7 кто предложил планетарную модель строения атома. Планетарная модель атома: опыт Резерфорда

Стали важным шагом в развитии физики. Огромное значение имела модель Резерфорда. Атом как система и частицы, его составляющие, был изучен более точно и подробно. Это привело к успешному становлению такой науки, как ядерная физика.

Античные представления о строении вещества

Предположение о том, что окружающие тела состоят из мельчайших частиц, были высказаны еще в античные времена. Мыслители того времени представляли атом в виде мельчайшей и неделимой частицы любого вещества. Они утверждали, что нет во Вселенной ничего меньшего по размеру, чем атом. Таких взглядов придерживались великие древнегреческие ученые и философы - Демокрит, Лукреций, Эпикур. Гипотезы этих мыслителей сегодня объединены под названием «античный атомизм».

Средневековые представления

Времена античности прошли, и в средние века также были ученые, которые высказывали различные предположения о строении веществ. Однако преобладание религиозных философских взглядов и власть церкви в тот период истории на корню пресекали любые попытки и стремления человеческого разума к материалистическим научным выводам и открытиям. Как известно, средневековая инквизиция весьма недружелюбно вела себя с представителями научного мира того времени. Остается сказать, что у тогдашних светлых умов было пришедшее из античности представление о неделимости атома.

Исследования 18-19 веков

18 столетие было отмечено серьезными открытиями в области элементарного строения вещества. Во многом благодаря стараниям таких ученых, как Антуан Лавуазье, Михаил Ломоносов и Независимо друг от друга они сумели доказать, что атомы действительно существуют. Но вопрос об их внутреннем строении оставался открытым. Конец 18 века был отмечен таким знаменательным событием в научном мире, как открытие Д. И. Менделеевым периодической системы химических элементов. Это стало по-настоящему мощным прорывом того времени и приоткрыло завесу над пониманием того, что все атомы имеют единую природу, что они родственны друг другу. В дальнейшем, в 19 веке, еще одним важным шагом на пути к разгадке строения атома стало доказательство того, что в составе любого из них присутствует электрон. Работа ученых этого периода подготовила благодатную почву для открытий 20-го века.

Эксперименты Томсона

Английский физик Джон Томсон в 1897 году доказал, что в состав атомов входят электроны с отрицательным зарядом. На этом этапе ложные представления о том, что атом - предел делимости любого вещества, были окончательно разрушены. Как же Томсон сумел доказать существование электронов? Ученый в своих опытах помещал в сильно разреженные газы электроды и пропускал электрический ток. В результате возникали катодные лучи. Томсон тщательно изучил их особенности и обнаружил, что они являются потоком заряженных частиц, которые движутся с огромной скоростью. Ученый сумел высчитать массу этих частиц и их заряд. Он также выяснил, что их нельзя преобразовать в нейтральные частицы, поскольку электрический заряд - это основа их природы. Так были Томсон является и создателем первой в мире модели строения атома. Согласно ей, атом - это сгусток положительно заряженной материи, в которой равномерно распределены отрицательно заряженные электроны. Такое строение объясняет общую нейтральность атомов, так как противоположные заряды уравновешивают друг друга. Опыты Джона Томсона стали неоценимо важными для дальнейшего изучения строения атома. Однако многие вопросы оставались без ответа.

Исследования Резерфорда

Томсон открыл существование электронов, но он не сумел найти в атоме положительно заряженных частиц. исправил это недоразумение в 1911 году. Во время экспериментов, изучая активность альфа-частиц в газах, он обнаружил, что в атоме присутствуют частицы, положительно заряженные. Резерфорд увидел, что при прохождении лучей сквозь газ или через тонкую металлическую пластину происходит резкое отклонение незначительного количества частиц от траектории движения. Их буквально отбрасывало назад. Ученый догадался, что такое поведение объясняется столкновением с положительно заряженными частицами. Такие эксперименты позволили физику создать модель строения атома Резерфорда.

Планетарная модель

Теперь представления ученого несколько отличались от предположений, высказанных Джоном Томсоном. Разными стали и их модели атомов. позволил ему создать совершенно новую теорию в этой области. Открытия ученого имели решающее значение для дальнейшего развития физики. Модель Резерфорда описывает атом как ядро, расположенное в центре, и движущиеся вокруг него электроны. Ядро обладает положительным зарядом, а электроны - отрицательным. Модель атома по Резерфорду предполагала вращение электронов вокруг ядра по определенным траекториям - орбитам. Открытие ученого помогло объяснить причину отклонения альфа-частиц и стало толчком к развитию ядерной теории атома. В модели атома Резерфорда прослеживается аналогия с движением планет Солнечной системы вокруг Солнца. Это очень точное и яркое сравнение. Поэтому модель Резерфорда, атом в которой движется вокруг ядра по орбите, была названа планетарной.

