Построение параллельных прямых. §5. Построения с помощью других инструментов. Построения Маскерони с помощью одного циркуля

Команда предназначена для последовательного построения кривых и прямых линий так, что конец предыдущего объекта является началом следующего объекта. Построение геометрии этим способом возможно также из меню Инструменты → Геометрия

Параметр Описание
С помощью этой кнопки завершается создание цепочки геометрических элементов. При этом производится замыкание контура из этих элементов путем соединения последнего геометрического элемента с первой точкой цепочки. Эта кнопка активна в том случае, когда возможно осуществить замыкание цепочки. Например, цепочка не получится, если последовательно построены только 2 прямых отрезка - их можно замкнуть только 3 прямым отрезком - получится треугольник (минимальная фигура). Но в случае кривой Безье - достаточно 2 точек, чтобы с помощью третьей точки замкнуть контур
Отрезок Команды создания прямых отрезков
С помощью этой кнопки производится построение произвольного прямого отрезка, параллельного выбранной прямой линии. Эта линия может находиться вне строящейся цепочки
С помощью этой кнопки производится построение прямого отрезка, перпендикулярного выбранной прямой линии. Эта линия может находиться вне строящейся цепочки
С помощью этой кнопки производится построение прямого отрезка, касательного выбранной кривой. Эта кривая должна находиться вне строящейся цепочки. В некоторых случаях программа может предложить несколько вариантов построения касательных отрезков. Для выбора одного из них или всех вместе необходимо использовать кнопки Предыдущий или Следующий объект или, указывая мышкой на каждый нужный вариант, нажимать левую кнопку мыши. Если задать конкретную длину отрезка в поле Длина , то появляется возможность строить касательный отрезок, вторая точка которого может не лежать на выбранной кривой
Дуга Команды создания дуг
С помощью этой кнопки производится построение произвольной дуги путем последовательного указания трех точек в графическом окне или на панели параметров
С помощью этой кнопки производится построение дуги, касательной предыдущему элементу в цепочке
Лекальная кривая Команды создания кривых
С помощью этой кнопки производится построение сплайна по ряду точек
Сплайн по полюсам С помощью этой кнопки производится построение сплайна по ряду ограничительных точек. При этом можно задавать Вес точки и Порядок Вес определяет «силу притяжения» кривой к точке кривой. Чем больше вес, тем ближе к точке кривая. По сути это параметр кривизны кривой (чем больше кривизна кривой, тем меньше радиус изгиба, и наоборот). Параметр Порядок определяет минимальное количество точек, по которому будет построена кривая. Минимальный порядок 3 - позволяет построить кривую по трем точкам

Построение геометрии с помощью инструмента Линия

Команда Линия предназначена для последовательного построения прямых линий и дуг так, что конец предыдущего объекта является началом следующего объекта. Панель параметров этой команды содержит вырожденное меню команды . Построение геометрии этим способом возможно также из меню Инструменты → Геометрия → Линия . Панель параметров этой кнопки содержит следующие команды:

Параметр Описание
Отрезок С помощью этой кнопки производится построение произвольного прямого отрезка
Дуга С помощью этой кнопки производится построение дуги, касательной к предыдущему элементу в цепочке. При этом направление создания дуги изменяется перемещением курсора в противоположную сторону от начальной точки дуги
С помощью этой кнопки завершается создание цепочки геометрических элементов. После этого программа переходит в режим ожидания ввода новой цепочки
Если эта кнопка нажата, то производится построение цепочки элементов. Если эта кнопка отжата, то производится построение отдельных элементов (линий или дуг)

Построение кривых и ломаной линии

Построение кривых возможно из менюИнструменты → Геометрия → Кривые . Построение ломаной линии возможно из менюИнструменты → Геометрия → Ломаная . Кривая Безье представляет собой частный случай NURBS кривой. Все эти команды находятся на панели инструментов Геометрия. Способы их построения перечислены ниже:

Кнопка Сплайн предназначена для построения одноименной кривой по ряду точек. Представленные на панели параметров кнопки Разомкнутый объект и Замкнутый объект позволяют строить соответственно незамкнутую и замкнутую кривую, когда первая и последняя точки соединяются. Замкнутую кривую всегда можно переключить в незамкнутую кривую и наоборот.

У сплайна возможно расширенное редактирование характерных точек. Для этого предназначена кнопка Редактировать точки на панели параметров. Также эта команда автоматически вызывается при двойном щелчке левой кнопки мыши на уже построенной кривой. При этом точки кривой дополняются касательными отрезками, которые проходят через характерные точки кривой.

Кривую можно разбить на части с помощью команд меню Разбить → Кривую и Разбить → Кривую на N частей . Первая команда позволяет разбить выбранную кривую на 2 части в указанной точке. Вторая кривая позволяет разбить кривую на несколько равных частей. Для этого необходимо выбрать количество частей на панели параметров и указать кривую, которую необходимо разбить.

Передвигая мышкой характерные точки (квадратные точки) и концы касательных отрезков (круглые точки), можно управлять формой кривой. Можно передвигать эти точки с использование стрелок клавиатуры, для этого необходимо навести курсор на требуемую точку и нажать клавишу Enter. После этого станет возможным передвижение с помощью стрелок с шагом, кратным текущему шагу курсора. Завершить перемещение можно также по нажатию клавиши Enter. Возможно 3 варианта перемещения характерных точек:

  • Перемещение в любом направлении - если курсор при наведении на точку будет выглядеть в виде четырех диагональных стрелок
  • Перемещение в ограниченном диапазоне направлений - если курсор при наведении на точку будет выглядеть в виде четырех ортогональных стрелок
  • Перемещение курсора приводит к вращению геометрии - если курсор при наведении на точку будет выглядеть в виде вращающихся стрелок.

Точки кривой можно привязывать к другим объектам и другим точкам кривой с помощью глобальных и локальных привязок. Включение необходимой локальной привязки в процессе перемещения характерной точки возможно при нажатии правой кнопки мыши (или сочетании клавиш SHIFT+F10) и выборе привязки из выпадающего подменю Привязка .

