Строение, свойства и функции белков. Физические свойства белков

Белки- это высокомолекулярные (молеку­лярная масса варьируется от 5-10 тыс. до 1 млн и более) природные полимеры, молекулы которых построены из остатков аминокислот, соединенных амидной (пептидной) связью.

Белки также называют протеинами (греч. «протос» - первый, важный). Число остатков амино­кислот в молекуле белка очень сильно колеблется и иногда достигает несколь­ких тысяч. Каждый белок об­ладает своей присущей ему последовательностью распо­ложения аминокислотных остатков.

Белки выполняют разнообразные биологичес­кие функции: каталитические (ферменты), регуля­торные (гормоны), структурные (коллаген, фибро­ин), двигательные (миозин), транспортные (гемоглобин, миоглобин), защитные (иммуноглобули­ны, интерферон), запасные (казеин, альбумин, глиадин) и другие.

Белки - основа биомембран, важнейшей состав­ной части клетки и клеточных компонентов. Они играют ключевую роль в жиз­ни клетки, составляя как бы материальную основу ее хи­мической деятельности.

Исключительное свойство белка - самоорганизация структуры , т. е. его способ­ность самопроизвольно соз­давать определенную, свой­ственную только данному белку пространственную структуру. По существу, вся деятельность организма (развитие, движение, выполнение им различных функций и многое дру­гое) связана с белковыми веществами. Без белков невозможно представить себе жизнь.

Белки - важнейшая составная часть пищи че­ловека и животных, поставщик необходимых ами­нокислот.

Строение белков

В пространственном строении белков большое значение имеет характер радикалов (остатков) R- в молекулах аминокислот. Неполярные радикалы аминокислот обычно располагаются внутри макро­молекулы белка и обусловливают гидрофобные взаимодействия; полярные радикалы, содержащие ионогенные (образующие ионы) группы, обычно находятся на поверхности макромолекулы белка и характеризуют электростатические (ионные) вза­имодействия. Полярные неионогенные радикалы (например, содержащие спиртовые ОН-группы, амидные группы) могут располагаться как на по­верхности, так и внутри белковой молекулы. Они участвуют в образовании водородных связей.

В молекулах белка α-аминокислоты связаны между собой пептидными (-СО-NH-) связями:

Построенные таким образом полипептидные це­пи или отдельные участки внутри полипептидной цепи могут быть в некото­рых случаях дополнительно связаны между собой дисульфидными (-S-S-) связями или, как их часто называют, дисульфидными мостиками.

Большую роль в создании структуры белков играют ион­ные (солевые) и водородные связи, а также гидрофобное взаимодействие - особый вид контактов между гидрофоб­ными компонентами молекул белков в водной среде. Все эти связи имеют различную прочность и обеспечивают образование сложной, большой молекулы белка.

Несмотря на различие в строении и функциях белковых веществ, их элементный состав колеб­лется незначительно (в % на сухую массу): угле­рода - 51-53; кислорода - 21,5-23,5; азота - 16,8-18,4; водорода - 6,5-7,3; серы - 0,3-2,5.

Некоторые белки содержат в небольших количе­ствах фосфор, селен и другие элементы.

Последовательность соединения аминокислот­ных остатков в полипептидной цепи получила на­звание первичной структуры белка.

Белковая молекула может состоять из одной или из нескольких полипептидных цепей, каж­дая из которых содержит различное число аминокис­лотных остатков. Учитывая число их возможных комби­наций, можно сказать, что разнообразие белков почти безгранично, но не все из них существуют в природе.

Общее число различных ти­пов белков у всех видов жи­вых организмов составляет 10 11 -10 12 . Для белков, строение которых отлича­ется исключительной сложностью, кроме первич­ной, различают и более высокие уровни структур­ной организации: вторичную, третичную, а иногда и четвертичную структуры.

Вторичной структурой обладает большая часть белков, правда, не всегда на всем протяжении полипептидной цепи. Полипептидные цепочки с определенной вторичной структурой могут быть по-разному расположены в пространстве.

В формировании третичной структуры , кроме водородных связей, большую роль играют ион­ное и гидрофобное взаимодействия. По характеру «упаковки» белковой молекулы различают глобу­лярные , или шаровидные, и фибриллярные , или нитевидные, белки (табл. 12).