Работы Нильса Бора

Двумя годами позже датский физик Нильс Бор попытался объединить представления о строении атома с квантовыми свойствами светового потока. Ядерная модель атома Резерфорда была положена ученым в основу его новой теории. По предположению Бора, атомы вращаются вокруг ядра по круговым орбитам. Такая траектория движения приводит к ускорению электронов. Кроме того, кулоновское взаимодействие этих частиц с центром атома сопровождается созданием и расходованием энергии для поддержания пространственного электромагнитного поля, возникающего из-за движения электронов. При таких условиях отрицательно заряженные частицы должны когда-нибудь упасть на ядро. Но этого не происходит, что указывает на большую устойчивость атомов как систем. Нильс бор понял, что законы классической термодинамики, описанные уравнениями Максвелла, не работают во внутриатомных условиях. Поэтому ученый поставил перед собой задачу вывести новые закономерности, которые были бы справедливы в мире элементарных частиц.

Постулаты Бора

Во многом благодаря тому, что существовала модель Резерфорда, атом и его составляющие были неплохо изучены, Нильс Бор смог подойти к созданию своих постулатов. Первый из них гласит о том, что атом имеет при которых он не изменяет свою энергию, а электроны при этом движутся по орбитам, не меняя своей траектории. Согласно второму постулату, при переходе электрона с одной орбиты на другую происходит выделение или поглощение энергии. Она равна разности энергий предшествующего и последующего состояний атома. При этом, если электрон перепрыгивает на более близкую к ядру орбиту, то происходит излучение и наоборот. Несмотря на то что движение электронов мало напоминает орбитальную траекторию, расположенную строго по окружности, открытие Бора позволило получить великолепное объяснение существованию линейчатого спектра Приблизительно в это же время ученые-физики Герц и Франк, жившие в Германии, подтвердили учение Нильса Бора о существовании стационарных, стабильных состояний атома и возможность изменения значений атомной энергии.

Сотрудничество двух ученых

Кстати, Резерфорд длительное время не мог определить Ученые Марсден и Гейгер попытались осуществить перепроверку утверждений Эрнеста Резерфорда и в результате подробных и тщательных экспериментов и расчетов пришли к выводу о том, что именно ядро является важнейшей характеристикой атома, и в нем сосредоточен весь его заряд. В дальнейшем было доказано, что значение заряда ядра численно равно порядковому номеру элемента в периодической системе элементов Д. И. Менделеева. Интересно, что Нильс Бор вскоре познакомился с Резерфордом и полностью согласился с его взглядами. В последующем ученые длительно работали вместе в одной лаборатории. Модель Резерфорда, атом как система, состоящая из элементарных заряженных частиц, - все это Нильс Бор посчитал справедливым и навсегда отложил в сторону свою электронную модель. Совместная научная деятельность ученых была очень успешной и принесла свои плоды. Каждый из них углубился в изучение свойств элементарных частиц и сделал значимые для науки открытия. Позже Резерфорд обнаружил и доказал возможность разложения ядра, но это уже тема другой статьи.

Одна из первых моделей строения атома была предложена Дж. Томсоном в 1904 г. Атом представлялся как «море положительного электричества» с колеблющимися в нем электронами. Суммарный отрицательный заряд электронов электронейтрального атома приравнивался его суммарному положительному заряду.

Опыт Резерфорда

Для проверки гипотезы Томсона и более точного определения строения атома Э. Резерфорд организовал серию опытов по рассеянию α -частиц тонкими металлическими пластинками - фольгой. В 1910 г. студенты Резерфорда Ханс Гейгер и Эрнест Марсден проводили эксперименты по бомбардировке α -частицами тонких металлических пластинок. Они обнаружили, что большинство α -частиц проходят через фольгу, не изменяя своей траектории. И это было неудивительно, если принять правильность модели атома Томсона.

Источник α -излучения помещали в свинцовый кубик с просверленным в нем каналом, так что удавалось получить поток α -частиц, летящих в определенном направлении. Альфа-частицы являются двукратно ионизированными атомами гелия (Не 2+ ). Они имеют положительный заряд +2 и массу, почти в 7350 раз превышающую массу электрона. Попадая на экран, покрытый сульфидом цинка, α -частицы вызывали его свечение, причем в лупу можно было увидеть и подсчитать отдельные вспышки, возникающие на экране при попадании на него каждой α -частицы. Между источником излучения и экраном помещали фольгу. По вспышкам на экране можно было судить о рассеянии α -частиц, т.е. об их отклонении от первоначального направления при прохождении через слой металла.

