Скорость распространения механических волн зависит. Волны. Общие свойства волн. Волна

§ 1.7. Механические волны

Распространяющиеся в пространстве колебания вещества или поля называются волной. Колебания вещества порождают упругие волны (частный случай – звук).

Механическая волна – это распространение колебаний частиц среды с течением времени.

Волны в сплошной среде распространяются вследствие взаимодействия между частицами. Если какая-либо частица приходит в колебательное движение, то, вследствие упругой связи, это движение передается соседним частицам, и волна распространяется. При этом сами колеблющиеся частицы не перемещаются вместе с волной, а колеблются около своих положений равновесия .

Продольные волны – это такие волны, в которых направление колебаний частиц x совпадает с направлением распространения волны . Продольные волны распространяются в газах, жидкостях и твердых телах.

П
оперечные волны
– это такие волны, в которых направление колебаний частиц перпендикулярно направлению распространения волны . Поперечные волны распространяются только в твердых средах.

Волны обладают двоякой периодичностью – во времени и в пространстве . Периодичность во времени означает, что каждая частица среды колеблется около своего положения равновесия, и это движение повторяется с периодом колебаний T. Периодичность в пространстве означает, что колебательное движение частиц среды повторяется через определенные расстояния между ними.

Периодичность волнового процесса в пространстве характеризует величина, называемая длиной волны и обозначаемая .

Длина волны - это расстояние, на которое распространяется волна в среде за время одного периода колебаний частицы .

Отсюда
, где- период колебаний частиц,- частота колебаний,- скорость распространения волны, зависящая от свойств среды.

Как записать уравнение волны? Пусть кусочек шнура расположенный в точке О (источник волны) совершает колебания, происходящие по закону косинуса

Пусть точка некоторая В находится на расстоянии х от источника (точки О). для того чтобы волна, распространяющаяся со скоростью v, дошла до нее требуется время
. Это означает, что в точке В колебания начнутся позже на
. То есть. После подстановки в это уравнение выражения для
и ряда математических преобразований, получим

,
. Введем обозначение:
. Тогда. В силу произвольности выбора точки В это уравнение и будет искомым уравнением плоской волны
.

Выражение, стоящее под знаком косинуса называется фазой волны
.

Если две точки находятся на различных расстояниях от источника волны, то фазы их будут различны. Например, фазы точек В и С, находящихся на расстоянияхиот источника волны, будут соответственно равны

Разность фаз колебаний, происходящих в точке В и в точке С обозначим
и она будет равна

В таких случаях говорят, что между колебаниями, происходящими в точках В и С имеется сдвиг по фазе Δφ. Говорят, что колебания в точках В и С происходят в фазе, если
. Если
, то колебания в точках В и С происходят в противофазе. Во всех остальных случаях – просто имеется сдвиг по фазе.

Понятие «длина волны» можно определить и иначе:

Поэтому k называют волновым числом.

Мы ввели обозначение
и показали, что
. Тогда

.

Длина волны – это путь, проходимый волной за один период колебания.

Определим два важных в волновой теории понятия.

Волновая поверхность – это геометрическое место точек среды, колеблющихся в одинаковой фазе. Волновую поверхность можно провести через любую точку среды, следовательно, их бесконечно много.

Волновые поверхности могут быть любой формы, а в простейшем случае они представляют собой совокупность плоскостей (если источник волн – бесконечная плоскость), параллельных друг другу, или совокупность концентрических сфер (если источник волн точечный).

Фронт волны (волновой фронт) – геометрическое место точек, до которых доходят колебания к моменту времени . Фронт волны отделяет часть пространства, вовлеченную в волновой процесс, от области, где колебания еще не возникли. Следовательно, волновой фронт – это одна из волновых поверхностей. Он разделяет две области: 1 – до которой дошла волна к моменту времениt, 2 – не дошла.

Волновой фронт в каждый момент времени только один, и он все время перемещается, тогда как волновые поверхности остаются неподвижными (они проходят через положения равновесия частиц, колеблющихся в одинаковой фазе).

Плоская волна – это такая волна, у которой волновые поверхности (и фронт волны) являются параллельными плоскостями.

Сферическая волна – это такая волна, у которой волновые поверхности являются концентрическими сферами. Уравнение сферической волны:
.

