭ:
Масса - Масса (Massa)
Исаак (1587, Харлем, Нидерланды, - после мая 1635, там же или в Лиссе), голландский купец и резидент в России в 1614-34. Жил в Москве в 1601-09, 1612-34. Изучил русский язык и собрал много материалов по истории страны конца 16 - начала 17 веков и её географии. Около 1611 написал сочинение о событиях в России конца 16 - начала 17 веков - важный по истории крестьянской войны под предводительством И. И. Болотникова и других событий 1601-1609. Статьи М., посвященные истории и географии Сибири, были одним из первых сочинений о Сибири в западноевропейской литературе. М. опубликовал ряд карт России и отдельных её районов.
Соч.: Краткое известие о Московии в начале XVII в., М., 1937. Масса - Масса (от лат. massa - глыба, масса)
1) большое количество, крупное скопление чего-либо. 2) Полужидкое или тестообразное, бесформенное вещество; смесь (полуфабрикат) в различных производствах (например, бумажная масса). 3) См. Масса в физике. Масса - физическая величина, одна из основных характеристик материи, определяющая её инерционные и гравитационные свойства. Соответственно различают М. инертную и М. гравитационную (тяжёлую, тяготеющую).
Понятие М. было введено в механику И. Ньютоном. В классической механике Ньютона М. входит в определение импульса (количества движения (См. Количество движения)) тела: импульс p пропорционален скорости движения тела v,
p = mv. (1)
Коэффициент пропорциональности - постоянная для данного тела величина m - и есть М. тела. Эквивалентное определение М. получается из уравнения движения классической механики
f = ma. (2)
Здесь М. - коэффициент пропорциональности между действующей на тело силой ƒ и вызываемым ею ускорением тела a. Определённая соотношениями (1) и (2) М. называется инерциальной массой, или инертной массой; она характеризует динамические свойства тела, является мерой инерции тела: при постоянной силе чем М. тела, тем меньшее ускорение оно приобретает, то есть тем медленнее меняется состояние его движения (тем больше его инерция).
Действуя на различные тела одной и той же силой и измеряя их ускорения, можно определить отношения М. этих тел: m 1: m 2: m 3 ... = a 1: a 2: a 3 ...; если одну из М. принять за единицу измерения, можно найти М. остальных тел.
В теории гравитации Ньютона М. выступает в другой форме - как источник поля тяготения. Каждое тело создаёт поле тяготения, пропорциональное М. тела (и испытывает воздействие поля тяготения, создаваемого другими телами, сила которого пропорциональна М. тел). Это поле вызывает притяжение любого другого тела к данному телу с силой, определяемой Ньютона законом тяготения:
15/15031047.tif, (3)
где r - расстояние между телами, G - универсальная Гравитационная постоянная, a m 1 и m 2 - М. притягивающихся тел. Из формулы (3) легко получить формулу для Веса P тела массы m в поле тяготения Земли:
Р = m · g. (4)
Здесь g = G · M / rІ - ускорение свободного падения в гравитационном поле Земли, а r ≈ R - радиусу Земли. М., определяемая соотношениями (3) и (4), называется гравитационной массой тела.
В принципе ниоткуда не следует, что М., создающая поле тяготения, определяет и инерцию того же тела. Однако опыт показал, что инертная М. и гравитационная М. пропорциональны друг другу (а при обычном выборе единиц измерения численно равны). Этот фундаментальный закон природы называется принципом эквивалентности. Его открытие связано с именем Г. Галилея, установившего, что все тела на Земле падают с одинаковым ускорением. А. Эйнштейн положил этот принцип (им впервые сформулированный) в основу общей теории относительности (см. Тяготение). Экспериментально принцип эквивалентности установлен с очень большой точностью. Впервые (1890-1906) прецизионная проверка равенства инертной и гравитационной М. была произведена Л. Этвешем, который нашёл, что М. совпадают с ошибкой ∼ 10 −8 . В 1959-64 американские физики Р. Дикке, Р. Кротков и П. Ролл уменьшили ошибку до 10 −11 , а в 1971 советские физики В. Б. Брагинский и В. И. Панов - до 10 −12 .
Принцип эквивалентности позволяет наиболее естественно определять М. тела Взвешиванием.
Первоначально М. рассматривалась (например, Ньютоном) как мера количества вещества. Такое определение имеет ясный смысл только для сравнения однородных тел, построенных из одного материала. Оно подчёркивает аддитивность М. - М. тела равна сумме М. его частей. М. однородного тела пропорциональна его объёму, поэтому можно ввести понятие плотности - М. единицы объёма тела.
В классической физике считалось, что М. тела не изменяется ни в каких процессах. Этому соответствовал закон сохранения М. (вещества), открытый М. В. Ломоносовым и А. Л. Лавуазье. В частности, этот закон утверждал, что в любой химической реакции сумма М. исходных компонентов равна сумме М. конечных компонентов.
Понятие М. приобрело более глубокий смысл в механике спец. теории относительности А. Эйнштейна (см. Относительности теория), рассматривающей движение тел (или частиц) с очень большими скоростями - сравнимыми со скоростью света c
≈ 3·10 10 см/сек. В новой механике - она называется релятивистской механикой - связь между импульсом и скоростью частицы даётся соотношением:
15/15031048.tif (5)
При

Просмотров