Кнопка Сплайн по полюсам предназначена для построения кривой – сплайна по ряду точек. Для этого типа кривой можно задавать Вес с точки и Порядок кривой на панели параметров. Параметр Вес определяет «силу притяжения» кривой к точке кривой. Чем больше вес, тем ближе к точке кривая. По сути это параметр кривизны кривой (чем больше кривизна кривой, тем меньше радиус изгиба и наоборот). Параметр Порядок определяет минимальное количество точек, по которому будет построена кривая. Минимальный порядок 3 - позволяет построить кривую по трем точкам. Сплайн по полюсам напоминает обычный сплайн в режиме редактирования точек. Если конечные точки смежных касательных (тангенциальных) отрезков в к сплайне соединить, то получится подобие сплайна по полюсам. Сплайн по по полюсам изначально более «гладкий», чем обычный сплайн, в связи с тем, что в сплайн по полюсам обеспечивается непрерывность по кривизне.

Если построить 2 сплайна по полюcам, то можно соединить их концы так, чтобы обеспечивалась непрерывность («гладкость») в точке перехода.

Для этого необходимо построить вспомогательную линию в точке перехода с необходимым наклоном (например, касательную вспомогательную прямую в этой точке перехода) и расположить вторые точки от точки перехода на этой вспомогательной прямой. Теперь при перемещении 3 точки и выше (если смотреть от точки перехода) на любой из этих кривых будет сохраняться условие непрерывности кривой в точке перехода.

Добавить характерную точку можно с помощью простого щелчка левой кнопки мыши на нужном участке кривой.

Удалить характерную точку можно с помощью клавиши DEL при выборе требуемой точки. При этом кривая изменит форму.

Интерфейс работы со сплайнами по полюсам аналогичен интерфейсу работы с обычными сплайнами. На панели параметров можно также создать как Разомкнутый объект так и Замкнутый объект. И с помощью кнопки Редактировать точки можно также исправить форму кривой, двигая характерные точки. Точно так же, как и с кривыми Безье работают привязки, совершается перемещение точек и разбиение кривой на части.

Кнопка Ломаная предназначена для построения серии связанных между собой прямых линий. Ломаная линия отличается от обычной последовательности прямых отрезков тем, что сдвиг любого элемента не приводит к разрыву линии.

Интерфейс работы с ломаными линиями аналогичен интерфейсу работы с кривыми. На панели параметров можно также создать как Разомкнутый объект , так и Замкнутый объект . И с помощью кнопки Редактировать точки можно также исправить форму ломаной линии, двигая характерные точки. Точно так же, как и с кривыми, работают привязки и совершается перемещение точек. Отличительной особенностью ломаной линии является то, что ее можно разбить на отдельные элементы с помощью команды меню Редактор → Разрушить . После этого отдельные элементы ломаной линии можно перемещать или удалять, без воздействия на другие элементы.

2. Разделим её на некоторое число равных дуг, в нашем случае 8. Для этого проведем радиусы так, чтобы получилось 8 дуг, и угол между двумя ближайшими радиусами был равен
:
количество сторон (в нашем случае 8.
Получаем точки А1, А2
, A3, A4, A5, A6, A7, A8.

А2
А1
А8
А7
А6
А5
А4
А3
n-
угольника
3. Соединим центры окружности и одну из точек их пересечения

Мы получаем правильный треугольник

1
. Построим 2 окружности проходящие через центр друг друга.

2
. Соединим центры прямой, получив одну из сторон пятиугольника.

3. Соединим точки пересечения окружностей.

5 . Соединяем точки пересечения всех прямых с исходной окружностью.

Мы получаем правильный шестиугольник
Доказательство существования правильного
n-
угольника
Если
n
(число углов многоугольника) больше 2, то такой многоугольник существует.
Пробуем построить 8ми угольник и докажем это.
1. Возьмем окружность произвольного радиуса с центром в точке « О »

Построение треугольника при помощи циркуля и линейки
«
O
» .

2. Построим еще одну окружность того же радиуса проходящая через точку «О».


4. Соединим точки, лежащие на окружности.

Получаем правильный восьмиугольник.
Построение правильных многоугольников с помощью циркуля и линейки.

В 1796 году одним из величайших математиков всех времён Карл Фридрих Гаусс показал возможность построения правильных
n-
угольников, если равенство
n =
+ 1
, где
n –
количество углов, а
k
– любое натуральное число
.
Тем самым получилось, что в пределах 30 возможно деление окружности на 2, 3, 4, 5, 6, 8, 10, 12, 15, 16, 17, 20, 24, 30, равных частей
.
В 1836 году
Ванцель
доказал, что правильные многоугольники, не удовлетворяющие данному равенству при помощи линейки и циркуля построить нельзя.

Построение правильного шестиугольника при помощи циркуля и линейки.

4. Проведем прямые через центр начальной окружности и точки пересечения дуги с этой окружностью

ЛИТЕРАТУРА
Атанасян
Л. С. и др. Геометрия: Учебник для 7-9 классов образовательных учреждений. – М: «Просвещение». 1998.
Б. И. Аргунов, М. Б.
Балк
. Геометрические построения на плоскости, Пособие для студентов педагогических институтов. Издание второе. М.,
Учпедгиз
, 1957 – 268 с.
И. Ф.
Шарыгин
, Л. Н.
Ерганжиева
. «Наглядная геометрия».
Еще
одним
великим математиком изучавшим правильные многоугольники был
Евклид
или
Эвклид
(др. греч.
Εὐκλείδης
, от «добрая слава»
ок
. 300 г. до н. э.)