Оказалось, что большинство α -частиц проходит через фольгу, не изменяя своего направления, хотя толщина фольги соответствовала сотням тысяч атомных диаметров. Но некоторая доля α -частиц все же отклонялась на небольшие углы, а изредка α -частицы резко изменяли направление своего движения и даже (примерно 1 из 100000) отбрасывались назад, как бы натолкнувшись на массивное препятствие. Случаи такого резкого отклонения α -частиц можно было наблюдать, перемещая экран с лупой по дуге.

Из результатов этого эксперимента можно было сделать следующие выводы:

  1. В атоме есть некоторое «препятствие», которое было названо ядром.
  2. Ядро имеет положительный заряд (иначе положительно заряженные α -частицы не отражались бы назад).
  3. Ядро имеет очень маленькие размеры по сравнению с размерами самого атома (лишь незначительная часть α -частиц изменяла направление движения).
  4. Ядро имеет большую массу, по сравнению с массой α -частиц.

Результаты опыта Резерфорд объяснил, предложив «планетарную» модель атома , уподоблявшую его солнечной системе. Согласно планетарной модели в центре атома находится очень маленькое ядро, размеры которого приблизительно в 100000 раз меньше размеров самого атома. Это ядро заключает в себе почти всю массу атома и несет положительный заряд. Вокруг ядра движутся электроны, число которых определяется зарядом ядра. Внешняя траектория движения электронов определяет внешние размеры атома. Диаметр атома - величина порядка 10 -8 см, а диаметр ядра - порядка 10 -13 ÷10 -12 см.

Чем больше заряд атомного ядра, тем сильнее будет отталкиваться от него α -частица, тем чаще будут встречаться случаи сильных отклонений α -частиц, проходящих через слой металла, от первоначального направления движения. Поэтому опыты по рассеянию α -частиц дают возможность не только обнаружить существование атомного ядра, но и определить его заряд. Уже из опытов Резерфорда следовало, что заряд ядра (выраженный в единицах заряда электрона) численно равен порядковому номеру элемента в периодической системе. Это было подтверждено Г. Мозли , установившим в 1913 г. простую связь между длинами волн определенных линий рентгеновского спектра элемента и его порядковым номером, и Д. Чедвиком , с большой точностью определившим в 1920 г. заряды атомных ядер ряда элементов по рассеянию α -частиц.

Был установлен физический смысл порядкового номера элемента в периодической системе: порядковый номер оказался важнейшей константой элемента, выражающей положительный заряд ядра его атома. Из электронейтральности атома следует, что и число вращающихся вокруг ядра электронов равно порядковому номеру элемента.

Это открытие дало новое обоснование расположению элементов в периодической системе. Вместе с тем оно устраняло и кажущееся противоречие в системе Менделеева - положение некоторых элементов с большей атомной массой впереди элементов с меньшей атомной массой (теллур и йод, аргон и калий, кобальт и никель). Оказалось, что противоречия здесь нет, так как место элемента в системе определяется зарядом атомного ядра. Было экспериментально установлено, что заряд ядра атома теллура равен 52, а атома йода - 53; поэтому теллур, несмотря на большую атомную массу, должен стоять до йода. Точно так же заряды ядер аргона и калия, никеля и кобальта полностью отвечают последовательности расположения этих элементов в системе.

Итак, заряд атомного ядра является той основной величиной, от которой зависят свойства элемента и его положение в периодической системе. Поэтому периодический закон Менделеева в настоящее время можно сформулировать следующим образом:


Свойства элементов и образуемых ими простых и сложных веществ находятся в периодической зависимости от заряда ядра атомов элементов


Определение порядковых номеров элементов по зарядам ядер их атомов позволило установить общее число мест в периодической системе между водородом, имеющим порядковый номер 1, и ураном (порядковый номер 92), считавшимся в то время последним членом периодической системы элементов. Когда создавалась теория строения атома, оставались незанятыми места 43, 61, 72, 75, 85 и 87, что указывало на возможность существования еще неоткрытых элементов. И действительно, в 1922 г. был открыт элемент гафний, который занял место 72; затем в 1925 г. - рений, занявший место 75. Элементы, которые должны занять остальные четыре свободных места таблицы, оказались радиоактивными и в природе не найдены, однако их удалось получить искусственным путем. Новые элементы получили названия технеций (порядковый номер 43), прометий (61), астат (85) и франций (87). В настоящее время все клетки периодической системы между водородом и ураном заполнены. Однако сама периодическая система не является завершенной.

Атомные спектры

Планетарная модель была крупным шагом в теории строения атома. Однако в некоторых отношениях она противоречила твердо установленным фактам. Рассмотрим два таких противоречия.