Каждая точка среды, до которой дошли две или более волн, будет принимать участие в колебаниях, вызванных каждой волной в отдельности. А каким будет результирующее колебание? Это зависит от ряда факторов, в частности от свойств среды. Если свойства среды не изменяются из-за процесса распространения волн, то среда называется линейной. Опыт показывает, что в линейной среде волны распространяются независимо друг от друга. Мы будем рассматривать волны только в линейных средах. А каким будет колебание точки, до которой дошли две волны одновременно? Для ответа на этот вопрос необходимо понять как найти амплитуду и фазу колебания, вызванного этим двойным воздействием. Для определения амплитуды и фазы результирующего колебания необходимо найти смещения, вызванные каждой волной, а затем их сложить. Как? Геометрически!

Принцип суперпозиции (наложения) волн: при распространении в линейной среде нескольких волн каждая из них распространяется так, как будто другие волны отсутствуют, а результирующее смещение частицы среды в любой момент времени равно геометрической сумме смещений, которые получают частицы, участвуя в каждом из слагающих волновых процессов.

Важным понятием волновой теории является понятие когерентность – согласованное протекание во времени и в пространстве нескольких колебательных или волновых процессов . Если разность фаз волн, приходящих в точку наблюдения не зависит от времени, то такие волны называются когерентными . Очевидно, что когерентными могут быть лишь волны, имеющие одинаковую частоту.

Рассмотрим, каким будет результат сложения двух когерентных волн, приходящих в некоторую точку пространства (точку наблюдения) В. Для того, чтобы упростить математические расчеты будем считать, что волны, которые излучаются источникамиS 1 и S 2 имеют одинаковую амплитуду и начальные фазы равные нулю. В точке наблюдения (в точке В) волны, приходящие от источников S 1 и S 2 будут вызывать колебания частиц среды:
и
. Результирующее колебание в точке В найдем как сумму.

Обычно амплитуду и фазу результирующего колебания, возникающего в точке наблюдения, находят с помощью метода векторных диаграмм, представляя каждое колебание в виде вектора, вращающегося с угловой скоростью ω. Длина вектора равна амплитуде колебания. Первоначально этот вектор образует с выбранным направлением угол равный начальной фазе колебаний. Тогда амплитуда результирующего колебания определяется по формуле.

Для нашего случая сложения двух колебаний с амплитудами
,
и фазами
,

.

Следовательно, амплитуда колебаний, возникающих в точке В, зависит от того, какова разность путей
, проходимых каждой волной в отдельности от источника до точки наблюдения (
– разность хода волн, приходящих в точку наблюдения). Интерференционные минимумы или максимумы могут наблюдаться в тех точках, для которых
. А это уравнение гиперболы с фокусами в точкахS 1 и S 2 .

В тех точках пространства, для которых
, амплитуда возникающих колебаний будет максимальна и равна
. Так как
, то амплитуда колебаний будет максимальна в тех точках, для которых.

в тех точках пространства, для которых
, амплитуда возникающих колебаний будет минимальна и равна
.амплитуда колебаний будет минимальна в тех точках, для которых .

Явление перераспределения энергии, возникающее в результате сложения конечного числа когерентных волн, называется интерференцией.

Явление огибания волнами препятствий называется дифракцией.

Иногда дифракцией называют любое отклонение распространения волн вблизи препятствий от законов геометрической оптики (если размеры препятствий соизмеримы с длиной волны).

Б
лагодаря дифракции волны могут попадать в область геометрической тени, огибать препятствия, проникать через небольшие отверстия в экранах и т.д. Как объяснить попадание волн в область геометрической тени? Объяснить явление дифракции можно с помощью принципа Гюйгенса: каждая точка, до которой доходит волна, является источником вторичных волн (в однородной среде сферических), а огибающая этих волн задает положение волнового фронта в следующий момент времени.

Вставка из интерференции света посмотреть что может пригодиться

Волной называется процесс распространения колебаний в пространстве.

Волновая поверхность - это геометрическое место точек, в которых колебания совершаются в одинаковой фазе.

Фронтом волны называется геометрическое место точек, до которых волна доходит к определенному моменту времени t . Фронт волны отделяет часть пространства, вовлеченную в волновой процесс, от той области, где колебания еще не возникли.

Для точечного источника фронт волны представляет собой сферическую поверхность с центром в точке расположения источника S. 1, 2, 3 - волновые поверхности; 1 - фронт волны. Уравнение сферической волны, распространяющейся вдоль луча, исходящего от источника: . Здесь - скорость распространения волны,- длина волны;А - амплитуда колебаний; - круговая (циклическая) частота колебаний;- смещение от положения равновесия точки, находящейся на расстоянииr от точечного источника, в момент времени t.

