Второй закон термодинамики описывает. Второй закон термодинамики. Трактовки, теоретическое и практическое обоснование

Основные положения второго закона термодинамики

Первый закон термодинамики, являясь частным случаем все общего закона сохранения и превращения энергии, утверждает что теплота может превращаться в работу, а работа - в теплоту не устанавливая условий, при которых возможны эти превращения.

Он совершенно не рассматривает вопроса о направлении теп­лового процесса, а не зная этого направления, нельзя предска­зать его характер и результаты.

Например, первый закон не решает вопроса о том, будет ли совершаться переход теплоты от нагретого тела к холодному или обратно. Повседневные наблюдения и опыты показывают, что теплота сама собой может переходить только от нагретых тел к более холодным. Передача теплоты от нагретого тела к среде будет происходить до полного температурного равновесия с окружающей средой. Только за счет затраты работы можно изменить направление движения теплоты.

Это свойство теплоты резко отличает ее от работы.

Работа, как и все другие виды энергии, участвующие в каком-либо процессе, легко и полностью превращается в теплоту. Пол­ная превращаемость работы в теплоту была известна человеку в глубокой древности, когда он добывал огонь трением двух кусков дерева. Процессы превращения работы в теплоту происходят в природе непрерывно: трение, удар, торможение и т. д.

Совершенно иначе ведет себя теплота, например, в тепловых машинах. Превращение теплоты в работу происходит только при наличии разности температур между источником теплоты и теплоприемником. При этом вся теплота не может быть превращена в работу.

Из сказанного следует, что между преобразованием теплоты в работу и обратно существует глубокое различие. Закон, позво­ляющий указать направление теплового потока и устанавливаю­щий максимально возможный предел превращения теплоты в ра­боту в тепловых машинах, представляет собой новый закон, полу­ченный из опыта. Это и есть второй закон термодинамики, имею­щий общее значение для всех тепловых процессов. Второй закон термодинамики не ограничивается рамками техники; он приме­няется в физике, химии, биологии, астрономии и др.

В 1824 г. Сади Карно, французский инженер и ученый, в своих рассуждениях о движущей силе огня изложил сущность второго закона.

В 50-х годах прошлого столетия Клаузиусом была дана наи­более общая и современная формулировка второго закона термодинамики в виде следующего постулата: «Теплота не может пере­ходить от холодного тела к более нагретому сама собой даровым процессом (без компенсации) ». Постулат Клаузиуса должен рас­сматриваться как закон экспериментальный, полученный из наблю­дений над окружающей природой. Заключение Клаузиуса было сделано применительно к области техники, но оказалось, что вто­рой закон в отношении физических и химических явлений также правилен. Постулат Клаузиуса, как и все другие формулировки второго закона, выражает собой один из основных, но не абсолют­ных законов природы, так как он был сформулирован примени­тельно к объектам, имеющим конечные размеры в окружающих нас земных условиях.

Одновременно с Клаузиусом в 1851 г. Томсоном была выска­зана другая формулировка второго, закона термодинамики, из ко­торой следует, что не вся теплота, полученная от теплоотдатчика, может перейти в работу, а только некоторая ее часть.

Часть теп­лоты должна перейти в теплоприемник.

Следовательно, для получения работы необходимо иметь источ­ник теплоты с высокой температурой, или теплоотдатчик , и источник теплоты с низкой температурой, или теплоприемник . Кроме того, постулат Томсона показывает, что построить вечный дви­гатель, который бы создавал работу за счет использования только одной внутренней энергии морей, океанов, воздуха, не представ­ляется возможным. Это положение можно сформулировать как второй закон термодинамики: «Осуществление вечного двигателя второго рода невозможно» . Под вечным двигателем второго, рода подразумевается такой двигатель, который спосо­бен целиком превращать в работу всю теплоту, полученную толь­ко от одного источника.

Кроме изложенных имеется еще несколько формулировок вто­рого закона термодинамики, которые, по существу, не вносят чего-либо нового и поэтому не приводятся.

Энтропия.

Второй Закон Термодинамики, как и Первый (Закон сохранения энергии) установлен эмпирическим путем. Впервые его сформулировал Клаузиус: "теплота сама собой переходит лишь от тела с большей температурой к телу с меньшей температурой и не может самопроизвольно переходить в обратном направлении".

Другая формулировка: все самопроизвольные процессы в природе идут с увеличением энтропии . (Энтропия - мера хаотичности, неупорядоченности системы). Рассмотрим систему из двух контактирующих тел с разными температурами. Тепло пойдет от тела с большей температурой к телу с меньшей, до тех пор, пока температуры обоих тел не выровняются. При этом от одного тела к другому будет передано определенное количество тепла dQ. Но энтропия при этом у первого тела уменьшится на меньшую величину, чем она увеличится у второго тела, которое принимает теплоту , так как, по определению, dS=dQ/T (температура в знаменателе!). То есть, в результате этого самопроизвольного процесса энтропия системы из двух тел станет больше суммы энтропий этих тел до начала процесса. Иначе говоря, самопроизвольный процесс передачи тепла от тела с высокой температурой к телу с более низкой температурой привел к тому, что энтропия системы из этих двух тел увеличилась!

Важнейшие свойства энтропии замкнутых систем:

а) Энтропия замкнутой системы, совершающей обратимый цикл Карно, не изменяется:

ΔS обр =0, S=const.

б) Энтропия замкнутой системы, совершающей необратимый цикл Карно, возрастает:

ΔS необр >0.

в) Энтропия замкнутой системы при любых, происходящих в ней процессах, не убывает: ΔS≥0.

При элементарном изменении состояния замкнутой системы энтропия не убывает: dS≥0. Знак равенства относится к обратимым процессам, а знак неравенства к необратимым. Пункт в) является одной из формулировок второго закона (начала) термодинамики. Для произвольного процесса, происходящего в термодинамической системе, справедливо соотношение:

где Т - температура того тела, которое сообщает. Термодинамической системе энергию δQ в процессе бесконечно малого изменения состояния системы. Используя для δQ первое начало термодинамики, предыдущее неравенство можно переписать в форме, объединяющей первое и второе начало термодинамики: TdS ≥ dU+δA.

Свойства энтропии.

1. Итак, энтропия - функция состояния. Если процесс проводят вдоль адиабат, то энтропия системы не меняется. Значит адиабаты -это одновременно и изоэнтропы. Каждой более "высоко" расположенной адиабате (изоэнтропе) отвечает большее значение энтропии. В этом легко убедиться, проведя изотермический процесс между точками 1 и 2, лежащими на разных адиабатах (*см. рис.). В этом процессе Т=const, поэтому S2-S1=Q/T. Для идеального газа Q равно работе А, совершаемой системой. А так как А>0, значит S 2 >S 1 . Таким образом, зная, как выглядит система адиабат. Можно легко ответить на вопрос о приращении энтропии при проведении любого процесса между интересующими нас равновесными состояниями 1 и 2. Энтропия- величина аддитивная: энтропия макросистемы равна сумме энтропий ее отдельных частей.

3. Одно из важнейших свойств энтропии заключается в том, что энтропия замкнутой (т.е. теплоизолированной) макросистемы не уменьшается - она либо возрастает, либо остается постоянной. Если же система не замкнута, то ее энтропия может, как увеличиваться, так и уменьшаться.

Принцип возрастания энтропии замкнутых систем представляет собой еще одну формулировку второго начала термодинамики. Величина возрастания энтропии в замкнутой макросистеме может служить мерой необратимости процессов, протекающих в системе. В предельном случае, когда процессы имеют обратимый характер, энтропия замкнутой макросистемы не меняется.

Физический смысл имеет разность ΔS энтропии в двух состояниях системы. Чтобы определить изменение энтропии в случае необратимого перехода системы из одного состояния в другое, нужно придумать какой-нибудь обратимый процесс, связывающий начальное и конечное состояния, и найти приведенное тепло, полученное системой при таком переходе.