автор первого из дошедших до нас теоретических трактатов по математике
.
Его главная работа «Начала» содержит изложение планиметрии, стереометрии и ряды вопросов теории чисел
;
в ней он подвёл итог дальнейшего развития математики. В
IV
книге он описал построение правильных многоугольников при
n
равном
3
, 4, 5, 6, 15

и определил первый критерий построения многоугольников.
Построение правильного восьмиугольника.
1. Построим восьмиугольник при помощи четырехугольника.
2. Соединим противоположные вершины четырёхугольника
3. Проведем биссектрисы углов образованных пересекающимися диагоналями

Треугольники
, сторонами которых являются ближайшие радиусы и
стороны получившегося восьмиугольника равны по двум сторонам и углу между ними, соответственно стороны восьмиугольника равны и он является правильным. Данное доказательство применимо не только к восьмиугольникам
,
но и к многоугольникам с количеством углов
больше 2-х
. Что и требовалось доказать
.
Доказательство существования правильного
n-
угольника

А2
А1
А8
А7
А6
А5
А4
А3

4 . Проводим прямые через точки пересечения окружностей
5. Соединяем точки пересечения прямых и окружности

Получаем правильный четырёхугольник.
Построение правильного пятиугольника методом Дюрера.
6. Соединим точки соприкосновения этих отрезков с окружностями с концами построенной стороны пятиугольника.
7. Достроим до пятиугольника

Основоположниками раздела математики о правильных многоугольниках являлись древнегреческие ученые. Одним из них был
Архимед.
Архимед
– известный древнегреческий математик, физик и инженер. Он сделал множество открытий в геометрии, ввёл основы механики, гидростатики, создал множество важных изобретении. Архимед был просто одержим математикой. Он забывал о пище, совершенно не заботился о себе. Его открытия послужили для современных изобретений.
Построение правильного шестиугольника при помощи циркуля и линейки.

1. Построим окружность с центром в точке
O
.
2. Проведем прямую линию через центр окружности.
3. Проведем дугу окружность того же радиуса с центром в точке пересечения прямой с окружностью до пересечения с окружностью.

Презентация на тему: «Построение правильных многоугольников с помощью циркуля и линейки»
Подготовил:
Гурома
Денис
ученик 10 класса МБОУ школы №3
Учитель:
Наимова
Татьяна Михайловна
2015 год
3. Поочередно соединяем их и получаем правильный восьмиугольник.
Доказательство существования правильного
n-
угольника

А2
А1
А8
А7
А6
А5
А4
А3
Построение правильного четырёхугольника.

1. Построим окружность с центром в точке
O
.
2. Проведем 2 взаимно перпендикулярные диаметра.
3. Из точек в которых диаметры касаются окружности проводим другие окружности данного радиуса до их пересечения (окружностей).

Построение правильного пятиугольника методом Дюрера.

4. Проведем еще одну окружность того же радиуса с центром в точке пересечения двух других окружностей.

5. Проведем 2 отрезка.

Геометрические задачи на построение

С помощью циркуля и линейки

учащаяся 8-А класса

Руководитель: Москаева В.Н.,

учитель математики

Нижний Новгород

Введение

Наглядность, воображение принадлежат больше искусству, строгая логика – привилегия науки. Сухость точного вывода и живость наглядной картины – «лёд и пламень не столь различны меж собой». Геометрия соединяет в себе эти две противоположности.

А. Д. Александров

Собираясь в школу, мы не забываем положить в портфель циркуль, линейку и транспортир. Эти инструменты помогают выполнить грамотно чертежи и красиво нарисовать. Данные инструменты используют инженеры, архитекторы, рабочие, конструкторы одежды, обуви, строители, ландшафтные дизайнеры. Хотя существуют компьютеры, но на стройке, в саду их пока не используешь.

Машина рисует мгновенно в течение нескольких секунд. Математик должен потратить довольно много времени, чтобы на языке, понятном машине объяснить ей то, что она должна сделать - написать программу и ввести её в машину, поэтому конструкторы нередко предпочитают работать с простейшими и древнейшими инструментами – циркулем и линейкой.

Что может быть проще? Гладкая дощечка с ровным краем - линейка, две заостренные палочки, связанные на одном конце - циркуль. С помощью линейки через две заданные точки проводят прямую. С помощью циркуля проводят окружности с данным центром и данного радиуса, отложить отрезок, равный данному.

Циркуль и линейка известны более 3 тысячи лет были уже известны, 200-300 лет назад их украшали орнаментами и узорами. Но, несмотря на это они и сейчас исправно служат нам. Простейших инструментов достаточно для огромного количества построений. Древние греки думали, что возможно любое разумное построение выполнить этими инструментами, пока не обнаружили три знаменательные задачи древности: «квадратуру круга», «трисекцию угла», «удвоение куба».

Поэтому считаю тему моей работы современной и важной для деятельности человека во многих сферах деятельности человека.

Все прекрасно знают, что математика используется в самых разных профессиях и жизненных ситуациях. Математика – предмет непростой. И геометрию большинство учащихся называет «трудной». Задачи на построение отличаются от традиционных геометрических задач.

Решение задач на построение развивает геометрическое мышление гораздо полнее и острее, чем решение задач на вычисление, и способно вызвать увлечение работой, которое приводит к усилению любознательности и к желанию расширить и углубить изучение геометрии.

Несмотря на богатое историческое прошлое, проблема решения задач на построение остается актуальной и в 21-м веке. В наше время бурно развиваются компьютерные технологии с применением графических редакторов для рисования геометрических объектов. Средства создания геометрических объектов изменились в связи с появлением новых компьютерных технологий. Однако, как и в глубокой древности, основными элементами при построении геометрических объектов остаются окружность и прямая, другими словами циркуль и линейка. С появлением новых компьютерных технологий возникли новые проблемы построения с использованием тех же объектов - прямой и окружности. Вот почему проблема решения задач на построение становится ещё более актуальной.

Программа по геометрии предполагает изучение лишь простейших приемов и методов построений. Но применение этих приемов часто вызывает затруднения. Поэтому, объектом моего исследования являются геометрические фигуры, построенные с помощью циркуля и линейки.

Цель моей работы: рассмотреть различные способы построения геометрических фигур с помощью циркуля и линейки.

Методы исследования:

ü Анализ уже существующих способов построений

ü Поиск новых способов, простых в применении (ГМТ и построения Штейнера)

Задачи:

ü получить более полное представление о различных способах построений

ü проследить за развитием этого фрагмента геометрии в истории математики

ü продолжить развитие исследовательских умений.

Из истории геометрического построения циркулем и линейкой.

Традиционное ограничение орудий геометрических построений восходит к глубокой древности. В своей книге "Начала" Евклид (III век до н. э.) строго придерживается геометрических построений, выполняемых циркулем и линейкой, хотя названий инструментов он нигде не упоминает. Ограничения, по-видимому, были связаны с тем, что эти инструменты заменили собой веревку, первоначально служившую как для проведения прямых, так и для описания окружностей. Но многие историки-математики объясняют произведенный Евклидом отбор материала тем, что он, следуя Платону и пифагорейцам, считал только прямую и круг "совершенными" линиями.