Для глобулярных белков более характерна а-спиральная структура, спирали изогнуты, «свер­нуты». Макромолекула имеет сферическую форму. Они растворяются в воде и солевых растворах с об­разованием коллоидных систем. Большинство бел­ков животных, растений и микроорганизмов отно­сится к глобулярным белкам.

Для фибриллярных белков более характерна нитевидная структура. Они, как правило, не рас­творяются в воде. Фибриллярные белки обычно выполняют структурообразующие функции. Их свойства (прочность, способность растягиваться) за­висят от способа упаковки полипептидных цепо­чек. Примером фибриллярных белков служат мио­зин, кератин. В ряде случаев отдельные субъ­единицы белка с помощью во­дородных связей, электроста­тического и других взаимо­действий образуют сложные ансамбли. В этом случае об­разуется четвертичная струк­тура белков.

Примером белка с четвер­тичной структурой служит гемоглобин крови. Только с такой структурой он выполняет свои функции - связывание кислорода и транспортировка его в ткани и органы.

Однако следует отметить, что в организации бо­лее высоких структур белка исключительная роль принадлежит первичной структуре.

Классификация белков

Существует несколько классификаций белков:

  1. По степени сложности (простые и сложные).
  2. По форме молекул (глобулярные и фибрилляр­ные белки).
  3. По растворимости в отдельных растворителях (водорастворимые, растворимые в разбавлен­ных солевых растворах- альбумины, спирто­растворимые - проламины, растворимые в раз­бавленных щелочах и кислотах - глутелины).
  4. По выполняемым функциям (например, запас­ные белки, скелетные и т. п.).

Свойства белков

Белки - амфотерные электролиты. При опреде­ленном значении pH среды (оно называется изоэлектрической точкой) число положительных и от­рицательных зарядов в молекуле белка одинаково. Это одно из основных свойств белка. Белки в этой точке электронейтральны, а их растворимость в во­де наименьшая. Способность белков снижать рас­творимость при достижении электронейтральности их молекул используется для выделения из раство­ров, например, в технологии получения белковых продуктов.

Гидратация . Процесс гидратации означает свя­зывание белками воды, при этом они проявля­ют гидрофильные свойства: набухают, их масса и объ­ем увеличиваются. Набуха­ние отдельных белков за­висит исключительно от их строения. Имеющиеся в со­ставе и расположенные на поверхности белковой ма­кромолекулы гидрофильные амидные (-СО-NH-, пеп­тидная связь), аминные (-NH 2) и карбоксильные (-СООН) группы притягивают к себе молекулы воды, строго ориентируя их на поверхности моле­кулы. Окружающая белковые глобулы гидратная (водная) оболочка препятствует агрегации и осаж­дению, а следовательно, способствует устойчиво­сти растворов белка. В изоэлектрической точке белки обладают наименьшей способностью свя­зывать воду, происходит разрушение гидратной оболочки вокруг белковых молекул, поэтому они соединяются, образуя крупные агрегаты. Агрега­ция белковых молекул происходит и при их обе­звоживании с помощью некоторых органических растворителей, например, этилового спирта. Это приводит к выпадению белков в осадок. При из­менении pH среды макромолекула белка стано­вится заряженной, и его гидратационная способ­ность меняется.

При ограниченном набухании концентрирован­ные белковые растворы образуют сложные систе­мы, называемые студнями .

Студни не текучи, упруги, обладают пластичностью, определенной механической прочностью, способны сохра­нять свою форму. Глобуляр­ные белки могут полностью гидратироваться, растворяться в воде (например, белки молока), образуя растворы с невысокой кон­центрацией. Гидрофильные свойства белков, т. е. их способность набухать, образовывать студни, стабилизировать суспензии, эмульсии и пены, имеют большое значение в биологии и пищевой промышленности. Очень подвижным студнем, по­строенным в основном из молекул белка, является цитоплазма - сырая клейковина, выделенная из пшеничного теста; она содержит до 65 % воды. Различная гидрофильность клейковинных бел­ков - один из признаков, характеризующих ка­чество зерна пшеницы и получаемой из него муки (так называемые сильные и слабые пшеницы). Ги­дрофильность белков зерна и муки играет боль­шую роль при хранении и переработке зерна, в хлебопечении. Тесто, которое получают в хлебо­пекарном производстве, представляет собой набух­ший в воде белок, концентрированный студень, содержащий зерна крахмала.