Плоская волна - это волна с плоским волновым фронтом. Уравнение плоской волны, распространяющейся вдоль положительного направления оси y :
, где x - смещение от положения равновесия точки, находящейся на расстоянии y от источника, в момент времени t.

Волна – процесс распространения колебаний в упругой среде.

Механическая волна – механические возмущения, распространяющиеся в пространстве и несущие энергию.

Виды волн :

    продольные – частицы среды совершают колебания по направлению распространения волны – во всех упругих средах;

x

направление колебаний

точек среды

    поперечные – частицы среды совершают колебания перпендикулярно направлению распространения волны – на поверхности жидкости.

X

Виды механических волн:

    упругие волны – распространение упругих деформаций;

    волны на поверхности жидкости.

Характеристики волн:

Пусть А колеблется по закону:
.

Тогда В колеблется с запаздыванием на угол
, где
, т.е.

    Энергия волны.

- полная энергия одной частицы. Если частицN, то, где- эпсилон,V– объём.

Эпсилон – энергия в единице объёма волны – объёмная плотность энергии.

Поток энергии волн равен отношению энергии, переносимой волнами через некоторую поверхность, к времени, в течение которого этот перенос осуществлён:
, ватт; 1 ватт = 1Дж/с.

    Плотность потока энергии – интенсивность волны – поток энергии через единицу площади - величина, равная средней энергии, переносимой волной в единицу времени за единицу площади поперечного сечения.

[Вт/м 2 ]

.

Вектор Умова – векторI, показывающий направление распространения волн и равный потоку энергии волн, проходящему через единичную площадь, перпендикулярную этому направлению:

.

Физические характеристики волны :

    Колебательные:

    1. амплитуда

    Волновые:

    1. длина волны

      скорость волны

      интенсивность

Сложные колебания (релаксационные) – отличающиеся от синусоидальных.

Преобразование Фурье – любую сложную периодическую функцию можно представить суммой нескольких простых (гармонических) функций, периоды которых кратны периоду сложной функции – это гармонический анализ. Происходит в анализаторах. Итог – гармонический спектр сложного колебания:

А

0

Звук – колебания и волны, которые действуют на ухо человека и вызывают слуховое ощущение.

Звуковые колебания и волны – частный случай механических колебаний и волн. Виды звуков :

    Тоны – звук, являющийся периодическим процессом:

    1. простой – гармонический - камертон

      сложный – ангармонический – речь, музыка

Сложный тон может быть разложен на простые. Наименьшая частота такого разложения – основной тон, остальные гармоники (обертоны) – имеют частоты, равные 2и другие. Набор частот с указанием их относительной интенсивности – акустический спектр.

        Шум – звук со сложной неповторяющейся временной зависимостью (шорох, скрип, аплодисменты). Спектр – сплошной.

Физические характеристики звука :


Характеристики слухового ощущения :

    Высота – определяется частотой звуковой волны. Чем больше частота, тем выше тон. Звук большей интенсивности – более низкий.

    Тембр – определяется акустическим спектром. Чем больше тонов, тем богаче спектр.

    Громкость – характеризует уровень слухового ощущения. Зависит от интенсивности звука и частоты. Психофизическийзакон Вебера-Фехнера : если увеличивать раздражение в геометрической прогрессии (в одинаковое число раз), то ощущение этого раздражения возрастёт в арифметической прогрессии (на одинаковую величину).

, где Е – громкость (измеряется в фонах);
- уровень интенсивности (измеряется в белах). 1 бел – изменение уровня интенсивности, которое соответствует изменению интенсивности звука в 10 раз.K– коэффициент пропорциональности, зависит от частоты и интенсивности.

Зависимость между громкостью и интенсивностью звука – кривые равной громкости , построенные на экспериментальных данных (создают звук частотой 1 кГц, меняют интенсивность, пока не возникнет слуховое ощущение, аналогичное ощущению громкости исследуемого звука). Зная интенсивность и частоту можно найти фон.

Аудиометрия – метод измерения остроты слуха. Прибор – аудиометр. Полученная кривая – аудиограмма. Определяется и сравнивается порог слухового ощущения на разных частотах.

Шумометр – измерение уровня шума.

