Белки. Классификация. Функции. Уровни организации. Физико-химические свойства. Физико-химические свойства белков

5. Регуляторная функция . Белки осуществляют функции сигнальных веществ - некоторых гормонов, гистогормонов и нейромедиаторов, являются рецепторами к сигнальным веществам любого строения, обеспечивают дальнейшую передачу сигнала в биохимических сигнальных цепях клетки. Примерами могут служить гормон роста соматотропин , гормон инсулин , Н- и М-холинорецепторы .

6. Двигательная функция . С помощью белков осуществляются процессы сокращения и другого биологического движения. Примерами могут служить тубулин, актин , миозин.

7. Запасная функция . В растениях содержатся запасные белки, являющиеся ценными пищевыми веществами, в организмах животных мышечные белки служат резервными питательными веществами, которые мобилизуются при крайней необходимости.

Для белков характерным является наличие нескольких уровней структурной организации.

Первичной структурой белка называют последовательность аминокислотных остатков в полипептидной цепи. Пептидная связь - это карбоксамидная связь между α-карбоксильной группой одной аминокислоты и α-аминогруппой другой аминокислоты.

аланилфенилаланилцистеилпролин

У пептидной связи есть несколько особенностей:

а) она резонансно стабилизирована и поэтому находится практически в одной плоскости - планарна; вращение вокруг связи С-N требует больших затрат энергии и затруднено;

б) у связи -CO-NH- особый характер, она меньше, чем обычная, но больше, чем двойная, то есть существует кетоенольная таутомерия :

в) заместители по отношению к пептидной связи находятся в транс -положении;

г) пептидный остов окружен разнообразными по своей природе боковыми цепями, взаимодействуя с окружающими молекулами растворителя, свободные карбоксильные и аминогруппы ионизируются, образуя катионные и анионные центры молекулы белка. В зависимости от их соотношения белковая молекула получает суммарный положительный или отрицательный заряд, а также характеризуется тем или иным значением рН среды при достижении изоэлектрической точки белка. Радикалы образуют солевые, эфирные, дисульфидные мостики внутри молекулы белка, а также определяют круг реакций, свойственных белкам.


В настоящее время условились считать белками полимеры, состоящие из 100 и более аминокислотных остатков, полипептидами - полимеры, состоящие из 50-100 аминокислотных остатков, низкомолекулярными пептидами - полимеры, состоящие из менее 50 аминокислотных остатков.

Некоторые низкомолекулярные пептиды играют самостоятельную биологическую роль. Примеры некоторых таких пептидов:

Глутатион - γ-глу-цис-гли - один из наиболее широко распространен-ных внутриклеточных пептидов, принимает участие в окислительно-восстановительных процессах в клетках и переносе аминокислот через биологические мембраны.

Карнозин - β-ала-гис - пептид, содержащийся в мышцах животных, устраняет продукты перекисного расщепления липидов, ускоряет процесс распада углеводов в мышцах и в виде фосфата вовлекается в энергетический обмен в мышцах.

Вазопрессин - гормон задней доли гипофиза, участвующий в регуля-ции водного обмена организма:

Фаллоидин - ядовитый полипептид мухомора, в ничтожных концентрациях вызывает гибель организма вследствие выхода ферментов и ионов калия из клеток:

Грамицидин - антибиотик , действующий на многие грамположительные бактерии, изменяет проницаемость биологических мембран для низкомолекулярных соединений и вызывает гибель клеток:

Мет -энкефалин - тир-гли-гли-фен-мет - пептид, синтезирующийся в нейронах и ослабляющий болевые ощущения.

Вторичная структура белка - это пространственная структура, образующаяся в результате взаимодействий между функциональными группами пептидного остова.

Пептидная цепь содержит множество СО- и NH-групп пептидных связей, каждая из которых потенциально способна участвовать в образовании водородных связей. Существуют два главных типа структур, которые позволяют это осуществить: α-спираль, в которую цепь свертывается как шнур от телефонной трубки, и складчатая β-структура, в которой бок о бок уложены вытянутые участки одной или нескольких цепей. Обе эти структуры весьма стабильны.

α-Спираль характеризуется предельно плотной упаковкой скрученной полипептидной цепи, на каждый виток правозакрученной спирали приходится 3,6 аминокислотных остатка, радикалы которых направлены всегда наружу и немного назад, то есть в начало полипептидной цепи.

Основные характеристики α-спирали:

1) α-спираль стабилизируется водородными связями между атомом водорода при азоте пептидной группы и карбонильным кислородом остатка, отстоящего от данного вдоль цепи на четыре позиции;

2) в образовании водородной связи участвуют все пептидные группы, это обеспечивает максимальную стабильность α-спирали;

3) в образовании водородных связей вовлечены все атомы азота и кислорода пептидных групп, что в значительной мере снижает гидрофильность α-спиральных областей и увеличивает их гидрофобность;

4) α-спираль образуется самопроизвольно и является наиболее устойчивой конформацией полипептидной цепи, отвечающей минимуму свободной энергии;

5) в полипептидной цепи из L-аминокислот правая спираль, обычно обнаруживаемая в белках, намного стабильнее левой.

Возможность образования α-спирали обусловлена первичной структурой белка. Некоторые аминокислоты препятствуют закручиванию пептидного остова. Например, расположенные рядом карбоксильные группы глутамата и аспартата взаимно отталкиваются друг от друга, что препятствует образованию водородных связей в α-спирали. По этой же причине затруднена спирализация цепи в местах близко расположенных друг к другу положительно заряженных остатков лизина и аргинина. Однако наибольшую роль в нарушении α-спирали играет пролин. Во-первых, в пролине атом азота входит в состав жесткого кольца, что препятствует вращению вокруг связи N-C, во-вторых, пролин не образует водородную связь из-за отсутствия водорода при атоме азота.

β-складчатость - это слоистая структура , образуемая водородными связями между линейно расположенными пептидными фрагментами. Обе цепи могут быть независимыми или принадлежать одной молекуле полипептида. Если цепи ориентированы в одном направлении, то такая β-структура называется параллельной. В случае противоположного направления цепей, то есть когда N-конец одной цепи совпадает с С-концом другой цепи, β-структура называется антипараллельной. Энергетически более предпочтительна антипараллельная β-складчатость с почти линейными водородными мостиками.

параллельная β-складчатость антипараллельная β-складчатость

В отличие от α-спирали , насыщенной водородными связями, каждый участок цепи β-складчатости открыт для образования дополнительных водородных связей. Боковые радикалы аминокислот ориентированы почти перпендикулярно плоскости листа попеременно вверх и вниз.

В тех участках, где пептидная цепь изгибается достаточно круто, часто находится β-петля. Это короткий фрагмент, в котором 4 аминокислотных остатка изгибаются на 180 о и стабилизируются одним водородным мостиком между первым и четвертым остатками. Большие аминокислотные радикалы мешают образованию β-петли, поэтому в нее чаще всего входит самая маленькая аминокислота глицин.

Надвторичная структура белка - это некоторый специфический порядок чередования вторичных структур. Под доменом понимают обособленную часть молекулы белка, обладающую в определенной степени структурной и функциональной автономией. Сейчас домены считают фундаментальными элементами структуры белковых молекул и соотношение и характер компоновки α-спиралей и β-слоев дает для понимания эволюции белковых молекул и филогенетических связей больше, чем сопоставление первичных структур.

Главной задачей эволюции является конструирование все новых белков. Бесконечно мал шанс случайно синтезировать такую аминокислотную последовательность, которая бы удовлетворила условиям упаковки и обеспечила выполнение функциональных задач. Поэтому часто встречаются белки с различной функцией, но сходные по структуре настолько, что кажется, что они имели одного общего предка или произошли друг от друга. Похоже, что эволюция, столкнувшись с необходимостью решить определенную задачу, предпочитает не конструировать для этого белки сначала, а приспособить для этого уже хорошо отлаженные структуры, адаптируя их для новых целей.

Некоторые примеры часто повторяющихся надвторичных структур:

1) αα’ - белки, содержащие только α-спирали (миоглобин, гемоглобин);

2) ββ’ - белки, содержащие только β-структуры (иммуноглобулины, супероксиддисмутаза);

3) βαβ’ - структура β-бочонка, каждый β-слой расположен внутри бочонка и связан с α-спиралью, находящейся на поверхности молекулы (триозофосфоизомераза, лактатдегидрогеназа);

4) «цинковый палец» - фрагмент белка, состоящий из 20 аминокислотных остатков, атом цинка связан с двумя остатками цистеина и двумя гистидина, в результате чего образуется «палец» из примерно 12 амино-кислотных остатков, может связываться с регуляторными участками молекулы ДНК;

5) «лейциновая застежка-молния» - взаимодействующие белки имеют α-спиральный участок, содержащий по крайней мере 4 остатка лейцина, они расположены через 6 аминокислот один от другого, то есть находятся на поверхности каждого второго витка и могут образовывать гидрофобные связи с лейциновыми остатками другого белка. С помощью лейциновых застежек, например, молекулы сильноосновных белков гистонов могут объединяться в комплексы, преодолевая положительный заряд.