Искусство построения геометрических фигур было в высокой степени развито в Древней Греции. Древнегреческие математики еще 3000 лет назад проводили свои построения с помощью двух приборов: гладкой дощечки с ровным краем – линейки и двух заостренных палок, связанных на одном конце – циркуля. Однако этих простейших инструментов оказалось достаточно для выполнения огромного множества различных построений. Древним грекам даже казалось, что любое разумное построение можно совершить этими инструментами, пока они не столкнулись с тремя знаменитыми впоследствии задачами.

Они издавна преобразовывали любую прямолинейную фигуру с помощью циркуля и линейки в произвольную прямолинейную фигуру, равновеликую ей. В частности, всякая прямолинейная фигура преобразовывалась в равновеликий ей квадрат. Поэтому понятно, что появилась мысль обобщить эту задачу: построить с помощью циркуля и линейки такой квадрат, площадь которого была бы равна площади данного круга. Это задача получила название квадратуры круга. Следы этой задачи можно усмотреть еще в древнегреческих и вавилонских памятниках второго тысячелетия до н.э. Однако ее непосредственная постановка встречается в греческих сочинениях V века до н.э.

Еще две задачи древности привлекали внимание выдающихся ученых на протяжении многих веков. Это задача об удвоении куба. Она состоит в построении циркулем и линейкой куба, имеющего объем вдвое больший, чем объем данного куба. Ее появление связывают с легендой, что на острове Делос в Эгейском море оракул, чтобы избавить жителей от эпидемии чумы, повелел удвоить алтарь, имевший форму куба. И третья задача трисекции угла о делении угла на три равные части с помощью циркуля и линейки .

Эти три задачи, так называемые 3 знаменитые классические задачи древности, привлекали внимание выдающихся математиков на протяжении двух тысячелетий. И лишь в середине XIX века была доказана их неразрешимость, то есть невозможность указанных построений лишь с использованием только циркуля и линейки. В математике это были первые результаты о неразрешимости задач, когда средства решения указаны. Они были получены средствами не геометрии, а алгебры (с помощью перевода этих задач на язык уравнений), что еще раз подчеркнуло единство математики. Не поддаваясь решению, эти проблемы обогатили математику значительными результатами, привели к созданию новых направлений математической мысли.

Еще одной интереснейшей задачей на построение с помощью циркуля и линейки является задача построения правильного многоугольника с заданным числом сторон. Древние греки умели строить правильный треугольник, квадрат, правильные пятиугольник и 15-угольник, а также все многоугольники, которые получаются из них путем удвоения сторон, и только их. Лишь в 1796 году великий немецкий математик К.Ф.Гаусс открыл способ построения правильного 17-угольника при помощи циркуля и линейки и указал все значения N, при которых возможно построение правильного N-угольника указанными средствами. Первокурсник Геттингенского университета Карл Гаусс решил задачу, перед которой математическая наука пасовала более 2 с лишним тысяч лет. Таким образом, была доказана невозможность построения с помощью циркуля и линейки правильных 7, 9, 11, 13, 18, 21, 22, 23 и т.д. угольников.

Теория построения при помощи циркуля и линейки получила свое дальнейшее развитие. Был получен ответ на вопрос: можно ли решить задачу с помощью только одного из двух рассматриваемых инструментов, и достаточно неожиданный. Независимо друг от друга, датчанин Г.Мор в 1672 году и итальянец Л.Маскерони в 1797 году доказали, что любая задача на построение, разрешаемая циркулем и линейкой, может быть точно решена с помощью только одного циркуля. Это кажется невероятным, но это так. А в XIX веке было доказано, что любое построение, выполняемое с помощью циркуля и линейки можно провести лишь с помощью одной линейки, при условии, что в плоскости построения задана некоторая окружность и указан ее центр.

3. Простейшие задачи на построение геометрических фигур с помощью циркуля и линейки

Рассмотрим основные (элементарные) построения, которые наиболее часто встречаются в практике решения задач на построение. Задачи такого рода рассматриваются уже в первых главах школьного курса.

Построение 1. Построение отрезка, равного данному.

Дано: отрезок длины а.

Построить: отрезок АВ длины а.

Построение:

Построение 2. Построение угла, равного данному.

Дано: ∟AOB.

Построить: ∟ KMN, равный ∟ АОВ.

Построение:

Построение 3. Деление отрезка пополам (построение середины отрезка).

Дано: отрезок АВ.

Построить: точку О – середину АВ.

Построение:

Построение 4. Деление угла пополам (построение биссектрисы угла).

Дано: ∟ АВС.

Построить: ВD – биссектрису ∟АВС.

Построение:

Построение 5. Построение перпендикуляра к данной прямой, проходящей через данную точку.

а) Дано: прямая а, точка A а.

Построить:

прямой а.

Построение :

б) Дано: прямая а, точка A a.

Построить: прямую, проходящую через точку А, перпендикулярно к

прямой а.

Построение:

Построение 6 . Построение прямой, параллельной данной прямой и проходящей через данную точку.

Дано: прямая а, точка A a.

Построить: прямую, проходящую через точку А, параллельно прямой а.

I способ (через два перпендикуляра).

Построение:

II способ (через параллелограмм).

Построение:

Построение 7. Построение треугольника по трем сторонам.

Дано: отрезки длины a, b, c.

Построить: Δ ABC.

Построение:

Построение 8. Построение треугольника по двум сторонам и углу между ними.

Дано: отрезки длины b, c, угол α.

Построить: треугольник ABC.

Построение:

Построение 9. Построение треугольника по стороне и двум прилежащим углам.

Дано: отрезок длины c, углы α и β.

Построить: ΔABC.

Построение:

Построение 10. Построение касательной к данной окружности, проходящей через данную точку.

Дано: окружность (О), точка А вне ее.

Построить: касательную к окружности ω(О), проходящую через точку А.

Построение:

Рассмотренные задачи входят в качестве составных частей в решение более сложных задач, поэтому в дальнейшем, этапы основных построений не описываются.