В клинике : аускультация – стетоскоп/фонендоскоп. Фонендоскоп – полая капсула с мембраной и резиновыми трубками.

Фонокардиография – графическая регистрация фонов и шумов сердца.

Перкуссия.

Ультразвук – механические колебания и волны с частотой выше 20кГц до 20 МГц. УЗ-излучатели – электромеханические излучатели, основанные на пьезоэлектрическом эффекте (переменный ток к электродам, между которыми - кварц).

Длина волны УЗ меньше длины волны звука: 1,4 м – звук в воде (1 кГц), 1,4 мм – ультразвук в воде (1 МГц). УЗ хорошо отражается на границе кость-надкостница – мышца. УЗ в тело человека не проникнет, если не смазать маслом (воздушный слой). Скорость распространения УЗ зависит от среды. Физические процессы: микровибрации, разрушение биомакромолекул, перестройка и повреждение биологических мембран, тепловое действие, разрушение клеток и микроорганизмов, кавитация. В клинике: диагностика (энцефалограф, кардиограф, УЗИ), физиотерапия (800 кГц), ультразвуковой скальпель, фармацевтическая промышленность, остеосинтез, стерилизация.

Инфразвук – волны с частотой меньше 20 Гц. Неблагоприятное действие – резонанс в организме.

Вибрации . Полезное и вредное действие. Массаж. Вибрационная болезнь.

Эффект Доплера – изменение частоты волн, воспринимаемых наблюдателем (приёмником волн), вследствие относительного движения источника волн и наблюдателя.

1 случай: Н приближается к И.

2 случай: И приближается к Н.

3 случай: приближение и отдаление И и Н друг от друга:

Система: генератор УЗ – приёмник – неподвижна относительно среды. Движется объект. Он принимает УЗ с частотой
, отражает её, посылая на приёмник, который получает УЗ волну с частотой
. Разница частот –доплеровский сдвиг частоты :
. Используется для определения скорости кровотока, скорости движения клапанов.

Темы кодификатора ЕГЭ: механические волны, длина волны, звук.

Механические волны - это процесс распространения в пространстве колебаний частиц упругой среды (твёрдой, жидкой или газообразной).

Наличие у среды упругих свойств является необходимым условием распространения волн: деформация, возникающая в каком-либо месте, благодаря взаимодействию соседних частиц последовательно передаётся от одной точки среды к другой. Различным типам деформаций будут соответствовать разные типы волн.

Продольные и поперечные волны.

Волна называется продольной , если частицы среды колеблются параллельно направлению распространения волны. Продольная волна состоит из чередующихся деформаций растяжения и сжатия. На рис. 1 показана продольная волна, представляющая собой колебания плоских слоёв среды; направление, вдоль которого колеблются слои, совпадает с направлением распространения волны (т. е. перпендикулярно слоям).

Волна называется поперечной, если частицы среды колеблются перпендикулярно направлению распространения волны. Поперечная волна вызывается деформациями сдвига одного слоя среды относительно другого. На рис. 2 каждый слой колеблется вдоль самого себя, а волна идёт перпендикулярно слоям.

Продольные волны могут распространяться в твёрдых телах, жидкостях и газах: во всех этих средах возникает упругая реакция на сжатие, в результате которой появятся бегущие друг за другом сжатия и разрежения среды.

Однако жидкости и газы, в отличие от твёрдых тел, не обладают упругостью по отношению к сдвигу слоёв. Поэтому поперечные волны могут распространяться в твёрдых телах, но не внутри жидкостей и газов*.

Важно отметить, что частицы среды при прохождении волны совершают колебания вблизи неизменных положений равновесия, т. е. в среднем остаются на своих местах. Волна, таким образом, осуществляет
перенос энергии, не сопровождающийся переносом вещества .

Наиболее просты для изучения гармонические волны . Они вызываются внешним воздействием на среду, меняющимся по гармоническому закону. При распространении гармонической волны частицы среды совершают гармонические колебания с частотой, равной частоте внешнего воздействия. Гармоническими волнами мы в дальнейшем и ограничимся.

Рассмотрим процесс распространения волны более подробно. Допустим, что некоторая частица среды (частица ) начала совершать колебания с периодом . Действуя на соседнюю частицу она потянет её за собой. Частица в свою очередь, потянет за собой частицу и т. д. Так возникнет волна, в которой все частицы будут совершать колебания с периодом .