Во-первых, теория Резерфорда не могла объяснить устойчивости атома. Электрон, вращающийся вокруг положительно заряженного ядра, должен, подобно колеблющемуся электрическому заряду, испускать электромагнитную энергию в виде световых волн. Но, излучая свет, электрон теряет часть своей энергии, что приводит к нарушению равновесия между центробежной силой, связанной с вращением электрона, и силой электростатического притяжения электрона к ядру. Для восстановления равновесия электрон должен переместиться ближе к ядру. Таким образом, электрон, непрерывно излучая электромагнитную энергию и двигаясь по спирали, будет приближаться к ядру. Исчерпав всю свою энергию, он должен «упасть» на ядро, и атом прекратит свое существование. Этот вывод противоречит реальным свойствам атомов, которые представляют собой устойчивые образования, и могут существовать, не разрушаясь, чрезвычайно долго.

Во-вторых, модель Резерфорда приводила к неправильным выводам о характере атомных спектров. При пропускании через стеклянную или кварцевую призму света, испускаемого раскаленным твердым или жидким телом, на экране, поставленном за призмой, наблюдается так называемый сплошной спектр, видимая часть которого представляет собой цветную полосу, содержащую все цвета радуги. Это явление объясняется тем, что излучение раскаленного твердого или жидкого тела состоит из электромагнитных волн всевозможных частот. Волны различной частоты неодинаково преломляются призмой и попадают на разные места экрана. Совокупность частот электромагнитного излучения, испускаемого веществом, и называется спектром испускания. С другой стороны, вещества поглощают излучение определенных частот. Совокупность последних называется спектром поглощения вещества.

Для получения спектра вместо призмы можно воспользоваться дифракционной решеткой. Последняя представляет собой стеклянную пластинку, на поверхности которой на очень близком расстоянии друг от друга нанесены тонкие параллельные штрихи (до 1500 штрихов на 1 мм). Проходя сквозь такую решетку, свет разлагается и образует спектр, аналогичный полученному при помощи призмы. Дифракция присуща всякому волновому движению и служит одним из основных доказательств волновой природы света.


При нагреве вещество испускает лучи (излучение). Если излучение имеет одну длину волны, то оно называется монохроматическим. В большинстве же случаев излучение характеризуется несколькими длинами волн. При разложении излучения на монохроматические компоненты получают спектр излучения, где отдельные его составляющие выражаются спектральными линиями.

Спектры, получающиеся при излучении свободными или слабо связанными атомами (например, в газах или парах), называются атомными спектрами.


Излучение, испускаемое твердыми телами или жидкостями, всегда дает сплошной спектр. Излучение, испускаемое раскаленными газами и парами, в отличие от излучения твердых тел и жидкостей, содержит только определенные длины волн. Поэтому вместо сплошной полосы на экране получается ряд отдельных цветных линий, разделенных темными промежутками. Число и расположение этих линий зависят от природы раскаленного газа или пара. Так, пары калия дают - спектр, состоящий из трех линий, - двух красных и одной фиолетовой; в спектре паров кальция несколько красных, желтых и зеленых линий и т.д.

Излучение, испускаемое твердыми телами или жидкостями, всегда дает сплошной спектр. Излучение, испускаемое раскаленными газами и парами, в отличие от излучения твердых тел и жидкостей, содержит только определенные длины волн. Поэтому вместо сплошной полосы на экране получается ряд отдельных цветных линий, разделенных темными промежутками. Число и расположение этих линий зависят от природы раскаленного газа или пара. Так, пары калия дают спектр, состоящий из трех линий, - двух красных и одной фиолетовой; в спектре паров кальция несколько красных, желтых и зеленых линий и т.д.

Такие спектры называются линейчатыми. Было установлено, что свет, испускаемый атомами газов, имеет линейчатый спектр, в котором спектральные линии могут быть объединены в серии.

В каждой серии расположение линий соответствует определенной закономерности. Частоты отдельных линий могут быть описаны формулой Бальмера :

Тот факт, что атомы каждого элемента дают вполне определенный, присущий только этому элементу спектр, причем интенсивность соответствующих спектральных линий тем выше, чем больше содержание элемента во взятой пробе, широко применяется для определения качественного и количественного состава веществ и материалов. Этот метод исследования называется спектральным анализом .

Планетарная модель строения атома оказалась неспособной объяснить линейчатый спектр испускания атомов водорода и тем более объединение линий спектра в серии. Электрон, вращающийся вокруг ядра, должен приближаться к ядру, непрерывно меняя скорость своего движения. Частота испускаемого им света определяется частотой его вращения и, следовательно, должна непрерывно меняться. Это означает, что спектр излучения атома должен быть непрерывным, сплошным. Согласно данной модели частота излучения атома должна равняться механической частоте колебаний или быть кратной ей, что не согласуется с формулой Бальмера. Таким образом, теория Резерфорда не смогла объяснить ни существования устойчивых атомов, ни наличия у них линейчатых спектров.