Третичная структура белка - это пространственное расположение молекулы белка, стабилизируемое связями между боковыми радикалами аминокислот.

Типы связей, стабилизирующих третичную структуру белка:

электростатическое водородные гидрофобные дисульфидные взаимодействие связи взаимодействия связи

В зависимости от складывания третичной структуры белки можно классифицировать на два основных типа - фибриллярные и глобулярные.

Фибриллярные белки - нерастворимые в воде длинные нитевидные молекулы, полипептидные цепи которых вытянуты вдоль одной оси. В основном это структурные и сократительные белки. Несколько примеров самых распространенных фибриллярных белков:

1. α- Кератины . Синтезируются клетками эпидермиса. На их долю приходится почти весь сухой вес волос, шерсти, перьев, рогов, ногтей, когтей, игл, чешуи, копыт и черепашьего панциря, а также значительная часть веса наружного слоя кожи. Это целое семейство белков, они сходны по аминокислотному составу, содержат много остатков цистеина и имеют одинаковое пространственное расположение полипептидных цепей.

В клетках волос полипептидные цепи кератина сначала организуются в волокна, из которых затем формируются структуры наподобие каната или скрученного кабеля, заполняющего в конце концов все пространство клетки. Клетки волос становятся при этом уплощенными и, наконец, отмирают, а клеточные стенки образуют вокруг каждого волоса трубчатый чехол, называемый кутикулой. В α-кератине полипептидные цепи имеют форму α-спирали, скручены одна вокруг другой в трехжильный кабель с образованием поперечных дисульфидных связей.

N-концевые остатки расположены с одной стороны (параллельны). Кератины нерастворимы в воде из-за преобладания в их составе аминокислот с неполярными боковыми радикалами, которые обращены в сторону водной фазы. При химической завивке происходят следующие процессы: вначале путем восстановления тиолами разрушаются дисульфидные мостики, а затем при придании волосам необходимой формы их высушивают нагреванием, при этом за счет окисления кислородом воздуха образуются новые дисульфидные мостики, которые сохраняют форму прически.

2. β-Кератины . К ним относятся фиброин шелка и паутины. Представляют из себя антипараллельные β-складчатые слои с преобладанием глицина, аланина и серина в составе.

3. Коллаген . Самый распространенный белок у высших животных и главный фибриллярный белок соединительных тканей. Коллаген синтезируется в фибробластах и хондроцитах - специализированных клетках соединительной ткани, из которых затем выталкивается. Коллагеновые волокна находятся в коже, сухожилиях, хрящах и костях. Они не растяги-ваются, по прочности превосходят стальную проволоку, коллагеновые фибриллы характеризуются поперечной исчерченностью.

При кипячении в воде волокнистый , нерастворимый и неперевариваемый коллаген превращается в желатин в результате гидролиза некоторых ковалентных связей. Коллаген содержит 35% глицина, 11% аланина, 21% пролина и 4-гидроксипролина (аминокислоты, свойственной только для коллагена и эластина). Такой состав определяет относительно низкую питательную ценность желатина как пищевого белка. Фибриллы коллагена состоят из повторяющихся полипептидных субъединиц, называемых тропоколлагеном. Эти субъединицы уложены вдоль фибриллы в виде параллельных пучков по типу «голова к хвосту». Сдвинутость головок и придает характерную поперечную исчерченность. Пустоты в этой структуре при необходимости могут служить местом отложения кристаллов гидроксиапатита Са 5 (ОН)(РО 4) 3 , играющего важную роль в минерализации костей.

Тропоколлагеновые субъединицы состоят из трех полипептидных цепей, плотно скрученных в виде трехжильного каната, отличающегося от α- и β-кератинов. В одних коллагенах все три цепи имеют одинаковую аминокислотную последовательность, тогда как в других идентичны только две цепи, а третья отличается от них. Полипептидная цепь тропоколлагена образует левую спираль, на один виток которой приходится только три аминокислотных остатка из-за изгибов цепи, обусловленной пролином и гидроксипролином. Три цепи связаны между собой кроме водородных связей связью ковалентного типа, образующейся между двумя остатками лизина, находящимися в соседних цепях:

По мере того как мы становимся старше , в тропоколлагеновых субъединицах и между ними образуется все большее число поперечных связей, что делает фибриллы коллагена более жесткими и хрупкими, и это изменяет механические свойства хрящей и сухожилий, делает более ломкими кости и понижает прозрачность роговицы глаза.

4. Эластин . Содержится в желтой эластичной ткани связок и эластическом слое соединительной ткани в стенках крупных артерий. Основная субъединица фибрилл эластина - тропоэластин. Эластин богат глицином и аланином, содержит много лизина и мало пролина. Спиральные участки эластина растягиваются при натяжении, но возвращаются при снятии нагрузки к исходной длине. Остатки лизина четырех разных цепей образуют ковалентные связи между собой и позволяют эластину обратимо растягиваться во всех направлениях.

Глобулярные белки - белки, полипептидная цепь которых свернута в компактную глобулу, способны выполнять самые разнообразные функции.

Третичную структуру глобулярных белко в удобнее всего рассмотреть на примере миоглобина. Миоглобин - это относительно небольшой кислород-связывающий белок, присутствующий в мышечных клетках. Он запасает связанный кислород и способствует его переносу в митохондрии. В молекуле миоглобина находится одна полипептидная цепь и одна гемогруппа (гем) - комплекс протопорфирина с железом.

Основные свойства миоглобина :

а) молекула миоглобина настолько компактна, что внутри нее может уместиться всего 4 молекулы воды;

б) все полярные аминокислотные остатки, за исключением двух, расположены на внешней поверхности молекулы, причем все они находятся в гидратированном состоянии;

в) большая часть гидрофобных аминокислотных остатков расположена внутри молекулы миоглобина и, таким образом, защищена от соприкосно-вения с водой;

г) каждый из четырех остатков пролина в молекуле миоглобина находится в месте изгиба полипептидной цепи, в других местах изгиба расположены остатки серина, треонина и аспарагина, так как такие аминокислоты препятствуют образованию α-спирали, если находятся друг с другом;

д) плоская гемогруппа лежит в полости (кармане) вблизи поверхности молекулы, атом железа имеет две координационные связи, направленные перпендикулярно плоскости гемма, одна из них связана с остатком гистидина 93, а другая служит для связывания молекулы кислорода.

Начиная с третичной структуры белок становится способным выполнять свойственные ему биологические функции. В основе функционирования белков лежит то, что при укладке третичной структуры на поверхности белка образуются участки, которые могут присоединять к себе другие молекулы, называемые лигандами. Высокая специфичность взаимодействия белка с лигандом обеспечивается комплементарностью структуры активного центра структуре лиганда. Комплементарность - это пространственное и химическое соответствие взаимодействующих поверхностей. Для большей части белков третичная структура - максимальный уровень укладки.

Четвертичная структура белка - характерна для белков, состоящих из двух и более полипептидных цепей, связанных между собой исключительно нековалентными связями, в основном электростатическими и водородными. Чаще всего белки содержат две или четыре субъединицы, более четырех субъединиц обычно содержат регуляторные белки.

Белки, имеющие четвертичную структуру , часто называются олигомерными. Различают гомомерные и гетеромерные белки. К гомо-мерным относятся белки, у которых все субъединицы имеют одинаковое строение, например, фермент каталаза состоит их четырех абсолютно одинаковых субъединиц. Гетеромерные белки имеют разные субъединицы, например, фермент РНК-полимераза состоит из пяти разных по строению субъединиц, выполняющих разные функции.

Взаимодействие одной субъединицы со специфическим лигандом вызывает конформационные изменения всего олигомерного белка и изменяет сродство других субъединиц к лигандам, это свойство лежит в основе способности олигомерных белков к аллостерической регуляции.

Четвертичную структуру белка можно рассмотрет ь на примере гемоглобина. Содержит четыре полипептидных цепи и четыре простетические группы гема, в которых атомы железа находятся в закисной форме Fe 2+ . Белковая часть молекулы - глобин - состоит из двух α-цепей и двух β-цепей, содержащих до 70% α-спиралей. Каждая из четырех цепей имеет характерную для нее третичную структуру, с каждой цепью связана одна гемогруппа. Гемы разных цепей сравнительно далеко расположены друг от друга и имеют разный угол наклона. Между двумя α-цепями и двумя β-цепями образуется мало прямых контактов, тогда как между α- и β-цепями возникают многочисленные контакты типа α 1 β 1 и α 2 β 2 , образованные гидрофобными радикалами. Между α 1 β 1 и α 2 β 2 остается канал.