Однако частицы имеют массу, т. е. обладают инертностью. На изменение их скорости требуется некоторое время. Следовательно, частица в своём движении будет несколько отставать от частицы , частица будет отставать от частицы и т. д. Когда частица пустя время завершит первое колебание и начнёт второе, своё первое колебание начнёт частица , находящаяся от частицы на некотором расстоянии .

Итак, за время, равное периоду колебаний частиц, возмущение среды распространяется на расстояние . Это расстояние называется длиной волны. Колебания частицы будут идентичны колебаниям частицы колебания следующей частицы будут идентичны колебаниям частицы и т. д. Колебания как бы воспроизводят себя на расстоянии можно назвать пространственным периодом колебаний ; наряду с временным периодом она является важнейшей характеристикой волнового процесса. В продольной волне длина волны равна расстоянию между соседними сжатиями или разрежениями (рис. 1 ). В поперечной - расстоянию между соседними горбами или впадинами (рис. 2 ). Вообще, длина волны равна расстоянию (вдоль направления распространения волны) между двумя ближайшими частицами среды, колеблющимися одинаково (т. е. с разностью фаз, равной ).

Скоростью распространения волны называется отношение длины волны к периоду колебаний частиц среды:

Частотой волны называется частота колебаний частиц:

Отсюда получаем связь скорости волны, длины волны и частоты:

. (1)

Звук.

Звуковыми волнами в широком смысле называются всякие волны, распространяющиеся в упругой среде. В узком смысле звуком называют звуковые волны в диапазоне частот от 16 Гц до 20 кГц, воспринимаемые человеческим ухом. Ниже этого диапазона лежит область инфразвука , выше - область ультразвука.

К основным характеристикам звука относятся громкость и высота .
Громкость звука определяется амплитудой колебаний давления в звуковой волне и измеряется в специальных единицах -децибелах (дБ). Так, громкость 0 дБ является порогом слышимости, 10 дБ - тиканье часов, 50 дБ - обычный разговор, 80 дБ - крик, 130 дБ - верхняя граница слышимости (так называемый болевой порог ).

Тон - это звук, который издаёт тело, совершающее гармонические колебания (например, камертон или струна). Высота тона определяется частотой этих колебаний: чем выше частота, тем выше нам кажется звук. Так, натягивая струну, мы увеличиваем частоту её колебаний и, соответственно, высоту звука.

Скорость звука в разных средах различна: чем более упругой является среда, тем быстрее в ней распространяется звук. В жидкостях скорость звука больше, чем в газах, а в твёрдых телах - больше, чем в жидкостях.
Например, скорость звука в воздухе при равна примерно 340 м/с (её удобно запомнить как "треть километра в секунду")*. В воде звук распространяется со скоростью около 1500 м/с, а в стали - около 5000 м/с.
Заметим, что частота звука от данного источника во всех средах одна и та же: частицы среды совершают вынужденные колебания с частотой источника звука. Согласно формуле (1) заключаем тогда, что при переходе из одной среды в другую наряду со скоростью звука изменяется длина звуковой волны.

Опыт показывает, что колебания, возбужденные в какой-либо точке упругой среды с течением времени передаются к её остальным частям. Так от камня, брошенного в спокойную воду озера, кругами расходятся волны, которые со временем достигают берега. Колебания сердца, расположенного внутри грудной клетки, можно ощутить на запястье, что используется для определения пульса. Перечисленные примеры связаны с распространением механических волн.

  • Механической волной называется процесс распространения колебаний в упругой среде, который сопровождается передачей энергии от одной точки среды к другой. Заметим, что механические волны не могут распространяться в вакууме.

Источником механической волны является колеблющее тело. Если источник колеблется синусоидально, то и волна в упругой среде будет иметь форму синусоиды. Колебания, вызванные в каком-либо месте упругой среды, распространяются в среде с определенной скоростью, зависящей от плотности и упругих свойств среды.

Подчеркнем, что при распространении волны отсутствует перенос вещества , т. е. частицы только колеблются вблизи положений равновесия. Среднее смещение частиц относительно положения равновесия за большой промежуток времени равно нулю.

Основные характеристики волны

Рассмотрим основные характеристики волны.

  • "Волновой фронт" - это воображаемая поверхность, до которой дошло волновое возмущение в данный момент времени.
  • Линия, проведенная перпендикулярно волновому фронту в направлении распространения волны, называется лучом .

Луч указывает направление распространения волны.