Рис. 3.12.4 - Необратимый процесс расширения газа «в пустоту» в отсутствие теплообмена

Только начальное и конечное состояния газа в этом процессе являются равновесными, и их можно изобразить на диаграмме (p, V). Точки (a) и (b), соответствующие этим состояниям, лежат на одной изотерме. Для вычисления изменения ΔS энтропии можно рассмотреть обратимый изотермический переход из (a) в (b). Поскольку при изотермическом расширении газ получает некоторое количество теплоты от окружающих тел Q > 0, можно сделать вывод, что при необратимом расширении газа энтропия возросла: ΔS > 0.

Другой пример необратимого процесса – теплообмен при конечной разности температур. На рис. 3.12.5 изображены два тела, заключенные в адиабатическую оболочку. Начальные температуры тел T 1 и T 2 < T 1 . При теплообмене температуры тел постепенно выравниваются. Более теплое тело отдает некоторое количество теплоты, а более холодное – получает. Приведенное тепло, получаемое холодным телом, превосходит по модулю приведенное тепло, отдаваемое горячим телом. Отсюда следует, что изменение энтропии замкнутой системы в необратимом процессе теплообмена ΔS > 0.

Рост энтропии является общим свойством всех самопроизвольно протекающих необратимых процессов в изолированных термодинамических системах. При обратимых процессах в изолированных системах энтропия не изменяется: ΔS≥0. Это соотношение принято называть законом возрастания энтропии. При любых процессах, протекающих в термодинамических изолированных системах, энтропия либо остается неизменной, либо увеличивается.

Таким образом, энтропия указывает направление самопроизвольно протекающих процессов. Рост энтропии указывает на приближение системы к состоянию термодинамического равновесия. В состоянии равновесия энтропия принимает максимальное значение. Закон возрастания энтропии можно принять в качестве еще одной формулировки второго закона термодинамики.

В 1878 году Л. Больцман дал вероятностную трактовку понятия энтропии. Он предложил рассматривать энтропию как меру статистического беспорядка в замкнутой термодинамической системе. Все самопроизвольно протекающие процессы в замкнутой системе, приближающие систему к состоянию равновесия и сопровождающиеся ростом энтропии, направлены в сторону увеличения вероятности состояния.

Всякое состояние макроскопической системы, содержащей большое число частиц, может быть реализовано многими способами. Термодинамическая вероятность W состояния системы – это число способов, которыми может быть реализовано данное состояние макроскопической системы, или число микросостояний, осуществляющих данное макросостояние. По определению термодинамическая вероятность W >> 1.

Например, если в сосуде находится 1 моль газа, то возможно огромное число N способов размещения молекулы по двум половинкам сосуда: где– число Авогадро. Каждый из них является микросостоянием.

Только одно из микросостояний соответствует случаю, когда все молекулы соберутся в одной половинке (например, правой) сосуда. Вероятность такого события практически равна нулю. Наибольшее число микросостояний соответствует равновесному состоянию, при котором молекулы равномерно распределены по всему объему. Поэтому равновесное состояние является наиболее вероятным. С другой стороны равновесное состояние является состоянием наибольшего беспорядка в термодинамической системе и состоянием с максимальной энтропией.

Согласно Больцману, энтропия S системы и термодинамическая вероятность W связаны между собой следующим образом: S=klnW, где k = 1,38·10 –23 Дж/К – постоянная Больцмана. Таким образом, энтропия определяется логарифмом числа микросостояний, с помощью которых может быть реализовано данное макросостояние. Следовательно, энтропия может рассматриваться как мера вероятности состояния термодинамической системы. Вероятностная трактовка второго закона термодинамики допускает самопроизвольное отклонение системы от состояния термодинамического равновесия. Такие отклонения называются флуктуациями. В системах, содержащих большое число частиц, значительные отклонения от состояния равновесия имеют чрезвычайно малую вероятность.

Круговые термодинамические процессы, или циклы

В рассмотренных ранее термодинамических процессах изуча­ть вопросы получения работы или вследствие подведенной теплоты, или вследствие изменения внутренней энергии рабочего тела, или одновременно вследствие того и другого. При однократном расширении газа в цилиндре можно получить лишь ограничен количество работы. Действительно, при любом процессе рения газа в цилиндре все же наступит момент, когда температура и давление рабочего тела станут равными температуре и давлению окружающей среды и на этом прекратится получение работы.

Следовательно, для повторного получения, работы необходимо в процессе сжатия возвратить рабочее тело в первоначальное состояние.

Из рисунка 8 следует, что если рабочее тело расширяется по кривой 1-3-2 то оно производит работу, изображаемую на рv-диаграмме пл. 13245. По достижении точки 2 рабочее тело должно быть возвращено в начальное состояние (в точку 1), для того чтобы оно снова могло произвести работу. Процесс возвращения тела в начальное состояние может быть осуществлен тремя путями.

Рисунок 8 – Круговые процессы.

1.Кривая сжатия 2-3-1 совпадает с кривой расширения 1-3-2. В таком процессе вся полученная при расширении работа (пл.13245) равна работе сжатия (пл. 23154) и положитель­ная работа равна нулю. Кривая сжатия 2-6-1 располагается над линией расширения 1-3-2; .при этом на сжатие затрачивается большее количество работы (пл. 51624), чем ее будет получено при расширении (пл. 51324).

Кривая сжатия-2-7-1 располагается под линией расширения 1-3-2. В этом круговом процессе работа расширения (пл. 51324) будет больше работы сжатия (пл. 51724). В результате вовне будет отдана положительная работа, изображаемая пл. 13271 внутри замкнутой линии кругового процесса, или цикла.

Повторяя цикл неограниченное число раз, можно за счет под­водимой теплоты получить любое количество работы.

Цикл, в результате которого получается положительная рабо­та, называется прямым циклом или циклом теплового двига­теля ; в нем работа расширения больше работы сжатия. Цикл, в результате которого расходуется работа, называется обратным , в нем работа сжатия больше работы расширения. По обратным циклам работают холодильные установки.

Циклы бывают обратимые и необратимые. Цикл, состоящий из равновесных обратимых процессов, называют обратимым . Рабо­чее тело в таком цикле не должно подвергаться химическим изме­нениям.

Если хоть один из процессов, входящих в состав цикла, явля­ется необратимым, то и весь цикл будет необратимым.

Результаты исследований идеальных циклов могут быть перенесены на действительные, необратимые процессы реальных машин путем введения опытных поправочных коэффициентов.

Термический кпд и холодильный коэффициент циклов

Исследование любого обратимого цикла доказывает, что для осуществления необходимо в каждой точке прямого процесса подводить теплоту от теплоотдатчиков к рабочему телу при бесконечно малой разности температур и отводить теплоту от рабочего тела к теплоприемникам также при бесконечно малой разности температур. При этом температура двух соседних источников теплоты должна отличаться на бесконечно малую величину, так как иначе при конечной разности температур процессы передачи теплоты будут необратимы: Следовательно, для создания тепло­вого двигателя необходимо иметь бесконечно большое количество теплоотдатчиков, теплоприемников и рабочее тело.

На пути 1-3-2 (рисунок 8) рабочее тело совершает удельную работу расширения , численно равную пл. 513245, за счет удель­ного количества теплоты , полученной от теплоотдатчиков, и частично за счет своей внутренней энергии. На пути 2-7-1 затра­чивается удельная работа сжатия , численно равная пл. 427154, часть которой в виде удельного количества теплоты отводится в теплоприемники, а другая часть расходуется на увеличение внутренней энергии рабочего тела до начального состояния. В ре­зультате осуществления прямого цикла будет вовне отдана поло­жительная удельная работа, равная разности между работой рас­ширения и сжатия. Эта работа .

Соотношение между удельными количествами теплоты и и положительной удельной работой определяется первым зако­ном термодинамики.