Квантовая теория света

В 1900 г. М. Планк показал, что способность нагретого тела к лучеиспусканию можно правильно количественно описать, только предположив, что лучистая энергия испускается и поглощается телами не непрерывно, а дискретно, т.е. отдельными порциями - квантами. При этом энергия Е каждой такой порции связана с частотой излучения соотношением, получившим название уравнения Планка :

Сам Планк долгое время полагал, что испускание и поглощение света квантами есть свойство излучающих тел, а не самого излучения, которое способно иметь любую энергию и поэтому могло бы поглощаться непрерывно. Однако в 1905 г. Эйнштейн , анализируя явление фотоэлектрического эффекта, пришел к выводу, что электромагнитная (лучистая) энергия существует только в форме квантов и что, следовательно, излучение представляет собой поток неделимых материальных «частиц» (фотонов), энергия которых определяется уравнением Планка .

Фотоэлектрическим эффектом называется испускание металлом электронов под действием падающего на него света. Это явление было подробно изучено в 1888-1890 гг. А. Г. Столетовым . Если поместить установку в вакуум и подать на пластинку М отрицательный потенциал, то тока в цепи наблюдаться не будет, поскольку в пространстве между пластинкой и сеткой нет заряженных частиц, способных переносить электрический ток. Но при освещении пластинки источником света гальванометр обнаруживает возникновение тока (называемого фототоком), носителями которого служат электроны, вырываемые светом из металла.

Оказалось, что при изменении интенсивности освещения изменяется только число испускаемых металлом электронов, т.е. сила фототока. Но максимальная кинетическая энергия каждого вылетевшего из металла электрона не зависит от интенсивности освещения, а изменяется только при изменении частоты падающего на металл света. Именно с увеличением длины волны (т.е. с уменьшением частоты) энергия испускаемых металлом электронов уменьшается, а затем, при определенной для каждого металла длине волны, фотоэффект исчезает и не проявляется даже при очень высокой интенсивности освещения. Так, при освещении красным или оранжевым светом натрий не проявляет фотоэффекта и начинает испускать электроны только при длине волны, меньшей 590 нм (желтый свет); у лития фотоэффект обнаруживается при еще меньших длинах волн, начиная с 516 нм (зеленый свет); а вырывание электронов из платины под действием видимого света вообще не происходит и начинается только при облучении платины ультрафиолетовыми лучами.

Эти свойства фотоэлектрического эффекта совершенно необъяснимы с позиций классической волновой теории света, согласно которой эффект должен определяться (для данного металла) только количеством энергии, поглощаемой поверхностью металла в единицу времени, но не должен зависеть от типа излучения, падающего на металл. Однако эти же свойства получают простое и убедительное объяснение, если считать, что излучение состоит из отдельных порций, фотонов, обладающих вполне определенной энергией.

В самом деле, электрон в металле связан с атомами металла, так что для его вырывания необходима затрата определенной энергии. Если фотон обладает нужным запасом энергии (а энергия фотона определяется частотой излучения), то электрон будет вырван, фотоэффект будет наблюдаться. В процессе взаимодействия с металлом фотон полностью отдает свою энергию электрону, потому что дробиться на части фотон не может. Энергия фотона будет частично израсходована па разрыв связи электрона с металлом, частично на сообщение электрону кинетической энергии движения. Поэтому максимальная кинетическая энергия выбитого из металла электрона не может быть больше разности между энергией фотона и энергией связи электрона с атомами металла. Следовательно, при увеличении числа фотонов, падающих на поверхность металла в единицу времени (т.е. при повышении интенсивности освещения), будет увеличиваться только число вырываемых из металла электронов, что приведет к возрастанию фототока, но энергия каждого электрона возрастать не будет. Если же энергия фотона меньше минимальной энергии, необходимой для вырывания электрона, фотоэффект не будет наблюдаться при любом числе падающих на металл фотонов, т.е. при любой интенсивности освещения.

Квантовая теория света , развитая Эйнштейном , смогла объяснить не только свойства фотоэлектрического эффекта, но и закономерности химического действия света, температурную зависимость теплоемкости твердых тел и ряд других явлений. Она оказалась чрезвычайно полезной и в развитии представлений о строении атомов и молекул.

Из квантовой теории света следует, что фотон неспособен дробиться: он вза-модействует как целое с электроном металла, выбивая его из пластинки; как целое он взаимодействует и со светочувствительным веществом фотографической пленки, вызывая ее потемнение в определенной точке, и т. д. В этом смысле фотон ведет себя подобно частице, т.е. проявляет корпускулярные свойства. Однако фотон обладает и волновыми свойствами: это проявляется в волновом характере распространения света, в способности фотона к интерференции и дифракции. Фотон отличается от частицы в классическом понимании этого термина тем, что его точное положение в пространстве, как и точное положение любой волны, не может быть указано. Но он отличается и от «классической» волны - неспособностью делиться на части. Объединяя в себе корпускулярные и волновые свойства, фотон не является, строго говоря, ни частицей, ни волной - ему присуща корпускулярно-волновая двойственность.