В зависимости от формы фронта волны различают волны плоские, сферические и др.

В плоской волне волновые поверхности представляют собой плоскости, перпендикулярные к направлению распространения волны. Плоские волны можно получить на поверхности воды в плоской ванночке с помощью колебаний плоского стержня (рис. 1).

Mex-voln-1-01.swf Рис. 1. Увеличить Flash

В сферической волне волновые поверхности представляют собой концентрические сферы. Сферическую волну может создать пульсирующий в однородной упругой среде шар. Такая волна распространяется с одинаковой скоростью по всем направлениям. Лучами являются радиусы сфер (рис. 2).

Основными характеристиками волны:

  • амплитуда (A ) - модуль максимального смещения точек среды из положений равновесия при колебаниях;
  • период (T ) - время полного колебания (период колебаний точек среды равен периоду колебаний источника волны)

\(T=\dfrac{t}{N},\)

Где t - промежуток времени, в течение которого совершаются N колебаний;

  • частота (ν) - число полных колебаний, совершаемых в данной точке в единицу времени

\({\rm \nu} =\dfrac{N}{t}.\)

Частота волны определяется частотой колебаний источника;

  • скорость (υ) - скорость перемещения гребня волны (это не скорость частиц!)
  • длина волны (λ) - наименьшее расстояние между двумя точками, колебания в которых происходят в одинаковой фазе, т. е. это расстояние, на которое волна распространяется за промежуток времени, равный периоду колебаний источника

\(\lambda =\upsilon \cdot T.\)

Для характеристики энергии, переносимой волнами, используется понятие интенсивности волны (I ), определяемой как энергия (W ), переносимая волной в единицу времени (t = 1 c) через поверхность площадью S = 1 м 2 , расположенную перпендикулярно к направлению распространения волны:

\(I=\dfrac{W}{S\cdot t}.\)

Другими словами, интенсивность представляет собой мощность, переносимую волнами через поверхность единичной площади, перпендикулярно к направлению распространения волны. Единицей интенсивности в СИ является ватт на метр в квадрате (1 Вт/м 2).

Уравнение бегущей волны

Рассмотрим колебания источника волны, происходящие с циклической частотой ω \(\left(\omega =2\pi \cdot \nu =\dfrac{2\pi }{T} \right)\) и амплитудой A :

\(x(t)=A\cdot \sin \; (\omega \cdot t),\)

где x (t ) - смещение источника от положения равновесия.

В некоторую точку среды колебания придут не мгновенно, а через промежуток времени, определяемый скоростью волны и расстоянием от источника до точки наблюдения. Если скорость волны в данной среде равна υ, то зависимость от времени t координаты (смещение) x колеблющейся точки, находящейся на расстоянии r от источника, описывается уравнением

\(x(t,r) = A\cdot \sin \; \omega \cdot \left(t-\dfrac{r}{\upsilon } \right)=A\cdot \sin \; \left(\omega \cdot t-k\cdot r \right), \;\;\; (1)\)

где k -волновое число \(\left(k=\dfrac{\omega }{\upsilon } = \dfrac{2\pi }{\lambda } \right), \;\;\; \varphi =\omega \cdot t-k\cdot r\) - фаза волны.

Выражение (1) называется уравнением бегущей волны .

Бегущую волну можно наблюдать при следующем эксперименте: если один конец резинового шнура, лежащего на гладком горизонтальном столе, закрепить и, слегка натянув шнур рукой, привести его второй конец в колебательное движение в направлении, перпендикулярном шнуру, то по нему побежит волна.

Продольная и поперечная волны

Различают продольные и поперечные волны.

  • Волна называется поперечной , если частицы среды колеблются в плоскости, перпендикулярной направлению распространения волны.

Рассмотрим подробнее процесс образования поперечных волн. Возьмем в качестве модели реального шнура цепочку шариков (материальных точек), связанных друг с другом упругими силами (рис. 3, а). На рисунке 3 изображен процесс распространения поперечной волны и показаны положения шариков через последовательные промежутки времени, равные четверти периода.

В начальный момент времени \(\left(t_1 = 0 \right)\) все точки находятся в состоянии равновесия (рис. 3, а). Если отклонить шарик 1 от положения равновесия перпендикулярно всей цепочки шаров, то 2 -ой шарик, упруго связанный с 1 -ым, начнет двигаться за ним. Вследствие инертности движения 2 -ой шарик будет повторять движения 1 -ого, но с запаздыванием во времени. Шар 3 -й, упруго связанный со 2 -ым, начнет двигаться за 2 -ым шариком, но с еще большим запаздыванием.