Так как в цикле конечное состояние тела совпадает с начальным, то внутренняя энергия рабочего тела не изменяется и поэтому

Отношение удельного количества теплоты, превращенного в положительную удельную работу за один цикл, ко всему удель­ному количеству теплоты, подведенному к рабочему телу, назы­вается термическим коэффициентом полезного действия прямого

цикла :

Значение является показателем совершенства цикла теплового двигателя. Чем больше , тем большая часть подведенной теплоты превращается в полезную работу. Величина термического к.п.д. цикла всегда меньше единицы и мог бы быть равна единице, если бы или , чего осуществить нельзя.

Полученное уравнение (62) показывает, что всю подведенную в цикле к рабочему телу теплоту полностью превратить в работу невозможно без отвода некоторого количества теплоты в теплоприемник.

Таким образом, основная мысль Карно оказалась верной, а именно: в замкнутом круговом процессе теплота может превратиться в механическую работу только при наличии разности температур между теплоотдатчиками и теплоприемниками. Чем больше эта разность, тем выше к.п.д. цикла теплового двигателя.

Рассмотрим теперь обратный цикл, который проходит в направлении против часовой стрелки и изображается на pv-диаграмме пл. 13261. Расширение рабочего тела в этом цикле совершается при более низкой температуре, чем сжатие, и работа расширения (пл. 132451) получается меньше работы сжатия (пл. 162451). Такой цикл может быть осуществлен только при затрате внешней работы.

В обратном цикле от теплоприемников подводится к рабочем телу теплота и затрачивается удельная работа , переходящая в равное количество теплоты, которые вместе передаются теплоотдатчикам:

Без затраты работы сам собой такой переход невозможен.

Степень совершенства обратного цикла определяется так назы­ваемым холодильным коэффициентом цикла .

Холодильный коэффициент показывает, какое количество теп­лоты отнимается от теплоприемника при затрате одной единицы работы. Его величина, как правило, больше единицы.

Циклы Карно.

Прямой обратимый цикл Карно

Обратимый цикл, осуществленный между двумя источниками теплоты постоянной температуры, должен состоять из двух обратимых изотермных и двух обратимых адиабатных процессов.

Это цикл впервые был рассмотрен Сади Карно в его работе «Размышления о движущей силе огня и о машинах, способных развивать эту силу», опубликованный в 1824 г. Для лучшего уяснения порядка осуществления данного цикла представим себе тепловую машину, ци­линдр которой может быть по мере надобности как абсолютно тепло­проводным, так и абсолютно нете­плопроводным. Пусть в первом по­ложении поршня начальные пара­метры рабочего тела а темпе­ратура равна температуре теплоотдатчика. Если в этот момент цилиндр будет абсолютно теплопроводным и если его привести в соприкосновение с теплоотдатчиком бесконечно большой энергоемкости, сообщив рабочему телу теплоту по изотерме 1-2, то газ расширится до точки 2 и совершит работу. Параметры точки 2: От точ­ки 2 цилиндр должен быть абсолютно нетеплопроводным. Рабочее тело с температурой Т 1 , расширяясь по адиабате 2-3 до темпера­туры теплоприемника Т 2 , совершит работу. Параметры точки 3: . От точки 3 делаем цилиндр абсолютно теплопроводным. Сжимая рабочее тело по изотерме 3-4, одновременно отводим теплоту в теплоприемник. В конце изотер­мического сжатия параметры рабочего тела будут . От точки 4 в абсолютно нетеплопроводном цилиндре адиабатным про­цессом сжатия 4-1 рабочее тело возвращается в первоначальное состояние.

Таким образом, за весь цикл рабочему телу от теплоотдатчика было сообщена теплота и отведена в теплоприемник теплота .

Термический к.п.д. цикла

Подведенную теплоту по изотерме 1-2 опре­деляем так:

Абсолютное значение отведенной теплоты по изотерме 3-4 находим так:

Подставляя найденные значения и в уравнение для термического к.п.д., получаем

Для адиабатного процесса расширения и сжатия соответственно имеем

и

Следовательно, уравнение термического к.п.д. цикла Карно после сокращения принимает вид

Термический к.п.д. обратимого цикла Карно зависит только от абсолютных температур теплоотдатчика и теплоприемника. Он будет тем больше, чем выше температура теплоотдатчика и чем ниже температура теплоприемника. Термический к.п.д. цикла Кар­но всегда меньше единицы, так как для получения к.п.д., равного единице, необходимо, чтобы Т 2 =0 или Т 1 = ∞, что неосуществимо. Термический к.п.д. цикла Карно не зависит от природы рабочего тела и при Т 2 -Т 1 равен нулю, т. е. если тела находятся в тепло­вом равновесии, то невозможно теплоту превратить в работу.

Термический к.п.д. цикла Карно имеет наибольшее значение
по сравнению с к.п.д. любого цикла, осуществляемого в одном и
том же интервале температур. Поэтому сравнение
термических к.п.д. любого цикла и цикла Карно позволяет делать
заключение о степени совершенства использования теплоты в машине, работающей по данному циклу.

В реальных двигателях цикл Карно не осуществляется вследствие практических
трудностей. Однако теоретическое и прак­тическое значение цикла Карно весьма ве­лико. Он служит эталоном при оценке со­вершенства любых циклов тепловых дви­гателей. .

Обратимый цикл Карно, осуществлен­ный в интервале температур Т 1 и Т 2 , изображается на Ts-диаграмме прямоугольником 1234 (рисунок 9).

Рисунок 9 – Обратимый цикл Карно.

Обратный обратимый цикл Карно

Цикл Карно может протекать не только в прямом, но и обратном направлении. На рисунке 10 представлен обратный цикл Карно. Цикл состоит из обратимых процессов и в целом является обратимым.

Рисунок 10 – Обратный цикл Карно.

Рабочее тело от начальной точки 1 расширяется по адиабате 1-4 без теплообмена с внешней средой, при этом температура Т 1 выдается до Т 2 . Затем следует дальнейшее расширение газа по изотерме 4-3 с подводом теплоты , которое отнимается от источника с низкой температурой Т 2 . Далее следует адиабатное сжатие 3-2 с увеличением температуры от Т 2 до Т 1 . В течение последнего процесса происходит изотермное сжатие 2-1, во время которого к теплоприемнику с высокой температурой отводится теплота .

Рассматривая обратный цикл в целом, можно отметить, что затра­чиваемая внешняя работа сжатия больше работы расширения на вели­чину пл. 14321 внутри замкнутой линии цикла. Эта работа превраща­ется в теплоту и передается вместе с теплотой источнику с темпера­турой Т 1 . Таким образом, затратив на осуществление обратного цикла удельную работу , можно перенести от теплоприемника к теплоотдатчику

единиц теплоты. При этом теплота, получаемая теплоприемником, равна

Машина, работающая по обратному циклу, называется холо­дильной машиной. Из рассмотрения обратного цикла Карно можно сделать вывод, что передача теплоты от источника с низкой температурой к источнику с высокой температурой, как это следует из постулата Клаузиуса, обязательно требует затраты энергии (не может совер­шаться даровым процессом без компенсации).

Характеристикой эффективности холодильных машин является холодильный коэффициент

для обратного цикла Карно

(64)

Холодильный коэффициент обратного цикла Карно зависит от абсолютных температур и источников теплоты и обладает Наибольшим значением по сравнению с холодильными коэффициентами других циклов, протекающих в тех же пределах темпе­ратур

После рассмотрения прямого и обратного циклов Карно можно несколько подробнее объяснить формулировку второго закона термодинамики, данную Клаузиусом.

Клаузиус показал, что все естественные процессы, протекающие в природе, являются процессами самопроизвольными (их иногда называют положительными (или некомпенсированными процессами) и не могут «сами собой» без компенсации протека в обратном направлении.

К самопроизвольным процессам принадлежат: переход теплоты от более нагретого тела к менее нагретому; превращение работы в теплоту; взаимная диффузия жидкостей или газов; расширение газа в пустоту и т. п.