В отличие от миоглобина гемоглобин характеризуется значительно более низким сродством к кислороду, что позволяет ему при существующих в тканях низких парциальных давлениях кислорода отдавать им значительную часть связанного кислорода. Кислород легче связывается железом гемоглобина при более высоких значениях рН и низкой концентрации СО 2 , свойственные альвеолам легких; освобождению кислорода из гемоглобина благоприятствуют более низкие значения рН и высокие концентрации СО 2 , свойственные тканям.

Кроме кислорода гемоглобин переносит ионы водорода , которые связываются с остатками гистидина в цепях. Также гемоглобин переносит углекислый газ, который присоединяет к концевой аминогруппе каждой из четырех полипептидных цепей, в результате чего образуется карбаминогемоглобин:

В эритроцитах в достаточно больших концентрациях присутствует вещество 2,3-дифосфоглицерат (ДФГ), его содержание увеличивается при подъеме на большую высоту и при гипоксии, облегчая высвобождение кислорода из гемоглобина в тканях. ДФГ располагается в канале между α 1 β 1 и α 2 β 2 , взаимодействуя с положительно зараженными группами β-цепей. При связывании гемоглобином кислорода ДФГ вытесняется из полости. В эритроцитах некоторых птиц содержится не ДФГ, а инозитолгекса-фосфат, который еще больше снижает сродство гемоглобина к кислороду.

2,3-дифосфоглицерат (ДФГ)

HbA - нормальный гемоглобин взрослого человека , HbF - фетальный гемоглобин, имеет большее сродство к О 2 , HbS - гемоглобин при серповидноклеточной анемии. Серповидноклеточная анемия - это серьезное наследственное заболевание, связанное с генетической аномалией гемоглобина. В крови больных людей наблюдается необычно большое количество тонких серповидных эритроцитов, которые, во-первых, легко разрываются, во-вторых, закупоривают кровеносные капилляры.

На молеку-лярном уровне гемоглобин S отличается от гемоглобина А по одному аминокислотному остатку в положении 6 β-цепей, где вместо остатка глутаминовой кислоты находится валин. Таким образом, гемоглобин S содержит на два отрицательных заряда меньше, появление валина приводит к возникновению «липкого» гидрофобного контакта на поверхности молекулы, в результате при дезоксигенации молекулы дезоксигемоглобина S слипаются и образуют нерастворимые аномально длинные нитевидные агрегаты, приводящие к деформации эритроцитов.

Нет никаких оснований думать, что существует независимый генетический контроль за формированием уровней структурной организации белка выше первичного, поскольку первичная структура определяет и вторичную, и третичную, и четвертичную (если она имеется). Нативной конформацией белка является термодинамически наиболее устойчивая в данных условиях структура.

ЛЕКЦИЯ 6

Различают физические, химические и биологические свойства белков.

Физическими свойствами белков являются наличие молекулярной массы, двойное лучепреломление (изменение оптической характеристики раствора белка, находящегося в движении, по сравнению с раствором, находящимся в покое), обусловленное несферической формой белков, подвижность в электрическом поле, обусловленная зарядом молекул белка. Кроме этого для белков характерны оптические свойства, заключающиеся в способности вращать плоскость поляризации света, рассеивать световые лучи ввиду значительных размеров белковых частиц и поглощать ультрафиолетовые лучи.

Одним из характерных физических свойств белков являются способность адсорбировать на поверхности, а иногда и захватывать внутрь молекулы, низкомолекулярные органические соединения и ионы.

Химические свойства белков отличаются исключительным разнообразием, так как для белков характерны все реакции аминокислотных радикалов и характерна реакция гидролиза пептидных связей.

Имея значительное число кислотных и основных групп , белки проявляют амфотерные свойства. В отличие от свободных аминокислот кислотно-основные свойства белков обусловлены не α-амино- и α-карбокси-группами, занятыми в образовании пептидных связей, а заряженными радикалами аминокислотных остатков. Основные свойства белков обусловлены остатками аргинина , лизина и гистидина. Кислые свойства обусловлены остатками аспарагиновой и глутаминовой кислоты.

Кривые титрования белков достаточно сложны для интерпретации, так как в любом белке имеется слишком большое число титруемых групп, между ионизированными группами белка имеются электростатические взаимодействия, на рК каждой титруемой группы оказывают влияние рядом расположенные гидрофобные остатки и водородные связи. Наибольшее практическое применение имеет изоэлектрическая точка белка - значение рН, при котором суммарный заряд белка равен нулю. В изоэлектрической точке белок максимально инертен, не перемещается в электрическом поле и имеет наиболее тонкую гидратную оболочку.

Белки проявляют буферные свойства , но их буферная емкость незначительна. Исключение составляют белки, содержащие большое число остатков гистидина. Например, содержащийся в эритроцитах гемоглобин за счет очень высокого содержания остатков гистидина имеет значительную буферную емкость при рН около 7, что весьма важно для той роль, которую играют эритроциты в переносе кровью кислорода и углекислого газа.

Для белков характерна растворимость в воде , причем с физической точки зрения они образуют истинные молекулярные растворы. Однако для растворов белков характерны некоторые коллоидные свойства: эффект Тендаля (явление светорассеяния), неспособность проходить через полупроницаемые мембраны, высокая вязкость, образование гелей.

Растворимость белка сильно зависит от концентрации солей, то есть от ионной силы раствора. В дистиллированной воде белки чаще всего растворяются плохо, однако их растворимость возрастает по мере увеличения ионной силы. При этом все большее количество гидратированных неорганических ионов связывается с поверхностью белка и тем самым уменьшается степень его агрегации. При высокой ионной силе ионы солей забирают гидратную оболочку у молекул белка, что приводит к агрегации и выпадению белков в осадок (явление высаливания). Используя различие в растворимости, можно с помощью обычных солей разделить смесь белков.

К числу биологических свойств белков относят в первую очередь их каталитическую активность. Другое важное биологическое свойство белков - их гормональная активность, то есть способность воздействовать на целые группы реакций в организме. Некоторым белкам присущи токсические свойства, патогенная активность, защитные и рецепторные функции, ответственность за явления клеточной адгезии.

Еще одно своеобразное биологическое свойство белков - денатурация . Белки в их естественном состоянии носят название нативных. Денатурация - это разрушение пространственной структуры белков при действии денатурирующих агентов. Первичная структура белков при денатурации не нарушается, но теряется их биологическая активность, а также растворимость, электрофоретическая подвижность и некоторые другие реакции. Радикалы аминокислот, формирующие активный центр белка, при денатурации оказываются пространственно удаленными друг от друга, то есть разрушается специфический центр связывания белка с лигандом. Гидрофобные радикалы, обычно находящиеся в гидрофобном ядре глобулярных белков, при денатурации оказываются на поверхности молекулы, тем самым создаются условия для агрегации белков, которые выпадают в осадок.

Реагенты и условия, вызывающие денатурацию белков:

Температура выше 60 о С - разрушение слабых связей в белке,

Кислоты и щелочи - изменение ионизации ионогенных групп, разрыв ионных и водородных связей,

Мочевина - разрушение внутримолекулярных водородных связей в резуль-тате образования водородных связей с мочевиной,

Спирт, фенол, хлорамин - разрушение гидрофобных и водородных связей,

Соли тяжелых металлов - образование нерастворимых солей белков с иона-ми тяжелых металлов.

При удалении денатурирующих агентов возможна ренативация, так как пептидная цепь стремится принять в растворе конформацию с наименьшей свободной энергией.

В условиях клетки белки могут самопроизвольно денатурировать, хотя и с меньшей скоростью, чем при высокой температуре. Самопроизвольная ренативация белков в клетке затруднена, так как из-за высокой концентрации существует большая вероятность агрегации частично денатурированных молекул.

В клетках имеются белки - молекулярные шапероны, которые обладают способностью связываться с частично денатурированными, находящимися в неустойчивом, склонном к агрегации состоянии белками и восстанавливать их нативную конформацию. Вначале эти белки были обнаружены как белки теплового шока, так как их синтез усиливался при стрессовых воздействиях на клетку, например, при повышении температуры. Шапероны классифицируются по массе субъединиц: hsp-60, hsp-70 и hsp-90. Каждый класс включает семейство родственных белков.

Молекулярные шапероны (hsp-70) высококонсервативный класс белков, находящийся во всех отделах клетки: цитоплазме, ядре, эндоплазматическом ретикулуме, митохондриях. На С-конце единственной полипептидной цепи hsp-70 имеет участок, который представляет собой бороздку, способную взаимодействовать с пептидами длиной 7-9 аминокис-лотных остатков, обогащенных гидрофобными радикалами. Такие участки в глобулярных белках встречаются примерно через каждые 16 аминокислот. Hsp-70 способны защищать белки от температурной инактивации и восста-навливать конформацию и активность частично денатурированных белков.