Решение задач на построение состоит из четырех частей:

1. Предположив, что задача решена, делаем от руки приблизительный чертеж искомой фигуры и затем, внимательно рассматриваем начерченную фигуру, стремясь найти такие зависимости между данными задачи и искомыми, которые позволили бы свести задачу на другие, известные ранее. Эта самая важная часть решения задачи, имеющая целью составить план решения, носит название анализа.

2. Когда таким образом план решения найден, выполняют сообразно ему построение.

3. Доказательство - для проверки правильности плана на основании известных теорем доказывают, что полученная фигура удовлетворяет всем требованиям задачи.

4. Исследование - задаются двумя вопросами:

1) При всяких ли данных возможно решение?

2) Сколько существует решений?

Рассмотрим применение данных этапов на примере решения следующей задачи.

Задача: Построить треугольник, зная его основание b, угол A, прилежащий к основанию, и сумму s двух боковых сторон.

Анализ: Предположим, что задача решена, т.е. найден такой ΔAВС, у которого основание AС=b, ∟ВАС=A и AВ+ВС=s . Рассмотрим теперь полученный чертеж. Сторону AС, равную b , ∟ВАС=A , мы строить умеем. Значит, остается найти на другой стороне ∟A такую точку В , чтобы сумма AВ+ВС равнялась s . Продолжив , отложим отрезок AD , равный s . Теперь вопрос приводится к тому, чтобы на прямой AD отыскать такую точку В , которая была бы одинаково удалена от С и D . Такая точка как мы знаем, должна лежать на перпендикуляре, проведенном к отрезку СD через его середину. Точка В найдется в пересечении этого перпендикуляра с АD .

Построение:

1. Строим ∟А , равный данному углу

2. На его сторонах откладываем AС=b и AD=s

3. Через середину отрезка прямой СD проводим перпендикуляр ВЕ

4. ВЕ пересекает AD в точке В

5. Соединяем точки В и С

6. ΔAВС - искомый.

Доказательство:

Рассмотрим полученный ΔAВС, в нем ∟А равен данному углу (по пункту №1 построения). Сторона AС=b (пункт №2) и стороны АВ и ВС в сумме составляют s (пункты №2,3,4). Следовательно по 1-му признаку равенства треугольников ΔAВС - искомый.

Исследование:

1. При всяких ли данных возможно решение?

Рассматривая построение, мы замечаем, что задача возможна не при всяких данных. Действительно, если сумма s задана слишком малой сравнительно с b, то перпендикуляр ВЕ может не пересечь отрезка AD (или пересечет его продолжение за точку D), в этом случае задача окажется невозможной.

И, независимо от построения, можно видеть, задача невозможна, если s < b или s =b , потому что не может быть такого треугольника, у которого сумма двух сторон была бы меньше или равна третьей стороне.

2. Сколько существует решений?

В том случае, когда задача возможна, она имеет только одно решение, т.е. существует только один треугольник, удовлетворяющий требованиям задачи, так как пересечение перпендикуляра ВЕ с прямой AD может быть только в одной точке.


©2015-2019 сайт
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2016-04-27

Src="https://present5.com/presentation/3/178794035_430371946.pdf-img/178794035_430371946.pdf-1.jpg" alt=">Построение с помощью линейки и циркуля Геометрия ">

Src="https://present5.com/presentation/3/178794035_430371946.pdf-img/178794035_430371946.pdf-2.jpg" alt="> Построить отрезок равный данному Ú Задача А В "> Построить отрезок равный данному Ú Задача А В На данном луче от его начала С отложить отрезок, равный данному Ú Решение 1. Изобразим фигуры, данные в D условии задачи: луч ОС и отрезок АВ О 2. Затем циркулем построим окружность радиуса АВ и с центром О. 3. Эта окружность пересечёт луч ОС в некой точке D. Отрезок OD – искомый.

Src="https://present5.com/presentation/3/178794035_430371946.pdf-img/178794035_430371946.pdf-3.jpg" alt="> Построение угла равного данному Рассмотрим треугольники "> Построение угла равного данному Рассмотрим треугольники Ú АВС и ОDE. Задача В Отрезки АВ и АС являются равный Отложить от данного луча угол, данному Ú радиусами окружности с Решение 1. центром А, савершиной А и луч и ОЕ Построим угол отрезки OD ОМ А С 2. – радиусами окружности с Проведем окружность произвольного центром О. Таквершине А данного радиуса с центром в как по угла. 3. построениюпересекает стороны Эта окружность эти окружности имеют равные радиусы, то угла в точках В и С. 4. АВ=OD, AC=OE. Также же Затем проведём окружность того по Е радиуса с центром в начале данного построению ВС=DE. М луча ОМ. О D Следовательно, треугольники 5. Она пересекает луч в точке D. 6. равны по построим окружность с После этого 3 сторонам. Поэтому центром D, радиус которой равен ВС 7. угол DOEс= углу BAC. Т. е. Окружности центрами О и D построенный угол МОЕ равен пересекаются в двух точках. Одну из углу А. буквой Е них назовём 8. Докажем, что угол МОЕ - искомый

Src="https://present5.com/presentation/3/178794035_430371946.pdf-img/178794035_430371946.pdf-4.jpg" alt="> Построение биссектрисы угла Задача Ú"> Построение биссектрисы угла Задача Ú Рассмотрим треугольники Ú АСЕ и АВЕ. биссектрису угла Построить Они равны по Ú трём сторонам. АЕ – общая, Решение Е 1. АС и АВ равны как угол ВАС Изобразим данный радиусы 2. одной и тойокружность Проведём же окружности, В СЕ = ВЕ по построению. произвольного радиуса с С Ú Изцентром А. Она пересечёт равенства треугольников следует, что угол САЕ В и С стороны угла в точках = углу 3. ВАЕ, т. е. луч АЕдве Затем проведём – окружности одинакового биссектриса данного угла. А радиуса ВС с центрами в точках В и С 4. Докажем, что луч АЕ – биссектриса угла ВАС

Src="https://present5.com/presentation/3/178794035_430371946.pdf-img/178794035_430371946.pdf-5.jpg" alt="> Построение перпендикулярных прямых Ú Задача Даны прямая"> Построение перпендикулярных прямых Ú Задача Даны прямая и точка на ней. Построить прямую, проходящую через данную точку Р и перпендикулярную данной прямой. Ú Решение 1. Построим прямую а и точку М, принадлежащую этой прямой. 2. На лучах прямой а, исходящих из точки М, отложим равные отрезки МА и МВ. М а Затем построим две окружности с центрами А и В радиуса АВ. Они пересекутся в двух точках: P и Q. А B 3. Проведём прямую через точку М и одну из этих точек, например прямую МР, и докажем, что эта прямая искомая, т. Е. что она перпендикулярна к данной прямой. 4. В самом деле, так как медиана РМ равнобедренного треугольника РАВ Q является также высотой, то РМ перпендикулярна а.