К не самопроизвольным процессам относятся процессы, противоположные вышеприведенным самопроизвольным процессам: переход теплоты от менее нагретого тела к более нагретому; превращение теплоты в работу; разделение на составные части диффундировавших друг в друге веществ и т. п. Процессы не самопроизвольные возможны, но они никогда не протекают «сами собой» без компенсации.

Какие же процессы должны сопровождать не самопроизвольные процессы, чтобы сделать их возможными? Тщательное и всестороннее изучение окружающих нас физических явлений пока­зало, что не самопроизвольные процессы только тогда возможны, когда они сопровождаются процессами самопроизвольными. Сле­довательно, самопроизвольный процесс может произойти «сам со­бой», не самопроизвольный - только вместе с самопроизвольным. Поэтому, например, в любом прямом круговом процессе не самопроизвольный процесс превращения теплоты в работу компенси­руется одновременным самопроизвольным процессом передачи части подведенной теплоты от теплоотдатчика к теплоприемнику. .

При осуществлении обратного цикла не самопроизвольный процесс переноса теплоты от менее нагретого тела к более нагретому, также возможен, но здесь он компенсируется самопроизвольным процессом превращения затраченной извне работы в теплоту .

Таким, образом, всякий не самопроизвольный процесс может только тогда произойти, когда он сопровождается компенсирующим самопроизвольным процессом.

Теорема Карно

При выводе термического к.п.д. обратимого цикла Карно были использованы соотношения, справедливые только для идеального газа. Поэтому, для того чтобы можно было распространить все сказанное о цикле Карно на любые реальные газы и пары, необходимо доказать, что термический к.п.д. цикла Карно не зависит от свойств вещества, с помощью которого осуществляется цикл. Это и является содержанием теоремы Карно.

Теплоты. Затраченная работа

Такой же результат получается, если предположить, что . Поэтому остается один возможный вариант, когда , а это значит, что и , т. е. действительно термический к.п.д. обратимого цикла Карно не зависит от свойств рабочего тела и является только функцией температур теплоотдатчика и теплоприемника.

Лекция № 6. Предмет и задачи теории теплообмена

Согласно второму закону термодинамики самопроизвольный процесс переноса теплоты в пространстве возникает под действием разности температур и направлен в сторону уменьшения температуры. Закономерности переноса теплоты и количественные характеристики этого процесса являются предметом и задачей исследования теории теплообмена (теплопередачи).

Учение о теплопередаче – это учение о процессах распростра­нения тепла. Отличительной их особенностью является универ­сальность, так как они имеют весьма большое значение почти во всех отраслях техники.

Тепловая энергия пе­редается, как и любая другая энергия, в направлении от высше­го потенциала к низшему. Так как потенциалом тепловой энер­гии является температура , то процесс распростра­нения теп­ла тесно связан с распределением температур, т. е. с так называемым температурным полем. Температурным полем называется совокупность значений температур в прост­ранстве и времени. В общем случае температура t в любой точ­ке пространства является функцией координат х, у, z и времени τ и, следовательно, уравнение температурного поля будет

t = f(x, y, z, τ ). (65)

Поле, в котором температура меняется с изменением времени, называется неустановившимся, или нестационарным. Если температура во времени не меняется, то поле на­зывается установившимся, или стационарным , и его уравнение будет

t = f(x,y,z). (66)

Наиболее простым случаем температурного поля является ста­ционарное одномерное поле, уравнение которого имеет вид

t = f(x) . (67)

Передача тепла, происходящая в условиях нестационарного тем­пературного поля, называется теплопередачей при не­стационарном режиме , а в условиях стационарного по­ля теплопередачей при стационарном режиме.

Процесс теплообмена – сложный процесс, состоящий из трех элементарных видов теплообмена – теплопроводности, конвекции и теплового излучения (луче­испускания) (рисунок 12).

а – теплопроводность; б – конвекция; а – излучение

Рисунок 12 – Разновидности теплопе­редачи

Второй закон термодинамики. Энтропия.

Второй закон связан с понятием энтропии, являющейся мерой хаоса (или мерой порядка). Второй закон термодинамики гласит, что для вселенной в целом энтропия возрастает.

Существует два классических определения второго закона термодинамики:

  • Кельвина и Планка

  • Не существует циклического процесса, который извлекает количество теплоты из резервуара при определенной температуре и полностью превращает эту теплоту в работу. (Невозможно построить периодически действующую машину, которая не производит ничего другого, кроме поднятия груза и охлаждения резервуара теплоты)

  • Клаузиуса
  • Не существует процесса, единственным результатом которого является передача количества теплоты от менее нагретого тела к более нагретому. (Невозможен круговой процесс, единственным результатом которого было бы производство работы за счет охлаждения теплового резервуара)

Оба определения второго закона термодинамики опираются на первый закон термодинамики, утверждающий, что энергия убывает.

Второй закон связан с понятием энтропии (S) .

Энтропия порождается всеми процессами, она связана с потерей системы способности совершать работу. Рост энтропии - стихийный процесс. Если объем и энергия системы постоянны, то любое измение в системе увеличивает энтропию. Если же объем или энергия системы меняются, энтропия системы уменьшается. Однако, энтропия вселенной при этом не уменьшается.

Для того, чтобы энергию можно было использовать, в системе должны быть области с высоким и низким уровнями энергии. Полезная работа производится в результате передачи энергии от области с высоким уровнем энергии к области с низким уровнем энергии.

  • 100% энергии не может быть преобразовано в работу
  • Энтропия может вырабатываться, но не может быть уничтожена

Эффективность теплового двигателя

Эффективность теплового двигателя, действующего между двумя энергетическими уровнями, определена в пересчете на абсолютные температуры

η = (T h - T c) / T h = 1 - T c / T h

η = эффективность

T c = нижняя граница температуры (K)

Для того, чтобы достичь максимальной эффективности T c должна быть на столько низкой, на сколько это возможно. Чтобы эффект был 100% -м, T c должна равнятся 0 по шкале Kельвина. Практически это невозможно, поэтому эффективность всегда меньше 1 (менее 100%).

  • Изменение энтропии > 0
    Необратимый
    процесс
  • Изменение энтропии= 0
    Двусторонний
    процесс (обратимый)
  • Изменение энтропии < 0
    Невозможный
    процесс (неосуществимый)

Энтропия определяет относительную способность одной системы влиять на другую. Когда энергия двигается к нижнему энергетическому уровню, где уменьшается возможность влияния на окружающую среду, энтропия увеличивается.

Определение энтропии

Энтропия определяется как:

T = абсолютная температура (K)

Изменение энтропии системы вызвано изменением содержания темпла в ней. Изменение энтропии равно изменению темпла системы деленной на среднюю абсолютную температуру (T a):

Сумма значений (H / T) для каждого полного цикла Карно равна 0. Это происходит из-за того, что каждому положительному H противостоит отрицательное значение H.

  • Тепловой цикл Карно

Цикл Карно— идеальный термодинамический цикл.

В тепловом двигателе, газ (реверсивно) нагревается (reversibly heated), а затем охлаждается. Модель цика следующая: Положение 1 --() --> Положение 2 --() --> Положение 3 --(изотермическое сжатие) --> Положение 4 --(адиабатическое сжатие) --> Положение 1

Положение 1 - Положение 2: Изотермическое расширение
Изотермическое расширение. В начале процесса рабочее тело имеет температуру T h , то есть температуру нагревателя. Затем тело приводится в контакт с нагревателем, который изотермически (при постоянной температуре) передаёт ему количество теплоты Q H . При этом объём рабочего тела увеличивается. Q H =∫Tds=T h (S 2 -S 1) =T h ΔS
Положение 2 - Положение 3: Адиабатическое расширение
Адиабатическое (изоэнтропическое) расширение. Рабочее тело отсоединяется от нагревателя и продолжает расширяться без теплообмена с окружающей средой. При этом его температура уменьшается до температуры холодильника.
Положение 3 - Положение 4: Изотермическое сжатие
Изотермическое сжатие. Рабочее тело, имеющее к тому времени температуру T c , приводится в контакт с холодильником и начинает изотермически сжиматься, отдавая холодильнику количество теплоты Q c . Q c =T c (S 2 -S 1)=T c ΔS
Положение 4 - Положение 1: Адиабатическое сжатие
Адиабатическое (изоэнтропическое) сжатие. Рабочее тело отсоединяется от холодильника и сжимается без теплообмена с окружающей средой. При этом его температура увеличивается до температуры нагревателя.