Шапероны-60 (hsp-60) участвуют в формировании третичной структуры белков. Hsp-60 функционируют в виде олигомерных белков, состоящих из 14 субъединиц. Hsp-60 образуют два кольца, каждое кольцо состоит из 7 субъединиц, соединенных друг с другом.

Каждая субъединица состоит из трех доменов:

Апикальный домен имеет ряд гидрофобных аминокислотных остатков, обращенных внутрь полости, формируемой субъединицами;

Экваториальный домен обладает АТФазной активностью, необходим для высвобождения белка из шаперонинового комплекса;

Промежуточный домен соединяет апикальный и экваториальный домены.

Белок, имеющий на своей поверхности фрагменты , обогащенные гидрофобными аминокислотами, попадает в полость шаперонинового комплекса. В специфической среде этой полости в условиях изолированности от других молекул цитозоля клетки выбор возможных конформаций белка происходит до тех пор, пока не будет найдена энергетически более выгодная конформация. Шаперонзависимое формирование нативной конформации связано с расходованием значительного количества энергии, источником которой служит АТФ.

Белки

– биополимеры, мономерами которых служат α-аминокислоты, связанные между собой пептидными связями.
Выделяют аминокислоты гидрофобные и гидрофильные , которые, в свою очередь, делятся на кислые, основные и нейтральные. Особенностью a-аминокислот является их способность взаимодействовать друг с другом с образованием пептидов.
Выделяют:

  1. дипептиды (карнозин и ансерин , локализующиеся в митохондриях; будучи АО, предотвращающие их набухание);

  2. олигопептиды, включающие до 10 аминокислотных остатков. Например: трипептид глутатион служит одним из главных восстановителей в АРЗ, которая регулирует интенсивность ПОЛ. Вазопрессин и окситоцин — гормоны задней доли гипофиза, включают 9 аминокислот.

  3. Существуют полипептид ы и в зависимости от проявляемых ими свойств их относят к различного класса соединениям. Медики считают, если парентеральное введение полипептида вызывает отторжение (аллергическую реакцию), то его следует считать белком ; если же подобного явления не наблюдается, то термин остаётся прежним (полипептид ). Гормон аденогипофиза АКТГ , влияющий на секрецию ГКС в коре надпочечников, относят к полипептидам (39 аминокислот), а инсулин , состоящий из 51 мономера и способный спровоцировать иммунный ответ, — протеин.

Уровни организации белковой молекулы.

Любой полимер стремится принять более энергетически выгодную конформацию, которая удерживается за счёт образования добавочных связей, что осуществляется с помощью группировок радикалов аминокислот. Принято выделять четыре уровня структурной организации протеинов. Первичная структура – последовательность аминокислот в полипептидной цепи, ковалентно связанных пептидными (амидными ) связями, а соседние радикалы находятся под углом 180 0 (транс-форма). Наличие более 2-х десятков различных протеиногенных аминокислот и способность их связываться в разной последовательности и обусловливает многообразие белков в природе и выполнение ими самых различных функций. Первичная структура протеинов отдельного человека генетически заложена и передаётся от родителей с помощью полинуклеотидов ДНК и РНК. В зависимости от природы радикалов и с помощью специальных белков – шаперонов синтезируемая полипептидная цепь укладывается в пространстве – фолдинг белков .

Вторичная структура белка имеет вид спирали либо β-складчатого слоя. Фибриллярные белки (коллаген, эластин) имеют бета-структуру . Чередование спирализованных и аморфных (неупорядоченных) участков позволяет им сближаться и с помощью шаперонов формируют более плотно упакованную молекулу — третичную структуру.

Объединение нескольких полипептидных цепей в пространстве и создание в функциональном отношении макромолекулярного образования формирует четвертичную структуру белка. Такие мицеллы принято называть олиго- или мультимерами , а их компоненты – субъединицами (протомерами ). Белок с четвертичной структурой обладает биологической активностью только при условии, если все субъединицы его связаны между собой.

Таким образом, любой природный протеин характеризуется уникальной организацией, которая и обеспечивает его физико-химические, биологические и физиологические функции.

Физико-химические свойства.

Белки обладают большими размерами и высокой молекулярной массой, которая колеблется от 6000 – 1000000 Дальтон и выше в зависимости от количества аминокислот и числа протомеров. Молекулы их имеют различные формы: фибриллярную – в ней сохраняется вторичная структура; глобулярную – имеющую более высокую организацию; и смешанную. Растворимость белков зависит от размеров и формы молекулы, от природы радикалов аминокислот. Глобулярные белки хорошо растворимы в воде, а фибриллярные или мало- или не растворимы.

Свойства белковых растворов: имеют низкое осмотическое, но высокое онкотическое давление; высокую вязкость; слабую способность к диффузии; часто мутные; опалесцируют (явление Тиндаля ), — всё это используется при выделении, очистке, изучении нативных белков. В основе разделения компонентов биологической смеси лежит их осаждение. Обратимое осаждение называют высаливанием , развивающимся при действии солей щелочных металлов, солей аммония, разбавленных щелочей и кислот. Его используют для получения чистых фракций, сохранивших нативные структуру и свойства.

Степень ионизации белковой молекулы и её стабильность в растворе определяются рН среды. Значение рН раствора, при котором заряд частицы стремится к нулю, называют изоэлектрической точкой . Такие молекулы способны перемещаться в электрическом поле; скорость движения прямо пропорциональна величине заряда и обратно пропорциональна массе глобулы, что лежит в основе электрофореза для разделения белков сыворотки.

Необратимое осаждение — денатурация . Если реагент проникает вглубь мицеллы и разрушает добавочные связи, уложенная компактно нить разворачивается. Сближающиеся молекулы за счёт высвободившихся группировок склеиваются и выпадают в осадок или флотируют и теряют свои биологические свойства. Денатурирующие факторы: физические (температура выше 40 0 , различные виды излучений: рентгеновское, α-, β-, γ, УФЛ); химические (концентрированные кислоты, щёлочи, соли тяжёлых металлов, мочевину, алкалоиды, некоторые лекарства, яды). Денатурация применяется в асептике и антисептике, а также в биохимических исследованиях.

Белки обладают различными свойствами (Табл. 1.1).

Таблица 1.1

Биологические свойства протеинов

Специфичность обусловливается уникальным аминокислотным составом каждого белка, что детерминировано генетически и обеспечивает адаптацию организма к изменяющимся условиям внешней среды, но с другой стороны — требует учитывать этот факт при переливании крови, трансплантации органов и тканей.
Лигандность способность радикалов аминокислот образовывать связи с различными по природе веществами (лигандами ): углеводами, липидами, нуклеотидами, минеральными соединениями. Если связь прочная, то этот комплекс, называемый сложным белком , выполняет предназначенные для него функции.
Кооперативность характерна для белков, имеющих четвертичную структуру. Гемоглобин состоит из 4-х протомеров, каждый из которых соединён с гемом, способным связываться с кислородом. Но гем первой субъединицы это делает медленно, а каждый последующий – легче.
Полифункциональность свойство одного белка выполнять самые разные функции. Миозин – сократительный протеин мышц обладает также каталитической активностью, гидролизуя при необходимости АТФ. Вышеназванный гемоглобин тоже способен работать ферментом — каталазой.
Комплементарность Все белки так укладываются в пространстве, что формируются участки, комплементарные другим соединениям, что обеспечивает выполнение различных функций (образование комплексов энзим-субстрат, гормон-рецептор, антиген-антитело.

Классификация белков

Выделяют простые белки , состоящие только из аминокислот, и сложные , включающие простетическую группу . Простые белки делятся на глобулярные и фибриллярные , а также в зависимости от аминокислотного состава на основные, кислые, нейтральные . Глобулярные основные белки — протамины и гистоны . Имеют низкую молекулярную массу, за счет наличия аргинина и лизина у них резко выражена основность, благодаря «-» заряду, легко взаимодействуют с полианионами нуклеиновых кислот. Гистоны, связываясь с ДНК, помогают компактно укладываться в ядре и регулировать синтез белка. Эта фракция гетерогенна и при взаимодействии друг с другом, образуют нуклеосомы , на которые наматываются нити ДНК.

К кислым глобулярным белкам принадлежат альбумины и глобулины , содержащиеся во внеклеточных жидкостях (плазме крови, ликворе, лимфе, молоке) и отличающиеся по массе и размерам. Альбумины имеют молекулярную массу 40-70 тыс. Д в отличие от глобулинов (свыше 100 тыс.Д). Первые включают глутаминовую кислоту, что создаёт большой «-» заряд и гидратную оболочку, позволяющую иметь высокую стабильность их раствора. Глобулины — менее кислые белки, поэтому легко высаливаются и являются гетерогенными, с помощью электрофореза делятся на фракции. Способны связываться с различными соединениями (гормонами, витаминами, ядами, лекарствами, ионами), обеспечивая их транспорт. С их помощью стабилизируются важные параметры гомеостаза: рН и онкотическое давление. Выделяют также иммуноглобулины (IgA, IgM, IgD, IgE, IgG), которые служат антителами, а также белковые факторы свёртывания крови.