Подробности Категория: Физика атома и атомного ядра Опубликовано 10.03.2016 18:27 Просмотров: 4106

Древнегреческие и древнеиндийские учёные и философы считали, что все окружающие нас вещества состоят из мельчайших частиц, которые не делятся.

Они были уверены, что в мире не существует ничего, что было бы меньше этих частиц, которые они назвали атомами . И, действительно, впоследствии существование атомов было доказано такими известными учёными, как Антуан Лавуазье, Михаил Ломоносов, Джон Дальтон. Неделимым атом считали вплоть до конца XIX – начала ХХ века, когда выяснилось, что это не так.

Открытие электрона. Модель атома Томсона

Джозеф Джон Томсон

В 1897 г. английский физик Джозеф Джон Томсон, изучая экспериментально поведение катодных лучей в магнитном и электрическом полях, выяснил, что эти лучи представляют собой поток отрицательно заряженных частиц. Скорость движения этих частиц была ниже скорости света. Следовательно, они имели массу. Откуда же они появлялись? Учёный предположил, что эти частицы входят в состав атома. Он назвал их корпускулами . Позже они стали называться электронами . Так открытие электрона положило конец теории о неделимости атома.

Модель атома Томсона

Томсон предложил первую электронную модель атома. Согласно ей атом представляет собой шар, внутри которого находится заряженное вещество, положительный заряд которого равномерно распределён по всему объёму. А в это вещество, как изюминки в булочке, вкраплены электроны. В целом атом электрически нейтрален. Эту модель назвали "моделью сливового пудинга".

Но модель Томсона оказалась неверной, что было доказано британским физиком сэром Эрнестом Резерфордом.

Опыт Резерфорда

Эрнест Резерфорд

Как же всё-таки устроен атом? На этот вопрос Резерфорд дал ответ после своего эксперимента, проведенного в 1909 г. совместно с немецким физиком Гансом Гейгером и новозеландским физиком Эрнстом Марсденом.

Опыт Резерфорда

Целью опыта было исследование атома с помощью альфа-частиц, сфокусированный пучок которых, летящий с огромной скоростью, направлялся на тончайшую золотую фольгу. За фольгой располагался люминесцентный экран. При столкновении с ним частиц возникали вспышки, которые можно было наблюдать в микроскоп.

Если Томсон прав, и атом состоит из облака с электронами, то частицы должны были легко пролетать через фольгу, не отклоняясь. Так как масса альфа-частицы превышала массу электрона примерно в 8000 раз, то электрон не мог воздействовать на неё и отклонять её траекторию на большой угол, подобно тому, как камешек весом в 10 г не смог бы изменить траекторию движущегося автомобиля.

Но на практике всё оказалось по-другому. Большинство частиц действительно пролетало через фольгу, практически не отклоняясь или отклоняясь на небольшой угол. Но часть частиц отклонялась довольно значительно или даже отскакивала назад, словно на их пути возникало какое-то препятствие. Как сказал сам Резерфорд, это было так же невероятно, как если бы 15-дюймовый снаряд отскочил от куска папиросной бумаги.

Что же заставило некоторые альфа-частицы так сильно изменить направление движения? Учёный предположил, что причиной этому стала часть атома, сосредоточенная в очень малом объёме и имеющая положительный заряд. Её он назвал ядром атома .

Планетарная модель атома Резерфорда

Модель атома Резерфорда

Резерфорд пришёл к выводу, что атом состоит из плотного положительно заряженного ядра, расположенного в центре атома, и электронов, имеющих отрицательный заряд. В ядре сосредоточена практически вся масса атома. В целом атом нейтрален. Положительный заряд ядра равен сумме отрицательных зарядов всех электронов атома. Но электроны не вкраплены в ядро, как в модели Томсона, а вращаются вокруг него подобно планетам, вращающимся вокруг Солнца. Вращение электронов происходит под действием кулоновской силы, действующей на них со стороны ядра. Скорость вращения электронов огромна. Над поверхностью ядра они образуют подобие облака. Каждый атом имеет своё электронное облако, заряженное отрицательно. По этой причине они не «слипаются», а отталкиваются друг от друга.

Из-за своей схожести с Солнечной системой модель Резерфорда была названа планетарной.

Почему атом существует

Однако модель атома Резерфорда не смогла объяснить, почему атом так устойчив. Ведь, согласно законам классической физики, электрон, вращаясь на орбите, движется с ускорением, следовательно, излучает электромагнитные волны и теряет энергию. В конце концов эта энергия должна иссякнуть, а электрон должен упасть на ядро. Если бы это было так, атом смог бы существовать всего лишь 10 -8 с. Но почему этого не происходит?