При изотермических процессах температура остаётся постоянной, при адиабатических отсутствует теплообмен, а значит, сохраняется энтропия.

Поэтому цикл Карно удобно представить в координатах T и S (температура и энтропия).

Законы термодинамики были определены эмперическим путем (эксперементально). Второй закон термодинамики - это обощение экспериментов, связанных с энтропией. Известно, что dS системы плюс dS окружающей среды равно или больше 0.

  • Энтропия адиабатически изолированной системы не меняется!

Пример - Энтропия при нагревании воды

Процесс нагревания 1 кг воды от 0 до 100 o C (273 до 373 K)

При 0 o C = 0 кДж/кг (удельная - на единицу массы)

При 100 o C = 419 кДж/кг

Изменение удельной энтропии:

dS = dH / T a

= ((419 кДж/кг) - (0 кДж/кг)) / ((273 К + 373 К)/2)

= 1.297 кДж/кг*К

Пример - Энтропия при испарении воды

Процесс превращения 1 кг воды при 100 o C (373 K) в насыщенный пар при 100 o C (373 K) при нормальных условиях.

Удельная энтальпия пара при 100 o C (373 K) до испарения = 0 кДж/кг

100 o C (373 K) при испарении = 2 258 кДж/кг

Изменение удельной энтропии:

dS = dH / T a

= (2 258 - 0) / ((373 + 373)/2)

= 6.054 кДж/кг*К

Полное изменение удельной энтропии испарения воды - это сумма удельной энтропии воды (при 0 o C) плюс удельная энтропия пара (при температуре 100 o C).

Лекция 17

Второй закон термодинамики

Вопросы

    Тепловые двигатели и холодильные машины. Цикл Карно.

    Энтропия, второй закон термодинамики.

3. Реальные газы. Уравнение Ван-дер-Ваальса.

Изотермы реальных газов. Фазовая диаграмма.

4. Внутренняя энергия реального газа.

Эффект Джоуля – Томсона.

1. Тепловые двигатели и холодильные машины. Цикл Карно

Циклом называется круговой процесс, при котором система, пройдя через ряд состояний, возвращается в исходное положение.

Прямой цикл

КПД двигателя

Обратный цикл

холодильныйкоэф-нт

отопительныйкоэф-нт

Цикл Карно – это цикл идеального двигателя, в котором тепло подводится и отводится в изотермических условиях при температурах нагревателяТ 1 и холодильникаТ 2 , переход отТ 1 кТ 2 и обратно осуществляется в адиабатных условиях.

А ц = А 12 + А 23 + А 34 + А 41 (1)

, (2)

, (3)

, (4)

. (5)


. (6)



(7)

Теоремы Карно:

    Коэффициент полезного действия тепловой машины, работающей при данных значениях температур нагревателя и холодильника, не может быть больше, чем коэффициент полезного действия машины, работающей по обратимому циклу Карно при тех же значениях температур нагревателя и холодильника.

    Коэффициент полезного действия тепловой машины, работающей по циклу Карно, не зависит от рода рабочего тела, а зависит только от температур нагревателя и холодильника.

Зависимость КПД цикла Карно от температуры нагревателя (t 2 = 0 o C )

t 1 , o C

t , %

;


, (8)

теорема Карно послужила основанием для установления термоди­нами­чес­кой шкалы температур , такая термодинамическая шкала не связана со свойствами какого-то определенного термометрического тела.

  1. Энтропия, второй закон термодинамики

Энтропией называется отношение теплоты, подводимой к термодина­мической системе в некотором процессе, к абсолютной температуре этого тела.

(9)

Эта функция была впервые введена С.Карно под названием приведенной теплоты , затем названа Клаузиусом (1865 г.).

, (10)

тепло подводится,

тепло отводится.

Изменение энтропии в частных случаях политропного процесса

1.


изобарный процесс.

(11)

2 .




изотермический процесс

1-й закон термодинамики:


(12)

3. Адиабатный процесс.



процесс изоэнтропный (13)

4. Изохорный процесс.

Второй закон термодинамики устанавливаетнаправление протекания тепловых процессов.

Формулировка немецкого физика Р. Клаузиус а : невозможен процесс, единственным результатом которого была бы передача энергии путем теплообмена от тела с низкой температурой к телу с более высокой температурой.

Формулировка английского физика У. Кельвин а : в циклически действующей тепловой машине невозможен процесс, единственным результатом которого было бы преобразование в механическую работу всего количества теплоты, полученного от единственного теплового резервуара.

Вероятностная формулировка австрийского физика Л.Больцмана : Он предложил рассматривать энтропию как меру статистического беспорядка замкнутой термодинамической системе. Всякое состояние системы c большим беспорядком характеризуется большим беспорядком. Термодинамическая вероятность W состояния системы – это число способов , которыми может быть реализовано данное состояние макроскопической системы, или число микросостояний , осуществляющих данное макросостояние. По определению термодинамическая вероятность W >> 1.

S = k ln W , (14)

где k = 1,38·10 –23 Дж/К – постоянная Больцмана.

Таким образом, энтропия определяется логарифмом числа микросостояний, с помощью которых может быть реализовано макросостояние. Следовательно, энтропия может рассматриваться как мера вероятности состояния термодинамической системы.

Все самопроизвольно протекающие процессы в замкнутой системе, приближающие систему к состоянию равновесия и сопровождающиеся ростом энтропии, направлены в сторону увеличения вероятности состояния.

(15)

т.е. энтропия замкнутой системы может либо возрастать (в случае необратимых процессов), либо оставаться постоянной (в случае обратимых процессов).

Так как энтропия возрастает только в неравновесном процессе, то ее увеличение происходит до тех пор, пока система не достигнет равновесного состояния. Следовательно, равновесное состояние соответ­ству­ет максимуму энтропии. С этой точки зрения энтропия является мерой близости системы к состоянию равновесия, т.е. к состоянию с мини­маль­ной потенциальной энергией.

3. Реальные газы. Уравнение Ван-дер-Ваальса. Изотермы реальных газов. Фазовая диаграмма

Поведение реального газа отличается от поведения идеального газа. Так, радиус молекул большинства газов порядка 10 -10 м (1Ǻ), следовательно, объем молекул порядка 410  30 м 3 . В 1 м 3 газа при нормальных условиях содержится 2,710 25 молекул. Таким образом, собственный объем молекул в 1 м 3 при нормальных условиях будет порядка 1,210  4 м 3 , т.е. около 0,0001 от объема, занятого газом.

Любое вещество в зависимости от параметров состояния может находиться в различных агрегатных состояниях :твердом, жидком, газообразном, плазменном .

Нидерландский физик Ван-дер-Ваальс ввел две поправки в уравнение Менделеева-Клапейрона:

1. Учет собственного объема молекулы

Объем одной молекулы: ;

Недоступный объем пары молекул (в расчете на одну молекулу):

учетверенный объем молекулы.

Недоступный объем на все N A молекул одного киломоля:


внутреннее давление; а – постоянная Ван-дер-Ваальса, характери­зую­щая силы межмолекулярного притяжения.