В клинике используют так называемый белковый коэффициент (БК) , представляющий отношение концентрации альбуминов к концентрации глобулинов:

Его величины колеблются в зависимости от патологических процессов.

Фибриллярные белки делят на две группы: растворимые (актин, миозин, фибриноген) и нерастворимые в воде и водно-солевых растворах (белки опорных — коллаген, эластин, ретикулин и покровных — кератин тканей).

В основе классификации сложных белков лежат особенности строения простетической группы. Металлопротеин ферритин , богатый катионами железа, и локализующийся в клетках системы мононуклеарных фагоцитов (гепатоцитах, спленоцитах, клетках костного мозга), является депо данного металла. Избыток железа приводит к накоплению в тканях – гемосидерина , провоцируя развитие гемосидероза . Металлогликопротеиины — трансферрин и церулоплазмин плазмы крови, служащие транспортными формами ионов железа и меди соответственно, выявлена их антиоксидантная активность. Работа многих ферментов зависит от наличия в молекулах ионов металлов: для ксантиндегидрогеназы — Мо ++ , аргиназы – Mn ++ , а алкогольДГ – Zn ++ .

Фосфопротеины – казеиноген молока, вителлин желтка и овальбумин белка яиц, ихтулин икры рыб. Играют важную роль в развитии зародыша, плода, новорождённого: их аминокислоты необходимы для синтеза собственных белков тканей, а фосфат используется или как звено ФЛ – обязательных структур мембран клеток, или как важнейший компонент макроэргов – источников энергии в генезе различных соединений. За счет фосфорилирования-дефосфорилирования ферменты регулируют свою активность.

В состав нуклеопротеинов входят ДНК и РНК. В качестве апопротеинов выступают гистоны или протамины. Любая хромосома – это комплекс одной молекулы ДНК с многими гистонами. С помощью нуклеосом происходит накручивание нити данного полинуклеотида, что уменьшает его объём.

Гликопротеины включают в свой состав различные углеводы (олигосахариды, ГАГ типа гиалуроновой кислоты, хондроитин-, дерматан-, кератан-, гепарансульфатов). Слизь, богатая гликопротеинами, обладает высокой вязкостью, защищая стенки полых органов от действия раздражителей. Гликопротеины мембран обеспечивают межклеточные контакты, работу рецепторов, в плазмолеммах эритроцитов отвечают за группоспецифичность крови. Антитела (олигосахариды) взаимодействуют с конкретными антигенами. В основе функционирования интерферонов, системы комплемента лежит тот же принцип. Церулоплазмин и трансферрин, транспортирующие в плазме крови ионы меди и железа, являются тоже гликопротеинами. К этому классу белков принадлежат некоторые гормоны аденогипофиза.

Липопротеины в составе простетической группы содержат различные липиды (ТАГ, свободный ХС, его эфиры, ФЛ). Несмотря на присутствие самых различных веществ, принцип строения мицелл ЛП сходен (Рис. 1.1). Внутри данной частицы находится жировая капля, содержащая неполярные липиды: ТАГ и эфиры ХС. Снаружи ядро окружено однослойной мембраной, образованной ФЛ, белком (аполипопротеином) и ХС. Некоторые белки интегральны и не могут быть отделены от липопротеина, а другие способны переноситься от одного комплекса к другому. Полипептидные фрагменты формируют структуру частицы, взаимодействуют с рецепторами на поверхности клеток, определяя, каким тканям он необходим, служат ферментами или их активаторами, модифицирующими ЛП. Методом ультрацентрифугирования выделили следующие типы липопротеинов: ХМ, ЛПОНП, ЛППП, ЛПНП, ЛПВП . Каждый из типов ЛП образуется в разных тканях и обеспечивает транспорт определённых липидов в биологических жидкостях. Молекулы этих протеинов хорошо растворимы в крови, т.к. имеют небольшие размеры и отрицательный заряд на поверхности. Часть ЛП способна легко диффундировать через интиму артерий, питая её. Хиломикроны служат перевозчиками экзогенных липидов, продвигаясь сначала по лимфе, а затем по кровотоку. По мере продвижения ХМ теряют свои липиды, отдавая их клеткам. ЛПОНП служат основными транспортными формами синтезированных в печени липидов, в основном ТАГ, а доставка эндогенного ХС из гепатоцитов к органам и тканям осуществляется ЛПНП . По мере того, как они отдают липиды клеткам–мишеням, плотность их увеличивается (преобразуются в ЛППП ). Катаболическая фаза обмена ХС осуществляется ЛПВП , которые переносят его из тканей в печень, откуда он в составе желчи выводится через ЖКТ из организма.

У хромопротеинов простетической группой может быть вещество, имеющее окраску. Подкласс — гемопротеиды , небелковой частью служит гем . Гемоглобин эритроцитов обеспечивает газообмен, имеет четвертичную структуру, состоит из 4-х разных у эмбриона, плода, ребёнка полипептидных цепей (Раздел IV. Глава 1). В отличие от Hb миоглобин имеет один гем и одну полипептидную цепь, свёрную в глобулу. Сродство миоглобина к кислороду выше, чем у гемоглобина, поэтому он способен принимать газ, депонировать и отдавать митохондриям по мере необходимости. К гемсодержащим белкам относятся каталаза, пероксидаза , являющиеся ферментами АРЗ; цитохромы – компоненты ЭТЦ, отвечающей за основной биоэнергетический процесс в клетках. Среди дегидрогеназ, участников тканевого дыхания, находят флавопротеины – хромопротеины, имеющие жёлтую (flavos — жёлтый) окраску за счёт наличия в них флавоноидов – компонентов ФМН и ФАД. Родопсин – сложный белок, простетической группой которого служит активная форма витамина А – ретинол жёлто-оранжевого цвета. Зрительный пурпур – основное светочувствительное вещество палочек сетчатки глаза, обеспечивает восприятие света в сумерках.

Функции белков

Структурная

(пластическая)

Протеины составляют основу клеточных и органоидных мембран, а также составляют основу ткани (коллаген в соединительной ткани).
Каталитическая Все ферменты – белки — биокатализаторы.
Регуляторная Многие гормоны, секретируемые передней долей гипофиза, паращитовидными железами имеют белковую природу.
Транспортная В плазме крови альбумины обеспечивают перенос ВЖК, билирубина. Трансферрин отвечает за доставку катионов железа.
Дыхательная Мицеллы гемоглобина , локализующиеся в эритроцитах, способны связываться с различными газами, в первую очередь, с кислородом, углекислотой, участвуя непосредственно в газообмене.
Сократительная Специфические белки миоцитов (актин и миозин ) — участники сокращения и расслабления. Подобный эффект в момент расхождения хромосом при митозе проявляет протеин цитоскелета тубулин .
Защитная Белковые факторы свёртывания крови защищают организм от неадекватных кровопотерь. Иммунные белки (γ-глобулины, интерферон, протеины системы комплемента) борются с поступающими в организм чужеродными веществами – антигенами .
Гомеостатическая Вне- и внутриклеточные белки могут удерживать на постоянном уровне рН (буферные системы ) и онкотическое давление среды.
Рецепторная Гликопротеины клеточных и органоидных мембран, локализуясь на наружных участках, воспринимают различные сигналы регуляции.
Зрительная Зрительные сигналы в сетчатке принимает белок – родопсин .
Питательная Альбумины и глобулины плазмы крови служат резервами аминокислот
Белки хромосом (гистоны, протамины ) участвуют в создании баланса экспрессии и репрессии генетической информации.
Энергетическая При голодании или патологических процессах, когда нарушается использование углеводов с энергетической целью (при сахарном диабете) усиливается тканевой протеолиз, продукты которого аминокислоты (кетогенные ), распадаясь, служат источниками энергии.

Форма белковой молекулы . Исследования нативной конформации белковых молекул показали, что эти частицы в большинстве случаев имеют более или менее асимметричную форму. В зависимости от степени асимметрии, т. е. соотношения между длинной (b) и короткой (а) осями белковой молекулы различают глобулярные (шаровидные) и фибриллярные (нитевидные) белки.

Глобулярными являются белковые молекулы, у которых свертывание полипептидных цепочек привело к образованию сферической структуры. Среди них встречаются строго шаровидные, эллипсовидные и палочкообразные. Они различаются по степени асимметрии. Например, яичный альбумин имеет b/а = 3, глиадин пшеницы - 11, а зеин кукурузы - 20. Многие белки в живой природе являются глобулярными.