Денатурация белков . При денатурации под вли­янием внешних факторов (температуры, механиче­ского воздействия, действия химических агентов и ряда других факторов) происходит изменение вторичной, третич­ной и четвертичной структур белковой макромолекулы, т. е. ее нативной простран­ственной структуры. Первич­ная структура, а следователь­но, и химический состав белка не меняются. Изменяются физические свой­ства: снижается растворимость, способность к ги­дратации, теряется биологическая активность. Меняется форма белковой макромолекулы, проис­ходит агрегирование. В то же время увеличивает­ся активность некоторых химических групп, об­легчается воздействие на белки протеолитических ферментов, а следовательно, он легче гидролизу­ется.

В пищевой технологии особое практическое значение имеет тепловая денатурация белков, степень которой зависит от температуры, продол­жительности нагрева и влажности. Это необходи­мо помнить при разработке режимов термообра­ботки пищевого сырья, полуфабрикатов, а иногда и готовых продуктов. Особую роль процессы те­пловой денатурации играют при бланшировании растительного сырья, сушке зерна, выпечке хлеба, получении макаронных изделий. Денатура­ция белков может вызываться и механическим воздействием (давлением, растиранием, встряхи­ванием, ультразвуком). Наконец, к денатурации белков приводит действие химических реагентов (кислот, щелочей, спирта, ацетона). Все эти при­емы широко используются в пищевой и биотех­нологии.

Пенообразование . Под процессом пенообразования понимают способность белков образовывать высококонцентрированные системы «жидкость - газ», называемые пенами. Устой­чивость пены, в которой бе­лок является пенообразовате­лем, зависит не только от его природы и от концентрации, но и от температуры. Белки в качестве пенообразо­вателей широко используются в кондитерской про­мышленности (пастила, зефир, суфле). Структуру пены имеет хлеб, а это влияет на его вкусовые ка­чества.

Молекулы белков под влиянием ряда факторов могут разрушаться или вступать во взаимодействие с другими веществами с образованием новых про­дуктов. Для пищевой промышленности можно вы­делить два важных процесса:

1) гидролиз белков под действием ферментов;

2) взаимодействие аминогрупп белков или амино­кислот с карбонильными группами восстанавли­вающих сахаров.

Под влиянием ферментов протеаз, катализиру­ющих гидролитическое расщепление белков, по­следние распадаются на более простые продукты (поли- и дипептиды) и в конечном итоге на ами­нокислоты. Скорость гидролиза белка зависит от его состава, молекулярной структуры, активности фермента и условий.

Гидролиз белков. Реакцию гидролиза с образо­ванием аминокислот в общем виде можно записать так:

Горение . Белки горят с образованием азота, углекислого газа и воды, а также некоторых дру­гих веществ. Горение сопровождается характер­ным запахом жженых перьев.

Цветные реакции на белки . Для качественного определения белка используют следующие реакции:

1) ксантопротеиновую, при которой происходит взаимодействие ароматических и гетероатомных циклов в молекуле белка с концентриро­ванной азотной кислотой, сопровождающееся появлением желтой окраски.

2) биуретовую , при которой происходит взаимо­действие слабощелочных растворов белков с раствором сульфата меди (II) с образованием комплексных соединений между ионами Сu 2+ и полипептидами. Реакция сопровождается по­явлением фиолетово-синей окраски.


Форма белковой молекулы . Исследования нативной конформации белковых молекул показали, что эти частицы в большинстве случаев имеют более или менее асимметричную форму. В зависимости от степени асимметрии, т. е. соотношения между длинной (b) и короткой (а) осями белковой молекулы различают глобулярные (шаровидные) и фибриллярные (нитевидные) белки.

Глобулярными являются белковые молекулы, у которых свертывание полипептидных цепочек привело к образованию сферической структуры. Среди них встречаются строго шаровидные, эллипсовидные и палочкообразные. Они различаются по степени асимметрии. Например, яичный альбумин имеет b/а = 3, глиадин пшеницы - 11, а зеин кукурузы - 20. Многие белки в живой природе являются глобулярными.