Src="https://present5.com/presentation/3/178794035_430371946.pdf-img/178794035_430371946.pdf-6.jpg" alt="> Построение середины отрезка Задача Ú Построить середину данного"> Построение середины отрезка Задача Ú Построить середину данного отрезка Ú Решение Р 1. Пусть АВ – данный отрезок. 2. Построим две окружности с 21 центрами А и В радиуса АВ. Они пересекаются в точках Р и Q. О 3. Проведём прямую РQ. Точка О пересечения этой прямой с А B отрезком АВ и есть искомая середина отрезка АВ 4. В самом деле, треугольники АРQ и ВРQ равны по трём сторонам, поэтому угол 1 = Q углу 2 5. Следовательно отрезок РО – биссектриса равнобедренного треугольника АРВ, а значит, и медиана, т. Е. точка О – середина отрезка АВ.


I. Введение.

II. Главная часть:

    Построение отрезка, равного произведению двух других с помощью циркуля и линейки:

    1. первый способ построения;

      второй способ построения;

      третий способ построения,

d) четвёртый способ построения.

2) Построение отрезка, равного отношению двух других с помощью циркуля и линейки:

      первый способ построения;

      второй способ построения.

Заключение.

Приложение.

Введение

Геометрические построения, или теория геометрических построений - раздел геометрии, где изучают вопросы и методы построения геометрических фигур, используя те или иные элементы построения. Геометрические построения изучаются как в геометрии Евклида, так и в других геометриях, как на плоскости, так и в пространстве. Классическими инструментами построения являются циркуль и линейка (односторонняя математическая), однако, существуют построения другими инструментами: только одним циркулем, только одной линейкой, если на плоскости начерчена окружность и её центр, только одной линейкой с параллельными краями и.т.д.

Все задачи на построение опираются на постулаты построения, то есть на простейшие элементарные задачи на построение, и задача считается решённой, если она сведена к конечному числу этих простейших задач-постулатов.

Естественно, каждый инструмент имеет свою конструктивную силу - свой набор постулатов. Так, известно, что разделить отрезок, пользуясь только одной линейкой, на две равные части нельзя, а пользуясь циркулем, можно.

Искусство построения геометрических фигур при помощи циркуля и линейки было в высокой степени развито в древней Греции. Одна из труднейших задач на построение, которую уже тогда умели выполнить, - построение окружности, касающейся трёх данных окружностей.

В школе изучают ряд простейших построений циркулем и линейкой (односторонней без делений): построение прямой, проходящей через заданную точку и перпендикулярной или параллельной данной прямой; деление пополам заданного угла, деление отрезка на несколько равных частей, используя теорему Фалеса (по сути дела - деление отрезка на натуральное число); построение отрезка большего данного в целое число раз (по сути -умножение отрезка на натуральное число). Однако, нами нигде не встречалась задача, где надо было бы с помощью циркуля и линейки умножить отрезок на отрезок, то есть построить отрезок, равный произведению двух данных отрезков, или деление отрезка на отрезок, то есть построить отрезок, равный отношению двух других отрезков. Нам показалась данная проблема очень интересной, и мы решили её исследовать, попытаться найти решение и возможность применения найденного метода решения к решению других задач, например, в математике и физике.

При решении задач на построение традиционная методика рекомендует нам четыре этапа: анализ, построение, доказательство и исследование. Однако, указанная схема решения задач на построение считается весьма академичной, и для её осуществления требуется много времени, поэтому часто отдельные этапы традиционной схемы решения задачи опускаются, например, этапы доказательства, исследования. В своей работе по возможности мы использовали все четыре этапа, да и то только там, где была в этом необходимость и целесообразность.

И последнее: найденный нами метод построения вышеназванных отрезков предполагает использование, помимо циркуля и линейки, произвольно выбранного единичного отрезка. Введение единичного отрезка диктуется ещё и тем, что он необходим хотя бы для того, чтобы подтвердить справедливость найденного нами метода нахождения отрезка на конкретных частных примерах.

ОБЩАЯ ПРОБЛЕМА І

С помощью циркуля и линейки построить отрезок, равный произведению двух других отрезков.

Примечание:

предполагается:

    Линейка - односторонняя, без делений.

    Задан отрезок единичной длины.

Исследование.

1.Рассмотрим прямые y=2x-2 2 и y=3x-3 2 и попробуем найти координаты точки пересечения этих прямых геометрическим и аналитическим методами:

а
) геометрический метод (Рис.1 ) показал, что координаты точки А пересечения этих прямых: «5»-абсцисса, «6»- ордината, т.е. АЕ=5, АД=6.

б) аналитический метод данный результат подтверждает, т.е. А (5;6) - точка пересечения прямых.

Действительно, решив систему уравнений

y=6 А(5;6)- точка пересечения прямых.

2.Рассмотрим отрезок: ОВ=2, ОС=3, АД=6, АЕ=5.

Можно предположить, что АД=ОВ×ОС, т.к. 6=2×3; АЕ=ОВ+ОС, т.к. 5=2+3 ,где

2=ОВ-угловой коэффициент уравнения y=2x-2 2 , 3=ОС - угловой коэффициент уравнения y=3x-3 2 , АД=у А, ОД=х А - координаты точки А пересечения наших прямых.

Наше предположение проверим на общем примере аналитическим методом, т.е. на уравнениях прямых y=mx-m 2 и y=nx-n 2 (где m≠n) проверим, что точка пересечения прямых имеет координаты:

y=nx-n 2 nx-n 2 =mx-m 2 x=(m 2 -n 2)÷(m-n)=m+n и y=mx-m 2 =m(m+n)-m 2 =mn

координаты точки А пересечения прямых, где m и n – угловые коэффициенты этих прямых, ч.т.д.