Фибриллярные белки образуют длинные высокоасимметричные нити. Многие из них выполняют структурную или механическую функцию. Таковы коллаген (b/а — 200), кератины, фиброин.

Белкам каждой из групп присущи свои характерные свойства. Многие глобулярные белки растворимы в воде и разбавленных солевых растворах. Растворимым фибриллярным белкам свойственны очень вязкие растворы. Глобулярные белки, как правило, обладают хорошей биологической ценностью - усваиваются в процессе пищеварения, в то время как многие фибриллярные белки - нет.

Между глобулярными и фибриллярными белками отсутствует четкая граница. Ряд белков занимает промежуточное положение и сочетает в себе признаки как глобулярных, так и фибриллярных. К таким белкам относятся, например, миозин мышц (b/а = 75) и фибриноген крови (b/а = 18). Миозин имеет палочковидную форму, сходную с формой фибриллярных белков, однако, подобно глобулярным белкам, он растворим в солевых растворах. Растворы миозина и фибриногена вязкие. Эти белки усваиваются в процессе пищеварения. В то же время актин - глобулярный белок мышц - не усваивается.

Денатурация белка . Нативная конформация белковых молекул не является жесткой, она довольно лабильна (лат. «labilis» - скользящий) и при ряде воздействий может серьезно нарушаться. Нарушение нативной конформации белка, сопровождающееся изменением его нативных свойств без разрыва пептидных связей, называется денатурацией (лат. «denaturare » - лишать природных свойств) белка.

Денатурация белков может быть вызвана различными при-чинами, приводящими к нарушению слабых взаимодействий, а также к разрыву дисульфидных связей, стабилизирующих их нативную структуру.

Нагревание большинства белков до температуры выше 50°С, а также ультрафиолетовое и другие виды высокоэнергетического облучения усиливают колебания атомов полипептидной цепи, что приводит к нарушению в них различных связей. Денатурацию белка способно вызвать даже механическое встряхивание.

Денатурация белков также происходит вследствие химического воздействия. Сильные кислоты или щелочи влияют на ионизацию кислотных и основных групп, вызывая нарушение ионных и некоторых водородных связей в молекулах белков. Мочевина (H 2 N-CO-NH 2) и органические растворители - спирты, фенолы и др. - нарушают систему водородных связей и ослабляют в белковых молекулах гидрофобные взаимодействия (мочевина - за счет нарушения структуры воды, органические растворители - вследствие установления контактов с неполярными радикалами аминокислот). Меркаптоэтанол разрушает в белках дисульфидные связи. Ионы тяжелых металлов нарушают слабые взаимодействия.

При денатурации происходит изменение свойств белка и, в первую очередь, уменьшение его растворимости. Например, при кипячении белки коагулируют и выпадают из растворов в осадок в виде сгустков (как при варке куриного яйца). Осаждение белков из растворов происходит также под воздействием белковых осадителей, в качестве которых применяют трихлоруксусную кислоту, реактив Барнштейна (смесь гидроксида натрия с сульфатом меди), раствор таннина и др.

При денатурации уменьшается водопоглотительная способность белка, т. е. его способность к набуханию; могут появляться новые химические группы, например: при воздействии мер каптоэтанола - SH-группы. В результате денатурации белок теряет свою биологическую активность.

Хотя первичная структура белка при денатурации не нарушается, изменения являются необратимыми. Однако, например, при постепенном удалении мочевины методом диализа из раствора денатурированного белка происходит его ренатурация: нативная структура белка восстанавливается, а вместе с ней, в той или иной степени, - и его нативные свойства. Такая денатурация называется обратимой .

Необратимая денатурация белков происходит в процессе старения организмов. Поэтому, например, семена растений, даже при оптимальных условиях хранения, постепенно теряют свою всхожесть.

Денатурация белков имеет место при выпечке хлеба, сушке макарон, овощей, в ходе приготовления пищи и т. д. В результате повышается биологическая ценность этих белков, так как в процессе пищеварения легче усваиваются денатурированные (частично разрушенные) белки.

Изоэлектрическая точка белка . В белках содержатся раз-личные основные и кислотные группы, которые обладают способностью к ионизации. В сильнокислой среде активно протонируются основные группировки (аминогруппы и др.), и молекулы белка приобретают суммарный положительный заряд, а в сильнощелочной среде - легко диссоциируют карбоксильные группы, и молекулы белка приобретают суммарный отрицательный заряд.

Источниками положительного заряда в белках выступают боковые радикалы остатков лизина, аргинина и гистидина, а-аминогруппа остатка N-концевой аминокислоты. Источники отрицательного заряда - боковые радикалы остатков аспарагиновой и глутаминовой кислот, а-карбоксильная группа остатка С-концевой аминокислоты.

При определенном значении рН среды наблюдается равенство положительных и отрицательных зарядов на поверхности белковой молекулы, т. е. ее суммарный электрический заряд оказывается равным нулю. Такое значение рН раствора, при котором молекула белка электронейтральна, называют изоэлектрической точкой белка (pi).

Изоэлектрические точки являются характерными константами белков. Они определяются их аминокислотным составом и структурой: количеством и расположением остатков кислых и основных аминокислот в полипептидных цепях. Изоэлектрические точки белков, в которых преобладают остатки кислых аминокислот, располагаются в области рН<7, а белков, в которых преобладают остатки основных аминокислот - в области рН>7. Изоэлектрические точки большинства белков находятся в слабокислой среде.

В изоэлектрическом состоянии растворы белков обладают минимальной вязкостью. Это связано с изменением формы белковой молекулы. В изоэлектрической точке разноименно заряженные группы притягиваются друг к другу, и белки закручиваются в клубки. При смещении рН от изоэлектрической точки одноименно заряженные группы отталкиваются, и молекулы белка развертываются. В развернутом состоянии белковые молекулы придают растворам более высокую вязкость, чем свернутые в клубки.

В изоэлектрической точке белки обладают минимальной растворимостью и могут легко выпадать в осадок.

Однако осаждения белков в изоэлектрической точке все же не происходит. Этому препятствуют структурированные молекулы воды, удерживающие на поверхности белковых глобул значительную часть гидрофобных аминокислотных радикалов.

Осадить белки можно с помощью органических растворителей (спирта, ацетона), нарушающих систему гидрофобных контактов в молекулах белка, а также высоких концентраций солей (методом высаливания), уменьшающих гидратацию белковых глобул. В последнем случае часть воды идет на растворение соли и перестает участвовать в растворении белка. Такой раствор за недостатком растворителя становится пересыщенным, что влечет за собой выпадение части его в осадок. Белковые молекулы начинают слипаться и, образуя все более крупные частицы, постепенно осаждаться из раствора.

Оптические свойства белка . Растворы белков обладают оптической активностью, т. е. способностью вращать плоскость поляризации света. Это свойство белков обусловлено наличием в их молекулах элементов асимметрии - асимметрических атомов углерода и правозакрученной а-спирали.

При денатурации белка происходит изменение его оптических свойств, что связано с разрушением а-спирали. Оптические свойства полностью денатурированных белков зависят только от наличия в них асимметрических атомов углерода.

По разнице в проявлении белком оптических свойств до и после денатурации можно определить степень его спирализации.

Качественные реакции на белки . Для белков характерны цветные реакции, обусловленные наличием в них тех или иных химических группировок. Эти реакции часто используются для обнаружения белков.

При добавлении к белковому раствору сульфата меди и щелочи появляется сиреневое окрашивание, связанное с образованием комплексов ионов меди с пептидными группами белка. Поскольку эту реакцию дает биурет (H 2 N-CO-NH-CO-NH 2), она получила название биуретовой. Ее часто используют для количественного определения белка, наряду с методом И. Кьельдаля, так как интенсивность возникающей окраски пропорциональна концентрации белка в растворе.

При нагревании растворов белков с концентрированной азотной кислотой появляется желтое окрашивание, обусловленное образованием нитропроизводных ароматических аминокислот. Эту реакцию называют ксантопротеиновой (греч. «ксантос» - желтый).

Многие белковые растворы при нагревании вступают в реакцию с азотнокислым раствором ртути, которая образует с фенолами и их производными комплексные соединения малинового цвета. Это качественная реакция Миллона на тирозин.

В результате нагревания большинства белковых растворов с уксуснокислым свинцом в щелочной среде выпадает черный осадок сульфида свинца. Данная реакция используется для обнаружения серосодержащих аминокислот и называется реакцией Фоля.

Белки — высокомолекулярные органические соединения, состоящие из остатков α-аминокислот.

В состав белков входят углерод, водород, азот, кислород, сера. Часть белков образует комплексы с другими молекулами, содержащими фосфор, железо, цинк и медь.