Фибриллярные белки образуют длинные высокоасимметричные нити. Многие из них выполняют структурную или механическую функцию. Таковы коллаген (b/а — 200), кератины, фиброин.

Белкам каждой из групп присущи свои характерные свойства. Многие глобулярные белки растворимы в воде и разбавленных солевых растворах. Растворимым фибриллярным белкам свойственны очень вязкие растворы. Глобулярные белки, как правило, обладают хорошей биологической ценностью - усваиваются в процессе пищеварения, в то время как многие фибриллярные белки - нет.

Между глобулярными и фибриллярными белками отсутствует четкая граница. Ряд белков занимает промежуточное положение и сочетает в себе признаки как глобулярных, так и фибриллярных. К таким белкам относятся, например, миозин мышц (b/а = 75) и фибриноген крови (b/а = 18). Миозин имеет палочковидную форму, сходную с формой фибриллярных белков, однако, подобно глобулярным белкам, он растворим в солевых растворах. Растворы миозина и фибриногена вязкие. Эти белки усваиваются в процессе пищеварения. В то же время актин - глобулярный белок мышц - не усваивается.

Денатурация белка . Нативная конформация белковых молекул не является жесткой, она довольно лабильна (лат. «labilis» - скользящий) и при ряде воздействий может серьезно нарушаться. Нарушение нативной конформации белка, сопровождающееся изменением его нативных свойств без разрыва пептидных связей, называется денатурацией (лат. «denaturare » - лишать природных свойств) белка.

Денатурация белков может быть вызвана различными при-чинами, приводящими к нарушению слабых взаимодействий, а также к разрыву дисульфидных связей, стабилизирующих их нативную структуру.

Нагревание большинства белков до температуры выше 50°С, а также ультрафиолетовое и другие виды высокоэнергетического облучения усиливают колебания атомов полипептидной цепи, что приводит к нарушению в них различных связей. Денатурацию белка способно вызвать даже механическое встряхивание.

Денатурация белков также происходит вследствие химического воздействия. Сильные кислоты или щелочи влияют на ионизацию кислотных и основных групп, вызывая нарушение ионных и некоторых водородных связей в молекулах белков. Мочевина (H 2 N-CO-NH 2) и органические растворители - спирты, фенолы и др. - нарушают систему водородных связей и ослабляют в белковых молекулах гидрофобные взаимодействия (мочевина - за счет нарушения структуры воды, органические растворители - вследствие установления контактов с неполярными радикалами аминокислот). Меркаптоэтанол разрушает в белках дисульфидные связи. Ионы тяжелых металлов нарушают слабые взаимодействия.

При денатурации происходит изменение свойств белка и, в первую очередь, уменьшение его растворимости. Например, при кипячении белки коагулируют и выпадают из растворов в осадок в виде сгустков (как при варке куриного яйца). Осаждение белков из растворов происходит также под воздействием белковых осадителей, в качестве которых применяют трихлоруксусную кислоту, реактив Барнштейна (смесь гидроксида натрия с сульфатом меди), раствор таннина и др.

При денатурации уменьшается водопоглотительная способность белка, т. е. его способность к набуханию; могут появляться новые химические группы, например: при воздействии мер каптоэтанола - SH-группы. В результате денатурации белок теряет свою биологическую активность.

Хотя первичная структура белка при денатурации не нарушается, изменения являются необратимыми. Однако, например, при постепенном удалении мочевины методом диализа из раствора денатурированного белка происходит его ренатурация: нативная структура белка восстанавливается, а вместе с ней, в той или иной степени, - и его нативные свойства. Такая денатурация называется обратимой .

Необратимая денатурация белков происходит в процессе старения организмов. Поэтому, например, семена растений, даже при оптимальных условиях хранения, постепенно теряют свою всхожесть.

Денатурация белков имеет место при выпечке хлеба, сушке макарон, овощей, в ходе приготовления пищи и т. д. В результате повышается биологическая ценность этих белков, так как в процессе пищеварения легче усваиваются денатурированные (частично разрушенные) белки.

Изоэлектрическая точка белка . В белках содержатся раз-личные основные и кислотные группы, которые обладают способностью к ионизации. В сильнокислой среде активно протонируются основные группировки (аминогруппы и др.), и молекулы белка приобретают суммарный положительный заряд, а в сильнощелочной среде - легко диссоциируют карбоксильные группы, и молекулы белка приобретают суммарный отрицательный заряд.