Причину этого явления позже объяснил датский физик Нильс Бор. Он предположил, что электроны в атоме двигаются только по фиксированным орбитам, которые называются «разрешёнными орбитами». Находясь на них, они не излучают энергию. А излучение или поглощение энергии происходит только при переходе электрона с одной разрешённой орбиты на другую. Если это переход с дальней орбиты на более близкую к ядру, то энергия излучается, и наоборот. Излучение происходит порциями, которые назвали квантами .

Хотя описанная Резерфордом модель не смогла объяснить устойчивость атома, она позволила значительно продвинуться вперёд в изучении его строения.

Первая модель строения атома была предложена Дж. Томсоном в 1904 г., согласно которой атом – положительно заряженная сфера с вкрапленными в нее электронами. Несмотря на свое несовершенство томсоновская модель позволяла объяснить явления испускания, поглощения и рассеяния света атомами, а также установить число электронов в атомах легких элементов.

Рис. 1. Атом, согласно модели Томсона. Электроны удерживаются внутри положительно заряженной сферы упругими силами. Те из них, которые находятся на поверхности, могут легко «выбиваться» , оставляя ионизированный атом.

    1. 2.2 Модель Резерфорда

Модель Томсона была опровергнута Э. Резерфордом (1911 г.), который доказал, что положительный заряд и практически вся масса атома сконцентрированы в малой части его объема – ядре, вокруг которого двигаются электроны (рис. 2).

Рис. 2. Эта модель строения атома известна как планетарная, т. к. электроны вращаются вокруг ядра подобно планетам солнечной системы.

Согласно законам классической электродинамики, движение электрона по окружности вокруг ядра будет устойчивым, если сила кулоновского притяжения будет равна центробежной силе. Однако, в соответствии с теорией электромагнитного поля, электроны в этом случае должны двигаться по спирали, непрерывно излучая энергию, и падать на ядро. Однако атом устойчив.

К тому же при непрерывном излучении энергии у атома должен наблюдаться непрерывный, сплошной спектр. На самом деле спектр атома состоит из отдельных линий и серий.

Таким образом, данная модель противоречит законам электродинамики и не объясняет линейчатого характера атомного спектра.

2.3. Модель Бора

В 1913 г. Н. Бор предложил свою теорию строения атома, не отрицая при этом полностью предыдущие представления. В основу своей теории Бор положил два постулата.

Первый постулат говорит о том, что электрон может вращаться вокруг ядра только по определенным стационарным орбитам. Находясь на них, он не излучает и не поглощает энергию (рис.3).

Рис. 3. Модель строения атома Бора. Изменение состояния атома при переходе электрона с одной орбиты на другую.

При движении по любой стационарной орбите запас энергии электрона (Е 1, Е 2 …) остается постоянным. Чем ближе к ядру расположена орбита, тем меньше запас энергии электрона Е 1 ˂ Е 2 …˂ Е n . Энергия электрона на орбитах определяется уравнением:

где m – масса электрона, h – постоянная Планка, n – 1, 2, 3… (n=1 для 1-ой орбиты, n=2 для 2-ой и т.д.).

Второй постулат говорит о том, что при переходе с одной орбиты на другую электрон поглощает или выделяет квант (порцию) энергии.

Если подвергнуть атомы воздействию (нагреванию, облучению и др.), то электрон может поглотить квант энергии и перейти на более удаленную от ядра орбиту (рис. 3). В этом случае говорят о возбужденном состоянии атома. При обратом переходе электрона (на более близкую к ядру орбиту) энергия выделяется в виде кванта лучистой энергии – фотона. В спектре это фиксируется определенной линией. На основании формулы

,

где λ – длина волны, n = квантовые числа, характеризующие ближнюю и дальнюю орбиты, Бор рассчитал длины волн для всех серий в спектре атома водорода. Полученные результаты соответствовали экспериментальным данным. Стало ясным происхождение прерывистых линейчатых спектров. Они – результат излучения энергии атомами при переходе электронов из возбужденного состояния в стационарное. Переходы электронов на 1-ю орбиту образуют группу частот серии Лаймана, на 2-ю – серию Бальмера, на 3-ю серию Пашена (рис. 4,табл. 1).

Рис. 4. Соответствие между электронными переходами и спектральными линиями атома водорода.

Таблица 1

Проверка формулы Бора для серий водородного спектра

Однако, теория Бора не смогла объяснить расщепление линий в спектрах многоэлектронных атомов. Бор исходил из того, что электрон – это частица, и использовал для описания электрона законы, характерные для частиц. Вместе с тем накапливались факты, свидетельствующие о том, что электрон способен проявлять и волновые свойства. Классическая механика оказалась не в состоянии объяснить движение микрообъектов, обладающих одновременно свойствами материальных частиц и свойствами волны. Эту задачу позволила решить квантовая механика – физическая теория, исследующая общие закономерности движения и взаимодействия микрочастиц, обладающих очень малой массой (табл. 2).