Белки обладают большой молекулярной массой: яичный альбумин — 36 000, гемоглобин — 152 000, миозин — 500 000. Для сравнения: молекулярная масса спирта — 46, уксусной кислоты — 60, бензола — 78.

Аминокислотный состав белков

Белки — непериодические полимеры, мономерами которых являются α-аминокислоты . Обычно в качестве мономеров белков называют 20 видов α-аминокислот, хотя в клетках и тканях их обнаружено свыше 170.

В зависимости от того, могут ли аминокислоты синтезироваться в организме человека и других животных, различают: заменимые аминокислоты — могут синтезироваться; незаменимые аминокислоты — не могут синтезироваться. Незаменимые аминокислоты должны поступать в организм вместе с пищей. Растения синтезируют все виды аминокислот.

В зависимости от аминокислотного состава, белки бывают: полноценными — содержат весь набор аминокислот; неполноценными — какие-то аминокислоты в их составе отсутствуют. Если белки состоят только из аминокислот, их называют простыми . Если белки содержат помимо аминокислот еще и неаминокислотный компонент (простетическую группу), их называют сложными . Простетическая группа может быть представлена металлами (металлопротеины), углеводами (гликопротеины), липидами (липопротеины), нуклеиновыми кислотами (нуклеопротеины).

Все аминокислоты содержат : 1) карбоксильную группу (-СООН), 2) аминогруппу (-NH 2), 3) радикал или R-группу (остальная часть молекулы). Строение радикала у разных видов аминокислот — различное. В зависимости от количества аминогрупп и карбоксильных групп, входящих в состав аминокислот, различают: нейтральные аминокислоты , имеющие одну карбоксильную группу и одну аминогруппу; основные аминокислоты , имеющие более одной аминогруппы; кислые аминокислоты , имеющие более одной карбоксильной группы.

Аминокислоты являются амфотерными соединениями , так как в растворе они могут выступать как в роли кислот, так и оснований. В водных растворах аминокислоты существуют в разных ионных формах.

Пептидная связь

Пептиды — органические вещества, состоящие из остатков аминокислот, соединенных пептидной связью.

Образование пептидов происходит в результате реакции конденсации аминокислот. При взаимодействии аминогруппы одной аминокислоты с карбоксильной группой другой между ними возникает ковалентная азот-углеродная связь, которую и называют пептидной . В зависимости от количества аминокислотных остатков, входящих в состав пептида, различают дипептиды, трипептиды, тетрапептиды и т.д. Образование пептидной связи может повторяться многократно. Это приводит к образованию полипептидов . На одном конце пептида находится свободная аминогруппа (его называют N-концом), а на другом — свободная карбоксильная группа (его называют С-концом).

Пространственная организация белковых молекул

Выполнение белками определенных специфических функций зависит от пространственной конфигурации их молекул, кроме того, клетке энергетически невыгодно держать белки в развернутой форме, в виде цепочки, поэтому полипептидные цепи подвергаются укладке, приобретая определенную трехмерную структуру, или конформацию. Выделяют 4 уровня пространственной организации белков .

Первичная структура белка — последовательность расположения аминокислотных остатков в полипептидной цепи, составляющей молекулу белка. Связь между аминокислотами — пептидная.

Если молекула белка состоит всего из 10 аминокислотных остатков, то число теоретически возможных вариантов белковых молекул, отличающихся порядком чередования аминокислот, — 10 20 . Имея 20 аминокислот, можно составить из них еще большее количество разнообразных комбинаций. В организме человека обнаружено порядка десяти тысяч различных белков, которые отличаются как друг от друга, так и от белков других организмов.

Именно первичная структура белковой молекулы определяет свойства молекул белка и ее пространственную конфигурацию. Замена всего лишь одной аминокислоты на другую в полипептидной цепочке приводит к изменению свойств и функций белка. Например, замена в β-субъединице гемоглобина шестой глутаминовой аминокислоты на валин приводит к тому, что молекула гемоглобина в целом не может выполнять свою основную функцию — транспорт кислорода; в таких случаях у человека развивается заболевание — серповидноклеточная анемия.

Вторичная структура — упорядоченное свертывание полипептидной цепи в спираль (имеет вид растянутой пружины). Витки спирали укрепляются водородными связями, возникающими между карбоксильными группами и аминогруппами. Практически все СО- и NН-группы принимают участие в образовании водородных связей. Они слабее пептидных, но, повторяясь многократно, придают данной конфигурации устойчивость и жесткость. На уровне вторичной структуры существуют белки: фиброин (шелк, паутина), кератин (волосы, ногти), коллаген (сухожилия).

Третичная структура — укладка полипептидных цепей в глобулы, возникающая в результате возникновения химических связей (водородных, ионных, дисульфидных) и установления гидрофобных взаимодействий между радикалами аминокислотных остатков. Основную роль в образовании третичной структуры играют гидрофильно-гидрофобные взаимодействия. В водных растворах гидрофобные радикалы стремятся спрятаться от воды, группируясь внутри глобулы, в то время как гидрофильные радикалы в результате гидратации (взаимодействия с диполями воды) стремятся оказаться на поверхности молекулы. У некоторых белков третичная структура стабилизируется дисульфидными ковалентными связями, возникающими между атомами серы двух остатков цистеина. На уровне третичной структуры существуют ферменты, антитела, некоторые гормоны.

Четвертичная структура характерна для сложных белков, молекулы которых образованы двумя и более глобулами. Субъединицы удерживаются в молекуле благодаря ионным, гидрофобным и электростатическим взаимодействиям. Иногда при образовании четвертичной структуры между субъединицами возникают дисульфидные связи. Наиболее изученным белком, имеющим четвертичную структуру, является гемоглобин . Он образован двумя α-субъединицами (141 аминокислотный остаток) и двумя β-субъединицами (146 аминокислотных остатков). С каждой субъединицей связана молекула гема, содержащая железо.

Если по каким-либо причинам пространственная конформация белков отклоняется от нормальной, белок не может выполнять свои функции. Например, причиной «коровьего бешенства» (губкообразной энцефалопатии) является аномальная конформация прионов — поверхностных белков нервных клеток.

Свойства белков

Аминокислотный состав, структура белковой молекулы определяют его свойства . Белки сочетают в себе основные и кислотные свойства, определяемые радикалами аминокислот: чем больше кислых аминокислот в белке, тем ярче выражены его кислотные свойства. Способность отдавать и присоединять Н + определяют буферные свойства белков ; один из самых мощных буферов — гемоглобин в эритроцитах, поддерживающий рН крови на постоянном уровне. Есть белки растворимые (фибриноген), есть нерастворимые, выполняющие механические функции (фиброин, кератин, коллаген). Есть белки активные в химическом отношении (ферменты), есть химически неактивные, устойчивые к воздействию различных условий внешней среды и крайне неустойчивые.

Внешние факторы (нагревание, ультрафиолетовое излучение, тяжелые металлы и их соли, изменения рН, радиация, обезвоживание)

могут вызывать нарушение структурной организации молекулы белка. Процесс утраты трехмерной конформации, присущей данной молекуле белка, называют денатурацией . Причиной денатурации является разрыв связей, стабилизирующих определенную структуру белка. Первоначально рвутся наиболее слабые связи, а при ужесточении условий и более сильные. Поэтому сначала утрачивается четвертичная, затем третичная и вторичная структуры. Изменение пространственной конфигурации приводит к изменению свойств белка и, как следствие, делает невозможным выполнение белком свойственных ему биологических функций. Если денатурация не сопровождается разрушением первичной структуры, то она может быть обратимой , в этом случае происходит самовосстановление свойственной белку конформации. Такой денатурации подвергаются, например, рецепторные белки мембраны. Процесс восстановления структуры белка после денатурации называется ренатурацией . Если восстановление пространственной конфигурации белка невозможно, то денатурация называется необратимой .