Источниками положительного заряда в белках выступают боковые радикалы остатков лизина, аргинина и гистидина, а-аминогруппа остатка N-концевой аминокислоты. Источники отрицательного заряда - боковые радикалы остатков аспарагиновой и глутаминовой кислот, а-карбоксильная группа остатка С-концевой аминокислоты.

При определенном значении рН среды наблюдается равенство положительных и отрицательных зарядов на поверхности белковой молекулы, т. е. ее суммарный электрический заряд оказывается равным нулю. Такое значение рН раствора, при котором молекула белка электронейтральна, называют изоэлектрической точкой белка (pi).

Изоэлектрические точки являются характерными константами белков. Они определяются их аминокислотным составом и структурой: количеством и расположением остатков кислых и основных аминокислот в полипептидных цепях. Изоэлектрические точки белков, в которых преобладают остатки кислых аминокислот, располагаются в области рН<7, а белков, в которых преобладают остатки основных аминокислот - в области рН>7. Изоэлектрические точки большинства белков находятся в слабокислой среде.

В изоэлектрическом состоянии растворы белков обладают минимальной вязкостью. Это связано с изменением формы белковой молекулы. В изоэлектрической точке разноименно заряженные группы притягиваются друг к другу, и белки закручиваются в клубки. При смещении рН от изоэлектрической точки одноименно заряженные группы отталкиваются, и молекулы белка развертываются. В развернутом состоянии белковые молекулы придают растворам более высокую вязкость, чем свернутые в клубки.

В изоэлектрической точке белки обладают минимальной растворимостью и могут легко выпадать в осадок.

Однако осаждения белков в изоэлектрической точке все же не происходит. Этому препятствуют структурированные молекулы воды, удерживающие на поверхности белковых глобул значительную часть гидрофобных аминокислотных радикалов.

Осадить белки можно с помощью органических растворителей (спирта, ацетона), нарушающих систему гидрофобных контактов в молекулах белка, а также высоких концентраций солей (методом высаливания), уменьшающих гидратацию белковых глобул. В последнем случае часть воды идет на растворение соли и перестает участвовать в растворении белка. Такой раствор за недостатком растворителя становится пересыщенным, что влечет за собой выпадение части его в осадок. Белковые молекулы начинают слипаться и, образуя все более крупные частицы, постепенно осаждаться из раствора.

Оптические свойства белка . Растворы белков обладают оптической активностью, т. е. способностью вращать плоскость поляризации света. Это свойство белков обусловлено наличием в их молекулах элементов асимметрии - асимметрических атомов углерода и правозакрученной а-спирали.

При денатурации белка происходит изменение его оптических свойств, что связано с разрушением а-спирали. Оптические свойства полностью денатурированных белков зависят только от наличия в них асимметрических атомов углерода.

По разнице в проявлении белком оптических свойств до и после денатурации можно определить степень его спирализации.

Качественные реакции на белки . Для белков характерны цветные реакции, обусловленные наличием в них тех или иных химических группировок. Эти реакции часто используются для обнаружения белков.

При добавлении к белковому раствору сульфата меди и щелочи появляется сиреневое окрашивание, связанное с образованием комплексов ионов меди с пептидными группами белка. Поскольку эту реакцию дает биурет (H 2 N-CO-NH-CO-NH 2), она получила название биуретовой. Ее часто используют для количественного определения белка, наряду с методом И. Кьельдаля, так как интенсивность возникающей окраски пропорциональна концентрации белка в растворе.

При нагревании растворов белков с концентрированной азотной кислотой появляется желтое окрашивание, обусловленное образованием нитропроизводных ароматических аминокислот. Эту реакцию называют ксантопротеиновой (греч. «ксантос» - желтый).

Многие белковые растворы при нагревании вступают в реакцию с азотнокислым раствором ртути, которая образует с фенолами и их производными комплексные соединения малинового цвета. Это качественная реакция Миллона на тирозин.

В результате нагревания большинства белковых растворов с уксуснокислым свинцом в щелочной среде выпадает черный осадок сульфида свинца. Данная реакция используется для обнаружения серосодержащих аминокислот и называется реакцией Фоля.