3. Осталось найти метод построения отрезка. АД=ОВ×ОС=m∙n=y А - ординаты точки А пересечения прямых У=mx-m 2 и У=nx-n 2 , где m≠n и m=OB, n=OC- отрезки, отложенные на оси ох. А для этого мы должны найти метод построения прямых У=mx-m 2 и У=nx-n 2 . из рассуждений видно, что эти прямые должны пройти через точки В и С отрезков OB=m и OC=n, которые принадлежат оси ох.

Замечание 1. Вышеназванные обозначения отрезков соответствуют рис.1 «Приложения»

Первый способ построения отрезка AD=mn, где m>1ед., n>1ед., m≠n.

единичный отрезок

произвольный отрезок, m>1eд., n>1eд.

n произвольный отрезок, где m≠n.

Построение (Рис.2)

    Проведём прямую ОХ

    На ОХ отложим ОА 1 = m

    На ОХ отложим А 1 С 1 =1ед

    Построим С 1 В 1 =m, где С 1 В 1 ┴ ОХ

    Проведём прямую А 1 В 1 , уравнение которой y=mx-m 2 в координатных осях ХОУ (масштаб на осях одинаковый).

Примечание:


Рис.2

Замечание 1.

Действительно, тангенс угла наклона этой прямой tgά 1 = С 1 В 1 /А 1 С 1 =m/1ед=m, которая проходит через точку А 1 отрезка ОА 1 =m.

Анологично строим прямую, уравнение которой У=nx-n 2 .

6.На оси ОХ отложим ОА 2 =n (точка А 2 случайно совпала с точкой С1).

7.На оси ОХ отложим А 2 С 2 =1ед.

8.Строим В 2 С 2 =n, где В 2 С 2 ┴ ОХ.

9.Проведём прямую В 2 А 2 , уравнение которой У=nx-n 2 .

Замечание 2. Действительно, тангенс наклона этой прямой tg ά 2 =C 2 B 2 /A 2 C 2 =n/1ед=n, которая проходит через т. А 2 отрезка ОА 2 =n.

10. Получили т.А (m+n; mn) – точку пересечения прямых У=mx-m 2 и У=nx-n 2

11. Проведем АД, перпендикулярную ох, где Д принадлежит оси ох.

12. Отрезок АД=mn (ордината т. А), т.е. искомый отрезок.

Замечание 3. а) действительно, если в нашем примере, n=4ед., m=3 ед., то должно быть АД=mn=3ед.∙4ед.=12ед. У нас так и получилось: АД=12ед.; б) прямая В 1 В 2 в этом построении не использовалась. В В – тоже.

Существует ещё, по крайней мере, три разных способа построения отрезка АД=mn.

Второй способ построения отрезка АД= mn , где m >1ед, n >1ед, m и n –любые.

Анализ

Анализ ранее построенного чертежа (рис.2), где с помощью найденного способа построения прямых У=mx-m 2 и У=nx-n 2 нашли т.А (m+n; mn) (это первый способ), подсказывает, что т.А(m+n; mn) можно найти построением любой из этих прямых (У=mx-m 2 или У=nx-n 2) и перпендикуляра АД, где АД – перпендикуляр к ОХ, АД=mn, Д принадлежит оси ОХ. Тогда искомая точка А (m+n; mn) является точкой пересечения любой из этих прямых и перпендикуляра АД. Достаточно найти углы наклона этих прямых, тангенсы которых, согласно угловым коэффициентам, равны m и n, т.е. tg ά 1= m и tg ά 2 =n. Учитывая, что tg ά 1 =m/1ед=m и tg ά 2 =n/1ед=n, где 1ед-единичный отрезок, можно легко построить прямые, уравнения которых У=mx-m 2 и У=nx-n 2 .

единичный отрезок

n n>1ед., m и n-любые числа.

П

остроение (Рис.3)

Рис.3

1.Проведём прямую ОХ.

2.На оси ОХ откладываем отрезок ОА 1 =m.

3.На оси ОХ отложим отрезок А 1 Д=n.

4.На оси ОХ отложим отрезок А 1 С 1 =1ед.

5.Строим С 1 В 1 =m, где С 1 В 1 ┴ ОХ.

6.Проведём прямую А1В1, уравнение которой У=mx-m2, в координатных осях ХОУ (масштаб на осях одинаковый).

7.Востанавливаем перпендикуляр к ОХ в точке D.

8.Получаем точку А (m+n; mn) - точку пересечения прямой У=mx-m2 и перпендикуляра AD

9.Отрезок AD=mn, то есть искомый отрезок.

Вывод: Этот второй способ универсальнее первого способа, так как позволяет найти точу А(m+n;mn)и тогда, когда m=n>1ед., тогда координаты этой точки А(2m;m 2) и AD=m 2 .

Другими словами этот метод позволяет найти отрезок, равный квадрату данного, длина которого больше 1ед.

Замечание: Действительно, если в нашем примере m=3ед., n=5ед., то должно быть AD=mn=3ед.×5ед.=15ед. У нас так и получилось: AD=15ед.

Третий способ построения отрезка AD = mn , где m >1ед, n >1ед и m n .

Используя рисунок №2, проведём штриховой линией прямую В 1 В 2 до пересечения с ОХ в точке Е € ОХ, и прямую В 1 В ┴ В 2 С 2 , тогда

В 1 В=С 1 С 2 =ОС 2 -ОС 1 =(n+1ед.)-(m+1ед)=n-m, а В 2 В=В 2 С 2 -В 1 С 1 =m-n => В 1 В=В 2 В=>∆В 1 ВВ 2 - равнобедренный, прямоугольный>∆ЕС 1 В 1 - равнобедренный, прямоугольный => ά=45º

Т.к. ОС 1 =m+1ед., а ЕС 1 =В 1 С 1 =m, то ОЕ=ОС 1 -ЕС 1 =m+1ед.-m=1ед.

Из рассуждений следует, что точки В 1 и В 2 можно найти по-другому, т.к. они являются точками пересечения прямой ЕВ 1 , проведённой под углом ά=45º к оси ОХ и перпендикуляров к ОХ: В 1 С 1 и В 2 С 2 , а ОЕ=1ед.Дальше, используя уже предыдущие методы будем иметь следующий способ построения.