Уравнение Ван-дер-Ваальса для одного моля газа (уравнение состояния реальных газов):

. (16)

Уравнение Ван-дер-Ваальса для произвольной массы газа



. (17)

При фиксированных значениях давления и температуры уравнение (16) имеет три корня относительно V (V 1 , V 2 , V 3)

(V V 1 )(V V 2)(V V 3 ) = 0.

Основу термодинамики составляют фундаментальные законы природы, сформулированые на основании обобщения результатов множества опытных исследований и открытий. Из этих законов, принимаемых за аксиомы; логическим путем получены все главнейшие следствия, касающиеся различных термодинамических систем, которые именуются н а ч а л а м и или з а к о- н а м и термодинамики.

1.2.1. Первый закон термодинамики

Абсолютный по своему существу, один из наиболее общих законов природы – закон сохранения и превращения энергии . Согласно этому закону, энергия закрытой системы при любых процессах, происходящих в системе, остается неизменной. При этом энергия может только превращаться из одной формы в другую.

Первый закон термодинамики является частным случаем этого всеобщего закона и представляет собой его приложение к процессам в термодинамических системах. Он устанавливает возможность превращения различных форм энергии друг в друга и определяет, в каких количественных соотношениях эти взаимные превращения осуществляются.

Изменение энергии произвольной неизолированной системы может происходить в общем случае только за счет двух форм энергообмена – теплоты и работы:

E = Q L , (1.12)

где ∆ E – изменение энергии системы;

Q – теплота, подведенная к системе;

L – работа, совершенная над системой.

Согласно уравнению (1.12), изменение энергии термодинамической системы возможно за счет подведенной к системе теплоты и совершенной над системой работой.

Уравнение (1.12) представляет собой общее аналитическое выражение первого закона термодинамики. Выразим его через параметры состояния системы. Изменение энергии ∆E получим из выражения (1.7):

E = ∆ I + m ( ).

Для термодинамической системы, в которой разностью кинетической энергии можно пренебречь, изменение энергии системы будет равно изменению энтальпии, т.е. ∆E = ∆ I . Тогда с учетом выражений (1.11) и (1.12) получим уравнение первого закона термодинамики в виде:

Q = ∆I + L тех (1.13)

Теплота, подведенная к системе, идет на изменение энтальпии системы и совершение системой технической работы.

Заменим в уравнении (1.13) изменение энтальпии ∆I изменением внутренней энергии DU и, используя выражение (1. 6), получим:

Q = ∆ U + L расш. (1.14)

Уравнения (1.13) и (1.14) представляют собой интегральную форму записи первого закона термодинамики.

Из выражения (1.13) следует, что техническая работа может быть совершена термодинамической системой за счет уменьшения энтальпии и подведенной теплоты. Если процесс круговой, то ∆I = 0, следовательно, в постоянно действующих машинах (в них процессы изменения состояния круговые) для получения технической работы необходимым условием является подведение теплоты.

Аналогичное рассуждение можно провести и по уравнению (1.14).

Термодинамическая система может совершить работу расширения только за счет уменьшения своей внутренней энергии или за счет подведенной теплоты. Если в результате процесса внутренняя энергия системы не изменяется (например, в системе не изменяется температура), то вся теплота, полученная системой от окружающей среды, идет на совершение работы:

Q = L расш.

Это выражение позволяет дать следующие формулировки первого закона термодинамики.

При неизменной внутренней энергии системы теплота и работа эквивалентны.

Вечный двигатель первого рода невозможен.

Предполагалось, что вечный двигатель первого рода должен только совершать работу над окружающей средой, ничего не получая от нее.

До сих пор рассматривались системы произвольной массы. Для анализа удобнее пользоваться величинами, приведенными к единице массы вещества. Запишем уравнения (1.13) и (1.14) для 1 кг массы:

q = ∆ i + l тех ; (1.15)

q = ∆ u + l рас. (1.16)

Используя выражения (1.9) и (1.11), запишем полученные уравнения в дифференциальной форме:

dq = di - vdp (1.17)

dq = du + pdv (1.18)

Уравнения (1.17) и (1.18) представляют собой разновидность математической записи первого закона термодинамики в дифференциальной форме..

Значение первого закона:

во-первых, он формирует принцип устройства теплоэнергетических установок и систем;

во-вторых, он объясняет физическую сущность процессов, происходящих в тепловых машинах;

в-третьих, он используется при расчетах термодинамических процессов и позволяет оценить энергетический баланс тепловых машин.

1.2.2. Второй закон термодинамики

Первый закон термодинамики, являясь частным случаем закона сохранения и превращения энергии, рассматривает только его количественную сторону, заключающуюся в том, что при известном изменении энергии системы соотношение между теплотой и работой строго определенно. Этот закон не устанавливает направлений и полноты передачи энергии между телами, не определяет условий, при которых возможно преобразование теплоты в работу, не делает различий между их прямыми и обратными превращениями. Если исходить лишь из первого закона термодинамики, то правомерно считать, что любой мыслимый процесс, который не противоречит закону сохранения энергии, принципиально возможен и мог бы иметь место в природе. Ответ на поставленные вопросы дает второй закон термодинамики, который представляет собой совокупность положений, обобщающих опытные данные о качественной стороне закона сохранения и превращения энергии.

Многообразие особенностей взаимного превращения теплоты и работы, а также различные аспекты, в которых эти превращения рассматриваются, объясняют наличие нескольких, по сути эквивалентных, формулировок второго закона термодинамики.

Основные положения этого закона были высказаны французским инженером С. Карно (1824 г.). Карно пришел к выводу, что для преобразования теплоты в работу необходимы два источника теплоты с разной температурой. Само же название “Второй закон термодинамики” и исторически первая его формулировка (1850 г.) принадлежат немецкому физику Р. Клаузиусу:

“Теплота может переходить сама собой только от горячего тела к холодному; для обратного перехода надо затратить работу”,

Из этого утверждения следует, что для перехода теплоты от тела с меньшей температурой к телу с большей температурой обязательно необходим подвод энергии от внешнего источника в какой-либо форме, например, в форме работы. В противоположность этому теплота от тела с большей температурой самопроизвольно, без затрат каких-либо видов энергии, переходит к телам с меньшей температурой. Это означает, в частности, что теплообмен при конечной разности температур представляет собой строго односторонний, необратимый процесс, и направлен он в сторону тел с меньшей температурой.

Второй закон термодинамики лежит в основе теории тепловых двигателей. Тепловой двигатель представляет собой непрерывно действующее устройство, результатом действия которого является превращение теплоты в работу. Так, чтобы создать тепловой двигатель, непрерывно производящий работу, необходимо, прежде всего, иметь тело, являющееся поставщиком энергии в форме теплоты. Назовем его и с т о ч н и к о м т е п л о т ы.

Обязательно наличие и другого тела, которое воспринимает от первого

э
нергию в форме теплоты, а отдает ее в форме работы. Это так называемое р а б о ч е е т е л о. Его роль выполняет какая-либо упругая среда (газ, пар). Подвод тепла и преобразование его в работу сопровождается изменением состояния рабочего тела. На рис. 1.6 покажем это изменение условно кривой процесса 1-а-2. Здесь изменяются параметры состояния и, прежде всего, объем рабочего тела, что приводит к совершению работы расширения. Для получения непрерывной работы требуется рабочее тело вернуть в первоначальное состояние по процессу 2-б-1. Таким образом

Рис. 1.6 для непрерывного преобразования теплоты в работу надо постоянно осуществлять этот замкнутый к р у г о в о й п р о ц е с с или ц и к л.

Круговым процессом, или циклом, называют совокупность термодинамических процессов, в результате осуществления которых рабочее тело возвращается в свое первоначальное состояние.

Чтобы замкнуть цикл, требуется затратить некоторое количество энергии, в данном случае в форме работы сжатия. Эта работа сжатия должна быть компенсирована путем отвода от рабочего тела эквивалентного ей количества теплоты. Следовательно, необходимо третье тело, которое воспринимает эту компенсацию. Назовем его т е п л о п р и е м н и к о м. Чтобы теплоприемник воспринял некоторое количество теплоты, его температура должна быть ниже температуры теплоисточника.