Белки - природные полипептиды с огромной молекулярной массой. Они входят в состав всех живых организмов и выполняют различные биологические функции.

Строение белка.

У белков существует 4 уровня строения:

  • первичная структура белка - линейная последовательность аминокислот в полипептидной цепи, свернутых в пространстве:
  • вторичная структура белка - конформация полипептидной цепи, т.к. скручивание в пространстве за счет водородных связей между NH и СО группами. Есть 2 способа укладки: α -спираль и β - структура.
  • третичная структура белка - это трехмерное представление закрученной α -спираль или β -структуры в пространстве:

Эта структура образуется за счет дисульфидных мостиков -S-S- между цистеиновыми остатками. В образовании такой структуры участвуют противоположно заряженные ионы.

  • четвертичная структура белка образуется за счет взаимодействия между разными полипептидными цепями:

Синтез белка.

В основе синтеза лежит твердофазный метод, в котором первая аминокислота закрепляется на полимерном носителе, а к ней последовательно подшиваются новые аминокислоты. После полимер отделяют от полипептидной цепи.

Физические свойства белка.

Физические свойства белка определяются строением, поэтому белки делят на глобулярные (растворимые в воде) и фибриллярные (нерастворимые в воде).

Химические свойства белков.

1. Денатурация белка (разрушение вторичной и третичной структуры с сохранением первичной). Пример денатурации - свертывание яичных белков при варке яиц.

2. Гидролиз белков - необратимое разрушение первичной структуры в кислом или щелочном растворе с образованием аминокислот. Так можно установить количественный состав белков.

3. Качественные реакции:

Биуретовая реакция - взаимодействие пептидной связи и солей меди (II) в щелочном растворе. По окончанию реакции раствор окрашивается в фиолетовый цвет.

Ксантопротеиновая реакция - при реакции с азотной кислотой наблюдается желтое окрашивание.

Биологическое значение белка.

1. Белки - строительный материал, из него построены мышцы, кости, ткани.

2. Белки - рецепторы. Передают и воспринимают сигнал, поступающих от соседних клеток из окружающей среды.

3. Белки играют важную роль в иммунной системе организма.

4. Белки выполняют транспортные функции и переносят молекулы или ионы в место синтеза или накопления. (Гемоглобин переносит кислород к тканям.)

5. Белки - катализаторы - ферменты. Это очень мощные селективные катализаторы, которые ускоряют реакции в миллионы раз.

Есть ряд аминокислот, которые не могут синтезироваться в организме - незаменимые , их получают только с пищей: тизин, фенилаланин, метинин, валин, лейцин, триптофан, изолейцин, треонин.


Белки – это биополимеры, состоящие из остатков α-аминокислот, соединённых между собой пептидными связями (-CO-NH-). Белки входят в состав клеток и тканей всех живых организмов. В молекулы белков входит 20 остатков различных аминокислот.

Структура белка

Белки обладают неисчерпаемым разнообразием структур.

Первичная структура белка – это последовательность аминокислотных звеньев в линейной полипептидной цепи.

Вторичная структура – это пространственная конфигурация белковой молекулы, напоминающая спираль, которая образуется в результате скручивания полипептидной цепи за счёт водородных связей между группами: CO и NH.

Третичная структура – это пространственная конфигурация, которую принимает закрученная в спираль полипептидная цепь.

Четвертичная структура – это полимерные образования из нескольких макромолекул белка.

Физические свойства

Свойства белков весьма разнообразны, которые они выполняют. Одни белки растворяются в воде, образуя, как правило, коллоидные растворы (например, белок яйца); другие растворяются в разбавленных растворах солей; третьи нерастворимы (например, белки покровных тканей).

Химические свойства

Денатурация – разрушение вторичной, третичной структуры белка под действием различных факторов: температура, действие кислот, солей тяжёлых металлов, спиртов и т.д.

При денатурации под влиянием внешних факторов (температуры, механического воздействия, действия химических агентов и других факторов) происходит измене- ние вторичной, третичной и четвертичной структур белковой макромолекулы, то есть ее нативной пространственной структуры. Первичная структура, а следователь- но, и химический состав белка не меняются. Изменяются физические свойства: сни- жается растворимость, способность к гидратации, теряется биологическая актив-ность. Меняется форма белковой макромолекулы, происходит агрегирование. В то же время увеличивается активность некоторых групп, облегчается воздействие на белки протеолитических ферментов, а, следовательно, он легче гидролизуется.