Таблица 2

Свойства элементарных частиц, образующих атом

Первые сведения о сложном строении атома были получены при изучении процессов прохождения электрического тока через жидкости. В тридцатых годах XIX в. опыты выдающегося физика М. Фарадея навели на мысль о том, что электричество существует в виде отдельных единичных зарядов.

Открытие самопроизвольного распада атомов некоторых элементов, названное радиоактивностью, стало прямым доказательством сложности строения атома. В 1902 году английские учёные Эрнест Резерфорд и Фредерик Содди доказали, что при радиоактивном распаде атом урана превращается в два атома – атом тория и атом гелия. Это означало, что атомы не являются неизменными, неразрушимыми частицами.

Модель атома Резерфорда

Исследуя прохождение узкого пучка альфа-частиц через тонкие слои вещества, Резерфорд обнаружил, что большинство альфа-частиц проходит сквозь металлическую фольгу, состоящую из множества тысяч слоёв атомов, не отклоняясь от первоначального направления, не испытывая рассеяния, как будто бы на их пути не было никаких препятствий. Однако некоторые частицы отклонялись на большие углы, испытав действие больших сил.

На основании результатов опытов по наблюдению рассеивания альфа-частиц в веществе Резерфорд предложил планетарную модель строения атома. Согласно этой модели строение атома подобно строению солнечной системы. В центре каждого атома имеется положительно заряженное ядро радиусом ≈ 10 -10 м подобно планетам обращаются отрицательно заряженные электроны. Почти вся масса сосредоточена в атомном ядре. Альфа-частицы могут без рассеяния проходить через тысячи слоёв атомов так, как большая часть пространства внутри атомов пуста, а столкновения с лёгкими электронами почти не влияют на движение тяжёлой альфа-частицы. Рассеяние альфа-частиц происходит при столкновениях с атомными ядрами.

Модель атома Резерфорда не смогла объяснить все свойства атомов.

Согласно законам классической физики атом из положительно заряженного ядра и электронов, обращающимся по круговым орбитам, должен излучать электромагнитные волны. Излучение электромагнитных волн должно приводить к уменьшению запаса потенциальной энергии в системе ядро – электрон, к постепенному уменьшению радиуса орбиты электрона и падению электрона на ядро. Однако атомы обычно не излучают электромагнитные волны, электроны не падают на атомные ядра, то есть атомы устойчивы.

Квантовые постулаты Н. Бора

Для объяснения устойчивости атомов Нильс Бор предложил отказаться от привычных классических представлений и законов при объяснении свойств атомов.

Основные свойства атомов получают последовательное качественное объяснение на основе принятия квантовых постулатов Н. Бора.

1. Электрон вращается вокруг ядра только по строго определенным (стационарным) круговым орбитам.

2. Атомная система может находиться лишь в определённых стационарных или квантовых состояниях, каждому из которых соответствует определённая энергия Е. Атом не излучает энергию в стационарных состояниях.

Стационарное состояние атома с минимальным запасом энергии называется основным состоянием , все остальные состояния называются возбуждёнными (квантовыми) состояниями. В основном состоянии атом может находиться бесконечно долго, время жизни атома в возбуждённом состоянии длится 10 -9 -10 -7 секунды.

3. Излучение или поглощение энергии происходит только при переходе атома из одного стационарного состояния в другое. Энергия кванта электромагнитного излучения при переходе из стационарного состояния с энергией Е m в состояние с энергией Е n равна разности энергий атома в двух квантовых состояниях:

∆Е = Е m – Е n = hv,

где v – частота излучения, h = 2ph = 6,62 ∙ 10 -34 Дж ∙с.

Квантовая модель строения атома

В дальнейшем некоторые положения теории Н. Бора были дополнены и переосмыслены. Наиболее значительным изменением стало введение понятие об электронном облаке, которое сменило понятие об электроне только как частице. Позже теорию Бора сменила квантовая теория, которая учитывает волновые свойства электрона и других элементарных частиц, образующих атом.

Основой современной теории строения атома является планетарная модель, дополненная и усовершенствованная. Согласно данной теории, ядро атома состоит из протонов (положительно заряженных частиц) и нейронов (не имеющих заряда частиц). А вокруг ядра по неопределённым траекториям движутся электроны (отрицательно заряженные частицы).

Остались вопросы? Хотите знать больше о моделях строения атома?
Чтобы получить помощь репетитора – зарегистрируйтесь .
Первый урок – бесплатно!

сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.



Просмотров