Функции белков

Функция Примеры и пояснения
Строительная Белки участвуют в образовании клеточных и внеклеточных структур: входят в состав клеточных мембран (липопротеины, гликопротеины), волос (кератин), сухожилий (коллаген) и т.д.
Транспортная Белок крови гемоглобин присоединяет кислород и транспортирует его от легких ко всем тканям и органам, а от них в легкие переносит углекислый газ; в состав клеточных мембран входят особые белки, которые обеспечивают активный и строго избирательный перенос некоторых веществ и ионов из клетки во внешнюю среду и обратно.
Регуляторная Гормоны белковой природы принимают участие в регуляции процессов обмена веществ. Например, гормон инсулин регулирует уровень глюкозы в крови, способствует синтезу гликогена, увеличивает образование жиров из углеводов.
Защитная В ответ на проникновение в организм чужеродных белков или микроорганизмов (антигенов) образуются особые белки — антитела, способные связывать и обезвреживать их. Фибрин, образующийся из фибриногена, способствует остановке кровотечений.
Двигательная Сократительные белки актин и миозин обеспечивают сокращение мышц у многоклеточных животных.
Сигнальная В поверхностную мембрану клетки встроены молекулы белков, способных изменять свою третичную структуру в ответ на действие факторов внешней среды, таким образом осуществляя прием сигналов из внешней среды и передачу команд в клетку.
Запасающая В организме животных белки, как правило, не запасаются, исключение: альбумин яиц, казеин молока. Но благодаря белкам в организме могут откладываться про запас некоторые вещества, например, при распаде гемоглобина железо не выводится из организма, а сохраняется, образуя комплекс с белком ферритином.
Энергетическая При распаде 1 г белка до конечных продуктов выделяется 17,6 кДж. Сначала белки распадаются до аминокислот, а затем до конечных продуктов — воды, углекислого газа и аммиака. Однако в качестве источника энергии белки используются только тогда, когда другие источники (углеводы и жиры) израсходованы.
Каталитическая Одна из важнейших функций белков. Обеспечивается белками — ферментами, которые ускоряют биохимические реакции, происходящие в клетках. Например, рибулезобифосфаткарбоксилаза катализирует фиксацию СО 2 при фотосинтезе.

Ферменты

Ферменты , или энзимы , — особый класс белков, являющихся биологическими катализаторами. Благодаря ферментам биохимические реакции протекают с огромной скоростью. Скорость ферментативных реакций в десятки тысяч раз (а иногда и в миллионы) выше скорости реакций, идущих с участием неорганических катализаторов. Вещество, на которое оказывает свое действие фермент, называют субстратом .

Ферменты — глобулярные белки, по особенностям строения ферменты можно разделить на две группы: простые и сложные. Простые ферменты являются простыми белками, т.е. состоят только из аминокислот. Сложные ферменты являются сложными белками, т.е. в их состав помимо белковой части входит группа небелковой природы — кофактор . У некоторых ферментов в качестве кофакторов выступают витамины. В молекуле фермента выделяют особую часть, называемую активным центром. Активный центр — небольшой участок фермента (от трех до двенадцати аминокислотных остатков), где и происходит связывание субстрата или субстратов с образованием фермент-субстратного комплекса. По завершении реакции фермент-субстратный комплекс распадается на фермент и продукт (продукты) реакции. Некоторые ферменты имеют (кроме активного) аллостерические центры — участки, к которым присоединяются регуляторы скорости работы фермента (аллостерические ферменты ).

Для реакций ферментативного катализа характерны: 1) высокая эффективность, 2) строгая избирательность и направленность действия, 3) субстратная специфичность, 4) тонкая и точная регуляция. Субстратную и реакционную специфичность реакций ферментативного катализа объясняют гипотезы Э. Фишера (1890 г.) и Д. Кошланда (1959 г.).

Э. Фишер (гипотеза «ключ-замок») предположил, что пространственные конфигурации активного центра фермента и субстрата должны точно соответствовать друг другу. Субстрат сравнивается с «ключом», фермент — с «замком».

Д. Кошланд (гипотеза «рука-перчатка») предположил, что пространственное соответствие структуры субстрата и активного центра фермента создается лишь в момент их взаимодействия друг с другом. Эту гипотезу еще называют гипотезой индуцированного соответствия .

Скорость ферментативных реакций зависит от: 1) температуры, 2) концентрации фермента, 3) концентрации субстрата, 4) рН. Следует подчеркнуть, что поскольку ферменты являются белками, то их активность наиболее высока при физиологически нормальных условиях.

Большинство ферментов может работать только при температуре от 0 до 40 °С. В этих пределах скорость реакции повышается примерно в 2 раза при повышении температуры на каждые 10 °С. При температуре выше 40 °С белок подвергается денатурации и активность фермента падает. При температуре, близкой к точке замерзания, ферменты инактивируются.

При увеличении количества субстрата скорость ферментативной реакции растет до тех пор, пока количество молекул субстрата не станет равным количеству молекул фермента. При дальнейшем увеличении количества субстрата скорость увеличиваться не будет, так как происходит насыщение активных центров фермента. Увеличение концентрации фермента приводит к усилению каталитической активности, так как в единицу времени преобразованиям подвергается большее количество молекул субстрата.

Для каждого фермента существует оптимальное значение рН, при котором он проявляет максимальную активность (пепсин — 2,0, амилаза слюны — 6,8, липаза поджелудочной железы — 9,0). При более высоких или низких значениях рН активность фермента снижается. При резких сдвигах рН фермент денатурирует.

Скорость работы аллостерических ферментов регулируется веществами, присоединяющимися к аллостерическим центрам. Если эти вещества ускоряют реакцию, они называются активаторами , если тормозят — ингибиторами .

Классификация ферментов

По типу катализируемых химических превращений ферменты разделены на 6 классов:

  1. оксиредуктазы (перенос атомов водорода, кислорода или электронов от одного вещества к другому — дегидрогеназа),
  2. трансферазы (перенос метильной, ацильной, фосфатной или аминогруппы от одного вещества к другому — трансаминаза),
  3. гидролазы (реакции гидролиза, при которых из субстрата образуются два продукта — амилаза, липаза),
  4. лиазы (негидролитическое присоединение к субстрату или отщепление от него группы атомов, при этом могут разрываться связи С-С, С-N, С-О, С-S — декарбоксилаза),
  5. изомеразы (внутримолекулярная перестройка — изомераза),
  6. лигазы (соединение двух молекул в результате образования связей С-С, С-N, С-О, С-S — синтетаза).

Классы в свою очередь подразделены на подклассы и подподклассы. В действующей международной классификации каждый фермент имеет определенный шифр, состоящий из четырех чисел, разделенных точками. Первое число — класс, второе — подкласс, третье — подподкласс, четвертое — порядковый номер фермента в данном подподклассе, например, шифр аргиназы — 3.5.3.1.

    Перейти к лекции №2 «Строение и функции углеводов и липидов»

    Перейти к лекции №4 «Строение и функции нуклеиновых кислот АТФ»

Изоэлектрическая точка

Амфотерность - кислотно- основные свойства белков.

Четвертичная структура

Многие белки состоят из нескольких субъединиц(протомеров), которые могут иметь одинаковый или различный аминокислотный состав. В этом случае белки имеют четвертичную структуру . Белки обычно содержат четное число субъединиц: две, четыре, шесть. Взаимодействие происходит за счет ионных, водородных связей, Ван-дер-ваальсовых сил. Гемоглобин взрослого человека HbA состоит из четырех попарно одинаковых субъединиц (а 2 β 2).

Четвертичная структура дает многие биологические преимущества:

а) возникает экономия генетического материала., уменьшается длина структурного гена и иРНК, в которых записана информация о первичной структуре белка.

б) возможно осуществлять замену субъединиц, что позволяет изменять активность

фермента в связи с изменяющимися условиями(осуществлять адаптацию). Гемоглобин

новорожденного состоит из белков (а 2 γ 2) . но в течение первых месяцев состав становится как у взрослого человека (а 2 β 2) .

8.4 . Физико-химические свойства белка

Белки, как и аминокислоты, являются амфотерными соединениями и обладают буферными свойствами.

Белки можно разделить на нейтральные, кислые и основные .

Нейтральные белки содержат равное число групп, склонных к ионизации: кислотных и основных. Изоэлектрическая точка таких белков находится в среде, близкой к нейтральной, если рН < pI , то белок становится положительно заряженным катионом, pH > pI , то белок становится отрицательно заряженным анионом.

NH 3 - белок - COOН <--> + NH 3 - белок - COO – <--> NH 2 - белок - COO –

рН < pI водный растворI pH > pI

Кислые белки содержат неравное число групп, склонных к ионизации: карбоксильных больше, чем аминогрупп. В водном растворе они приобретают отрицательный заряд, а раствор становится кислым. При добавлении кислоты (Н +) белок вначале входит в изоэлектрическую точку, а затем в избытке кислоты – превращается в катион. В щелочной среде такой белок заряжен отрицательно(исчезает заряд аминогруппы).

Кислый белок

NH 3 - белок - COO – + Н + + NH 3 - белок - COO – + Н + + NH 3 -белок- COOН

| <--> | <--> |

CОО – CООН COOН

Водный раствор рН = р I рН < pI

В избытке кислоты белок

заряжен положительно

Кислый белок в щелочной среде заряжен отрицательно

NH 3 - белок - COO – ОН – NH 2 - белок - COO –

| <--> |

CОО – CОО –

pH > pI

Основные белки содержат неравное число групп, склонных к ионизации: аминогрупп больше, чем карбоксильных. В водном растворе они приобретают положительный заряд, а раствор становится щелочным. При добавлении щелочи (ОН –) белок вначале входит в изоэлектрическую точку, а далее в избытке щелочи – превращается в анион. В кислой среде такой белок заряжен положительно(исчезает заряд карбоксильной группы)



Просмотров