В пищевой технологии особое практическое значение имеет тепловая денатура- ция белков, степень которой зависит от температуры, продолжительности нагрева и влажности. Это необходимо помнить при разработке режимов термообработке пи- щевого сырья,полуфабрикатов, а иногда и готовых продуктов. Особую роль про- цессы тепловой денатурации играют при бланшировании растительного сырья, суш- ке зерна, выпечке хлеба, получении макаронных изделий. Денатурация белков может вызываться и механическим воздействием (давлением, растиранием, встряхиванием, ультразвуком). К денатурации белков приводит действие химических реагентов (кислот, щелочей, спирта, ацетона). Все эти приемы широко используют в пищевой и биотехнологии.

Качественные реакции на белки :

а) При горении белка – запах палёных перьев.

б) Белок +HNO 3 → жёлтая окраска

в) Раствор белка +NaOH + CuSO 4 → фиолетовая окраска

Гидролиз

Белок + Н 2 О → смесь аминокислот

Функции белков в природе:

· каталитические (ферменты);

· регуляторные (гормоны);

· структурные (кератин шерсти, фиброин шелка, коллаген);

· двигательные (актин, миозин);

· транспортные (гемоглобин);

· запасные (казеин, яичный альбумин);

· защитные (иммуноглобулины) и т.д.

Гидратация

Процесс гидратации означает связывание белками воды, при этом они проявляют гидрофильные свойства: набухают, их масса и объем увеличивается. Набухание бел- ка сопровождается его частичным растворением. Гидрофильность отдельных белков зависит от их строения. Имеющиеся в составе и расположенные на поверхности бел- ковой макромолекулы гидрофильные амидные (–CO–NH–, пептидная связь), амин- ные (NH 2) и карбоксильные (COOH) группы притягивают к себе молекулы воды, строго ориентируя их на поверхность молекулы. Окружая белковые глобулы гидрат- ная (водная) оболочка препятствует устойчивости растворов белка. В изоэлектричес- кой точке белки обладают наименьшей способностью связывать воду, происходит разрушение гидратной оболочки вокруг белковых молекул, поэтому они соединяют- ся, образуя крупные агрегаты. Агрегация белковых молекул происходит и при их обезвоживании с помощью некоторых органических растворителей, например этило- вого спирта. Это приводит к выпадению белков в осадок. При изменении pH среды макромолекула белка становится заряженной, и его гидратационная способность ме- няется.

При ограниченном набухании концентрированные белковые растворы образуют сложные системы, называемые студнями. Студни не текучи, упруги, обладают плас-тичностью, определенной механической прочностью, способны сохранять свою фор- му. Глобулярные белки могут полностью гидратироваться, растворяясь в воде (нап- ример, белки молока), образуя растворы с невысокой концентрацией. Гидрофильные свойства белков имеют большое значение в биологии и пищевой промышленности. Очень подвижным студнем, построенным в основном из молекул белка, является цитоплазма– полужидкое содержимое клетки. Сильно гидратированный студень–сырая клейковина, выделенная из пшеничного теста, она содержит до 65% воды. Гидрофильность, главное качество зерна пшеницы, белков зерна и муки играет боль- шую роль при хранении и переработке зерна, в хлебопечении. Тесто, которое полу- чают в хлебопекарном производстве, представляет собой набухший в воде белок, концентрированный студень, содержащий зерна крахмала.

Пенообразование

Процесс пенообразования–это способность белков образовывать высококонцент- рированные системы «жидкость–газ»,называемые пенами. Устойчивость пены, в ко- торой белок является пенообразователем, зависит не только от его природы и от кон- цнтрации,но и от температуры. Белки в качестве пенообразователей широко исполь- зуются в кондитерской промышленности(пастила, зефир, суфле).Структуру пены имеет хлеб, а это влияет на его вкусовые свойства.

Горение

Белки горят с образованием азота, углекислого газа и воды, а также некоторых других веществ. Горение сопровождается характерным запахом жженых перьев.

Цветные реакции.