В результате выполненного таким способом цикла 1-а-2-б-1, изображенного на рис. 1.6, только часть теплоты Q 1 , полученной рабочим телом от теплоисточника, преобразовывается в работу, другая же часть этой теплоты Q 2 обязательно отдается теплоприемнику.

Начало формы

В рассмотренной схеме непрерывно действующего теплового двигателя одно и то же рабочее тело постоянно участвует в круговом процессе. В циклах реальных двигателей рабочее вещество периодически обновляется, т.е. заменяет равным количеством “свежего” вещества. С термодинамической точки зрения замена рабочего вещества может рассматриваться как возращение рабочего тела в исходное состояние.

Конец формы

Таким образом, для непрерывного преобразования теплоты в работу нужны: источник теплоты; рабочее тело и теплоприемник, имеющий более низкую температуру, чем теплоисточник. Отвод некоторой части теплоты в теплоприемник является обязательным условием функционирования тепловых двигателей. Это условие изложено в следующих формулировках второго закона термодинамики:

“Невозможно построить периодически действующую машину, кото- рая не производит ничего другого, кроме работы и охлаждения источника теплоты” (В. Томсон).

“ Все естественные процессы являются переходом от менее вероятных к более вероятным состояниям” (Л. Больцман).

“Осуществление вечного двигателя второго рода невозможно”

(В. Освальд).

Под “вечным” двигателем второго рода подразумевается такой тепловой двигатель, который мог бы совершать непрерывную работу, имеятолько один источник теплоты. Из второго закона термодинамики следует, что какой бы по величине тепловой энергией ни обладала система, при равенстве температур тел системы эту энергию нельзя преобразовать в работу. По этой причине оказались бесплодными попытки тысяч изобретателей “вечных” двигателей к совершению работы расширения.

Распределение энергии, полученной от теплоисточника, в тепловых двигателях схематично показано на рис. 1.7. Полезная работа, совершаемая 1 кг массы рабочего тела за цикл, равна разности работ расширения l расш и сжатия l сж, т.е.

l ц = l расш - l сж. (1.19)

Количественную связь между теплотой и работой для 1 кг рабочего тела в процессах расширения 1-а-2 и сжатия 2-б-1

(см. рис. 1.6) на основании первого закона термодинамики запишем уравнениями:

q 1 = ∆ u 1- a 2 + l расш и q 2 = ∆ u 2-б-1 + l c ж ,

где q 1 – количество теплоты, подведенного к 1 кг рабочего тела от теплоисточника;

q 2 – количество теплоты, отведенного от

1 кг рабочего тела к теплоприемнику;

∆u 1- а -2 и ∆u 2-б-1 – изменение внутрен-

ней энергии 1 кг рабочего тела в процессахРис. 1.7

1-а-2 и 2-б-1, соответственно.

Вычтем второе уравнение из первого и получим:

q 1 q 2 = ∆ u 1-а-2-б-1 + (l расш l сж ).

Так как рабочее тело возвращается в исходное состояние, то изменение внутренней энергии за цикл будет равно нулю, т.е. ∆u 1-а-2-б-1 = 0. В итоге с учетом выражения (1.19) получим:

l ц = q 1 q 2 (1.20)

Из (1.20) следует, что, во-первых, работа цикла совершается только за счет теплоты и, во-вторых, работа цикла равна теплоте, подведенной от теплоисточника, за вычетом теплоты, отведенной к теплоприемнику.

Долю полезно используемой теплоты оценивают т е р м и ч е с к и м

КПД цикла, который обозначают η t .

Под термическим КПД понимают отношение теплоты, преобразо-

ванной в полезную работу цикла, ко всей подведенной теплоте:

η t =
или η t = 1 - . (1.21)

Из данных выражений следует, что чем меньше теплоы передается теплоприемнику, тем больше значение η t . Это означает, что происходит более полное преобразование теплоты в работу.

Ввиду необходимости передавать часть энергии в форме теплоты теплоприемнику термический КПД любого цикла не может быть равен единице.

Таким образом, второй закон термодинамики устанавливает полноту преобразования теплоты в работу.

Кроме того, он указывает на качественное различие между теплотой и работой. Если работа может вся без остатка преобразовываться в теплоту, то теплота никогда полностью не может быть преобразована в работу.

Уникальным научным достижением явилось выражение этого качественного различия количественной величиной – э н т р о п и е й.

1.2.3. Энтропия. Математическое выражение второго закона

термодинамики.

Энтропия ” в переводе с греческого означает “поворот” или “превращение”. Сначала понятие энтропии было введено в науку формально. Р.Клаузиус (1854г.) показал, что для термодинамической системы существует некая функция S , приращение которой определяется выражением

(1.22)

Он назвал эту функцию энтропией. Позже, при рассмотрении большого числа задач, было выявлено физическое содержание энтропии.

Так как энтропия не поддается простому интуитивному представлению, попытаемся уточнить ее смысл путем сравнения с аналогичными величинами, более доступными для нашего понимания. Запишем выражение работы расширения в дифференциальной форме:

dL расш = p dV .

Здесь давление p является величиной необходимой, но не достаточной для совершения работы. Изменение же объема приведет к работе расширения. Объем в приведенном уравнении выполняет свойство достаточного параметра. Таким образом, судить о том, что совершена работа расширения или сжатия можно лишь по изменению объема.

Теперь запишем выражение (1.22) в виде:

dQ = T dS .

Здесь температура является величиной необходимой, но еще не достаточной для того, что бы говорить о том, подводится тепло к системе или отводится от неё. Так, в адиабатном процессе система не обменивается теплотой с окружающей средой, а температура изменяется существенно. Остается один параметр, который должен обладать свойством достаточности , и этот параметр – энтропия. Только по изменению энтропии можно судить о теплообмене системы с окружающей средой. Отсюда

Энтропия есть калорический параметр состояния термодинамичес-

кой системы, характеризующий направление протекания процесса

теплообмена между системой и внешней средой.

Можно сказать, что энтропия – это единственная физическая величина, изменение которой в процессе однозначно указывает на наличие энергообмена в форме теплоты.

Выражение (1.22) устанавливает как качественную, так и количественную связь между теплотой и энтропией: если изменяется энтропия тела или системы, то в том и другом случае подводится энергия в форме теплоты; если энтропия неизменна, то процесс протекает без энергообмена в форме теплоты. Равенство (1.22) является аналитическим выражением второго закона термодинамики для элементарного равновесного процесса.

Выражение (1.22) дает возможность установить единицу энтропии, которая равна Дж/К.

Абсолютное значение энтропии определяется с точностью до некоторой постоянной S 0 . Численное значение постоянной S 0 на основе только первого и второго законов термодинамики не может быть определено. Однако это не накладывает ограничений на использование энтропии в расчетах. В практике, как правило, интерес представляет не абсолютная величина энтропии, а ее изменение, для которого численное значение постоянной S 0 особой роли не играет. Поэтому часто величине придают произвольное значение для условно принятого, так называемого с т а н д а р т н о г о состояния тела. Если это стандартное состояние считать исходным и приписать ему значение энтропии S 0 , то для вычисления энтропии в состоянии а будет выражение:

Приведенное значение энтропии обозначают через s = S / m c единицей измерения Дж/(кг×К).

Выражение (1.22), записанное через приведенные значения, будет иметь вид:

. (1.23)

Энтропия, являясь калорическим параметром, обладает рядом свойств.

1. Энтропия является однозначной функцией состояния системы.

2. Энтропия, подобно внутренней энергии, является аддитивной величиной.

.

3.Для обратимых и необратимых процессов в термодинамической сис

теме изменение энтропии определяется уравнением:

, (1.24)

в котором знак равенства относится к обратимым процессам, знак ²больше² – к необратимым.