Через четверть периода \(\left(t_2 = \dfrac{T}{4} \right)\) колебания распространяются до 4 -го шарика, 1 -ый шарик успеет отклониться от своего положения равновесия на максимальное расстояние, равное амплитуде колебаний А (рис. 3, б). Через полпериода \(\left(t_3 = \dfrac{T}{2} \right)\) 1 -ый шарик, двигаясь вниз, возвратится в положение равновесия, 4 -ый отклонится от положения равновесия на расстояние, равное амплитуде колебаний А (рис. 3, в). Волна за это время доходит до 7 -го шарика и т.д.

Через период \(\left(t_5 = T \right)\) 1 -ый шарик, совершив полное колебание, проходит через положение равновесия, а колебательное движение распространится до 13 -ого шарика (рис. 3, д). А дальше движения 1 -го шарика начинают повторяться, и в колебательном движение участвуют все больше и больше шариков (рис. 3, д).

Mex-voln-1-06.swf Рис. 6. Увеличить Flash

Примерами продольных волн являются звуковые волны в воздухе и жидкости. Упругие волны в газах и жидкостях возникают только при сжатии или разрежении среды. Поэтому в таких средах возможно распространение только продольных волн.

Волны могут распространяться не только в среде, но и вдоль границы раздела двух сред. Такие волны получили название поверхностных волн . Примером данного типа волн служат хорошо знакомые всем волны на поверхности воды.

Литература

  1. Аксенович Л. А. Физика в средней школе: Теория. Задания. Тесты: Учеб. пособие для учреждений, обеспечивающих получение общ. сред, образования / Л. А. Аксенович, Н.Н.Ракина, К. С. Фарино; Под ред. К. С. Фарино. - Мн.: Адукацыя i выхаванне, 2004. - C. 424-428.
  2. Жилко, В.В. Физика: учеб. пособие для 11 класса общеобразоват. шк. с рус. яз. обучения / В.В. Жилко, Л.Г. Маркович. - Минск: Нар. Асвета, 2009. - С. 25-29.

ОПРЕДЕЛЕНИЕ

Продольная волна – это волна, при распространении которой смещение частиц среды происходит в направлении распространения волны (рис.1, а).

Причиной возникновения продольной волны является сжатия/растяжения, т.е. сопротивление среды изменению ее объема. В жидкостях или газах такая деформация сопровождается разрежением или уплотнением частиц среды. Продольные волны могут распространяться в любых средах – твердых, жидких и газообразных.

Примерами продольных волн являются волны в упругом стержне или звуковые волны в газах.

Поперечные волны

ОПРЕДЕЛЕНИЕ

Поперечная волна – это волна, при распространении которой смещение частиц среды происходит в направлении, перпендикулярном распространению волны (рис.1,б).

Причиной поперечной волны является деформация сдвига одного слоя среды относительно другого. При распространении поперечной волны в среде образуются гребни и впадины. Жидкости и газы, в отличие от твердых тел, не обладают упругостью по отношению к сдвигу слоев, т.е. не оказывают сопротивления изменению формы. Поэтому поперечные волны могут распространяться только в твердых телах.

Примерами поперечных волн могут служить волны, бегущие по натянутой веревке или по струне.

Волны на поверхности жидкости не являются ни продольными, ни поперечными. Если бросить на поверхность воды поплавок, то можно увидеть, что он движется, покачиваясь на волнах, по круговой . Таким образом, волна на поверхности жидкости имеет как поперечную, так и продольную компоненты. На поверхности жидкости также могут возникать волны особого типа – так называемые поверхностные волны . Они возникают в результате действия и силы поверхностного натяжения.

Примеры решения задач

ПРИМЕР 1

Задание Определить направление распространения поперечной волны, если поплавок в некоторый момент времени имеет направление скорости, указанное на рисунке.

Решение Сделаем рисунок.

Начертим поверхность волны вблизи поплавка через некоторый промежуток времени , учитывая, что за это время поплавок опустился вниз, так как его в момент времени была направлена вниз. Продолжив линию вправо и влево, покажем положение волны в момент времени . Сравнив положение волны в начальный момент времени (сплошная линия) и в момент времени (пунктирная линия), делаем вывод о том, что волна распространяется влево.



Просмотров