  • Ксантопротеиновая–происходит взаимодействие ароматических и гетероатомных циклов в молекуле белка с концентрированной азотной кислотой, сопровождаю- щеееся появлением желтой окраски;
  • Биуретовая – происходит взаимодействие слабощелочных растворов белков с раствором сульфата меди(II) с образованием комплексных соединений между ионами Cu 2+ и полипептидами. Реакция сопровождается появлением фиолетово–синей окраски;
  • при нагревании белков со щелочью в присутствии солей свинца выпадает черный осадок, который содержит серу.


Классификация белков базируется на их химическом составе. Согласно этой классификации белки бывают простые и сложные . Простые белки состоят только из аминокислот, то есть из одного или нескольких полипептидов. К простым белкам, имеющимся в организме человека, относятся альбумины, глобулины, гистоны, белки опорных тканей.

В молекуле сложного белка, кроме аминокислот, ещё имеется неаминокислотная часть, называемая простетической группой. В зависимости от строения этой группы выделяют такие сложные белки, как фосфопротеиды(содержат фосфорную кислоту), нуклеопротеиды (содержат нуклеиновую кислоту), гликопротеиды (содержат углевод), липопротеиды (содержат липоид) и другие.

Согласно классификации, которая базируется на пространственной форме белков, белки разделяются на фибриллярные и глобулярные.

Фибриллярные белки состоят из спиралей, то есть преимущественно из вторичной структуры. Молекулы глобулярных белков имеют шаровидную и эллипсоидную форму.

Примером фибриллярных белков является коллаген – самый распространенный белок в теле человека. На долю этого белка приходится 25-30% от общего числа белков организма. Коллаген обладает высокой прочностью и эластичностью. Он входит в состав сосудов мышц, сухожилий, хрящей, костей, стенки сосудов.

Примером глобулярных белков являются альбумины и глобулины плазмы крови.

Физико-химические свойства белков.

Одной из главных особенностей белков является их большая молекулярная масса , которая колеблется в диапазоне от 6000 до нескольких миллионов дальтон.

Другим важным физико-химическим свойством белков является их амфотерность, то есть наличие, как кислотных, так и основных свойств. Амфотерность связана с наличием в составе некоторых аминокислот свободных карбоксильных групп, то есть кислотных, и аминогрупп, то есть щелочных. Это приводит к тому, что в кислой среде белки проявляют щелочные свойства, а в щелочной среде – кислотные. Однако при определенных условиях белки проявляют нейтральные свойства. Значение рН, при котором белки проявляют нейтральные свойства, называется изоэлектрической точкой . Изоэлектрическая точка для каждого белка индивидуальна. Белки по этому показателю делят на два больших класса – кислые и щелочные, так как изоэлектрическая точка может быть сдвинута либо в одну, либо в другую сторону.

Еще одно важное свойство белковых молекул – это растворимость. Несмотря на большой размер молекул белки довольно хорошо растворимы в воде. Причем растворы белков в воде весьма устойчивы. Первой причиной растворимости белков является наличие на поверхности молекул белков заряда, благодаря чему белковые молекулы практически не образуют нерастворимые в воде агрегаты. Второй причиной устойчивости белковых растворов является наличие у белковой молекулы гидратной (водной) оболочки. Гидратная оболочка отделяет белки друг от друга.

Третье важное физико-химическое свойство белков – это высаливание, то есть способность выпадать в осадок под действием водоотнимающих средств. Высаливание – процесс обратимый. Эта способность то переходить в раствор, то выходить из него очень важна для проявления многих жизненных свойств.

Наконец, важнейшим свойством белков является его способность к денатурации. Денатурация - это потеря белком нативности. Когда мы делаем яичницу на сковороде, мы получаем необратимую денатурацию белка. Денатурация заключается в постоянном или временном нарушении вторичной и третичной структуры белка., но при этом первичная структура сохраняется. Помимо температуры(выше 50 градусов) денатурацию могут вызвать другие физические факторы: излучении, ультразвук, вибрация, сильные кислоты и щелочи. Денатурация может быть обратимой и необратимой. При небольших воздействиях разрушение вторичной и третичной структур белка происходит незначительное. Поэтому белок при отсутствии денатурирующего воздействия может восстановить свою нативную структуру. Процесс обратный денатурации называется ренатурация. Однако при продолжительном и сильном воздействии ренатурация становится невозможной, а денатурация, таким образом, необратимой.



Просмотров