Из выражений (1.24) следует, что энтропия изолированной системы может оставаться без изменения или возрастать, но не уменьшаться.

1.2.4. Эксергия

Введение понятия ‘энтропия’ дает возможность количественно оценить качественное различие между теплотой и работой. Для системы массой 1 кг получим уравнения, объединяющие аналитические выражения первого и второго законов термодинамики. Так, из выражений (1.23) и (1.19) следует:

ds =
. (1.25)

Из равенств (1.23) и (1.18) получим:

ds =
. (1.26)

Уравнения в виде (1.25) и (1.26) именуют т е р м о д и н а м и ч е с к и- м и т о ж д е с т в а м и. С их помощью в термодинамике устанавливается ряд особенностей систем, полнее раскрываются связи между физическими величинами в процессах.

Используя уравнение (1.25), установим максимально возможное количество технической работы, которую может совершить данная термодинамическая система, находящаяся в заданном начальном состоянии, если все совершаемые системой процессы обратимы и осуществляются до конечного состояния, равновесного с окружающей средой.

В термодинамике максимально возможную техническую работу системы называют э к с е р г и е й.

Обозначают эксэргию системы через E x . За единицу эксэргии в СИ принят джоуль. Ее приведенное значение (e x = Е x / m ) имеет единицу измерения Дж/кг.

В закрытой термодинамической системе при преобразовании теплоты в работу по циклу Карно можно принять e x = l ц . Тогда, при отводе тепла от источника с температурой T 1 в окружающую среду с температурой T 0 вправе записать e x = q · t = q (1 - ). Определим условия, при которых эти преобразования дадут максимально возможную работу в других циклах.

Пусть начальное состояние системы характеризуется точкой а , рис.1.8. При взаимо-действии с окружающей средой состояние с истемы стремится к равновесному, обозначенному точкойо. Процесс а-о не что иное, как переход системы из начального в равновесное состояние. Будем иметь в виду, что температура окружающей среды, несмотря н а ее взаимодействие с системой, остается постоянной и равнойT 0 . Используя уравнение первого закона термодинамики вида (1.15) и Рис. 1.8

и заменяя техническую работу эксэргией, получим:

e x = q a - o +(i 0 i а ). (1.27)

Изменение энтальпии не зависит от характера процесса. Поэтому, если известны начальное и конечное состояние системы, всегда можно определить разность энтальпий. Количество тепла является функцией процесс а-о . Для определения q a - o воспользуемся вторым законом термодинамики. Очевидно, что количество тепла, полученное окружающей средой q ср , равно количеству тепла, переданному системой среде, q а-о , т.е.

q ср = - q a - o (1.28)

Количество тепла q a - o пропорционально площади под кривой процесса (рис.1.8, пл.s o - o - a - s a ). Окружающая среда воспринимает теплоту в изотермическом процессе при T = T o . Начальное состояние этого процесса характеризуется точкой о , а конечное (точка о ) должно быть таким, чтобы пл. s o - o - o " - s o / , согласно (1.28), была равна пл. s o - o - a - s a .

Так как по второму закону термодинамики

dq ср = T o ds ср ,

то после интегрирования этого выражения от состояния о до состояния а будет иметь:

q cp = T 0 (s 0" -s a ) = T 0 (s a –s 0 ) + T 0 (s 0 - s a ). (1.29)

Тогда с учетом (1.28) выражение (1.27) запишется:

e x = (i a i o ) – T o (s a s o ) – T o (s o / - s a ). (1.30)

Из уравнения (1.30) следует ряд важных выводов:

1. В системе при обратимых процессах эксэргия больше, чем в той-же системе с необратимыми процессами, т.к. T 0 (s 0/ - s a ) ≥ 0.

2. Чем больше значение начальной энтропии системы s a , тем меньшую работу может она совершить при неизменной разности энтальпий (i a i 0 ). Следовательно, энтропия характеризует энергию системы.

– пределяет условия, необходимые для взаимного преобразования таких форм энергообмена, как теплота и работа;

– устанавливает полноту преобразования теплоты в работу.

1.2.5 Понятие о третьем законе термодинамики

При изучении свойств различных веществ в условиях низких температур, близких к абсолютному нулю = 0), обнаруживается важная закономерность в поведении реальных тел: в области абсолютного нуля энтропия тела в любом равновесном состоянии не зависит от температуры, объема и других параметров, характеризующих состояние тела.

Этот результат, являющийся обобщением ряда опытных данных и не вытекающий непосредственно из первого или второго законов термодинамики, составляет содержание тепловой теоремы Нернста .

Из теоремы следует, что в каком бы состоянии - жидком или твердом, в виде чистого вещества или химического соединения - ни существовало вещество, его энтропия при Т→ 0 имеет одно и то же значение. Постоянство энтропии при Т→ 0 означает, что в области абсолютного нуля dq всегда равно нулю. Следовательно, нельзя достигнуть абсолютного нуля с помощью отвода теплоты от тела, поскольку при T→ 0 каждое из тел при любом процессе изменения состояния сохраняет неизменное значение энтропии, т.е. перестает отдавать теплоту окружающей среде.

В. Нернст, используя квантовую теорию М. Планка, пришел к выводу, что lim ∆s T → 0 = 0. (1.31)

Отсюда и формулировка третьего закона термодинамики.

При температуре абсолютного нуля энтропия всех веществ в состоянии равновесия независимо от давления, плотности и фазы обращается в нуль.

Аналитическим выражением третьего закона термодинамики является равенство (1.31).

Необратимым называется физический процесс , который может самопроизвольно протекать только в одном определенном направлении.

В обратном направлении такие процессы могут протекать только как одно из звеньев более сложного процесса.

Необратимыми являются практически все процессы, происходящие в природе. Это связано с тем, что в любом реальном процессе часть энергии рассеивается за счет излучения, трения и т. д. Например, тепло, как известно, всегда переходит от более горячего тела к более холодному — это наиболее типичный пример необратимого процесса (хотя обратный переход не противоречит закону сохранения энергии).

Также висящий на легкой нити шарик (маятник) никогда самопроизвольно не увеличит ам-плитуду своих колебаний, наоборот, приведенный однажды в движение посторонней силой, он обязательно, в конце концов, остановится в результате сопротивления воздуха и трения нити о подвес. Таким образом, сообщенная маятнику механическая энергия переходит во внутреннюю энергию хаотического движения молекул (воздуха, материала подвеса).

Математически необратимость механических процессов выражается в том, что уравнение движения макроскопических тел изменяется с изменением знака времени: они не инвариантны при замене t на - t . При этом ускорение и силы, зависящие от расстояний, не изменяют свои знаки. Знак при замене t на - t меняется у скорости . Соответственно знак меняет сила , зависящая от скорости, — сила трения . Именно поэтому при совершении работы силами трения кинетическая энергия тела необратимо переходит во внутреннюю.

Направленность процессов в природе указывает второй закон термодинамики.

Второй закон термодинамики.

Второй закон термодинамики — один из основных законов термодинамики , устанавливающий необратимость реальных термодинамических процессов.

Второй закон термодинамики был сформулирован как закон природы Н. Л. С. Карно в 1824 г., затем У. Томсоном (Кельвином) в 1841 г. и Р. Клаузиусом в 1850 г. Формулировки закона различны, но эквивалентны.

Немецкий ученый Р. Клаузиус формулировал закон так: невозможно перевести теплоту от более холодной системы к более горячей при отсутствии других одновременных изменений в обеих системах или окружающих телах. Это означает, что теплота не может самопроизвольно пере-ходить от более холодного тела к более горячему (принцип Клаузиуса ).

Согласно формулировке Томсона процесс, при котором работа переходит в тепло без каких-либо иных изменений состояния системы, необратим, т. е. невозможно преобразовать в работу все тепло, взятое от тела, не производя никаких других изменений состояния системы (принцип Томсона ).



Просмотров