Единичный отрезок.

n n>1ед., и m≠n.

Построение (Рис.4)

1.Проведём прямую ОХ.

5.Построим
ά=С 1 ЕВ 1 =45º, где В 1 - точка пересечения перпендикуляра С 1 В 1 со стороной ά=45º.

7.Отложим ОА 2 =n, где А 2 € ОХ.

8.Отложим А 2 С 2 =1ед., где С 2 € ОХ.

9.Восстановим перпендикуляр С 2 В 2 к оси ОХ в точке С 2 , где В 2 - точка пересечения перпендикуляра с прямой ЕВ 1 .

10.Проводим прямую А 2 В 2 , уравнение которой У=nx-n 2 , до пересечения с прямой А 1 В 1 в точке А.

11.Опускаем на ОХ из точки А перпендикуляр и получаем AD , равный mn, где D € ОХ, так как в координатных плоскостях осях ХОУ координаты точки А(m+n;mn).


Рис.4

Замечание: Недостаток данного способа такой же, как у первого способа построения, где построение возможно только при условии m≠n.

Четвёртый способ построения отрезка AD = mn , где m и n - любые, большие единичного отрезка.

Единичный отрезок.

n n>1ед., m и n- любые.

Построение (Рис.5)


Рис.5

1.Проведём прямую ОХ.

2.Отложим ОЕ=1ед., где Е € ОХ.

3.Отлтжим ЕС 1 =m, где С 1 € ОХ.

4.Восстановим перпендикуляр в точке С 1 к оси ОХ.

5.Построим ά=С 1 ЕВ 1 =45º, где В 1 - точка пересечения перпендикуляра С 1 В 1 со стороной ά=45º.

6.Отложив ОА 1 =m, проводим прямую А 1 В 1 , уравнение которой У=mx-m 2 , А € ОХ.

7.Отложим А 1 D=n, где D € OX.

8.Восстановим перпендикуляр в точке D до пересечения его в точке А с прямой А 1 В 1 , уравнение которой У=mx-m 2 .

9.Отрезок перпендикуляра AD = произведению отрезков m и n, то есть AD=mn, так как А (m+n; mn).

Замечание: Этот способ выгодно отличается от первого и третьего способов, где m≠n, так как имеем дело с любыми отрезками m и n, единичный отрезок может быть меньше только одного из них, участвующего в начале построения (у нас m>1ед.).

Общая проблема ІІ

С помощью циркуля и линейки построить отрезок, равный отношению двух других отрезков.

Примечание:

единичный отрезок меньше отрезка делителя.

Первый способ построения отрезка n = k / m , где m >1ед.

Единичный отрезок.

Построение (Рис.6)

2.На ОУ отложим ОМ=k.

3. На ОХ отложим ОА 1 = m.

4.На ОХ отложим А 1 С 1 =1ед.

5.Построим С 1 В 1 =m, где С 1 В 1 ┴ ОХ.

6. Проведём прямую А 1 В 1 , уравнение которой y=mx-m 2 в координатных осях ХОУ (масштаб на осях одинаковый, равный 1ед.).

7.Восстановим перпендикуляр МА в точке М к оси ОУ, где А- точка пересечения МА с прямой А 1 В 1 (т.е. А € А 1 В 1).

8.Опустим перпендикуляр из точки А на ось ОХ до пересечения его с осью ОХ в точке D. Отрезок AD=ОМ=k=mn.

9.Отрезок А 1 D= n - искомый отрезок, равный n=k/m.

Рис.6

Доказательство:

1.Уравнение прямой А 1 В 1 действительно У=mx-m 2 , при У=0 имеем 0=mx-m 2 => x=m=OA 1, т а угловой коэффициент - tg

2.В ∆АDA 1 tg 1 D=AD/A 1 D=B 1 C 1 /A 1 C 1 =>A 1 D=AD×A 1 C 1 /B 1 C 1 =k×1ед./m=mn/m=n, т.е. А 1 D=n=k/m - искомый отрезок.

Замечание. Действительно, если в нашем примере m=3ед., k=15ед., то должно быть A 1 D=n=k/m=15ед./3ед.=5ед. У нас так и получилось.

Второй способ построения отрезка n = k / m , где m >1ед.

Единичный отрезок.



Рис.7

1.Строим координатные оси ХОУ.

2.На ОУ отложим ОМ=k.

3.Отложим ОЕ=1ед., где Е € ОХ.

4.Отложим ЕС 1 =m, где С 1 € ОХ.

5.Восстановим перпендикуляр в точке С 1 к оси ОХ.

6.Строим С 1 ЕВ 1 =45º, где В 1 - точка пересечения перпендикуляра С 1 В 1 со стороной угла С 1 ЕВ 1 = 45º.

7. На ОХ отложим ОА 1 = m.

8. Проведём прямую А 1 В 1 , уравнение которой y=mx-m 2 в координатных осях ХОУ (масштаб на осях одинаковый, равный 1ед.).

9.Восстановим перпендикуляр МА в точке М к оси ОУ, где А - точка пересечения МА с прямой А 1 В 1 (т.е. А € А 1 В 1).

10.Опустим перпендикуляр из точки А на ось ОХ до пересечения его с осью ОХ в точке D. Отрезок AD=ОМ=k=mn.

11.Отрезок А 1 D=n - искомый отрезок, равный n=k/m.

Доказательство:

1.∆В 1 С 1 Е - прямоугольный и равнобедренный, так как С 1 ЕВ 1 =45º =>В 1 С 1 =ЕС 1 =m.

2.А 1 С 1 =ОС 1 - ОА 1 =(ОЕ+ЕС1) - ОА 1 =1ед+m-m=1ед.

3.Уравнение прямой А 1 В 1 действительно У=mx-m 2 , при У=0 имеем 0=mx-m 2 => x=m=OA 1, а угловой коэффициент - tg

4.В ∆АDA 1 tg 1 D=AD/A 1 D=B 1 C 1 /A 1 C 1 => A 1 D=AD×A 1 C 1 /B 1 C 1 =k ×1ед./m=mn/m=n, т.е. А 1 D=n=k/m - искомый отрезок.

Заключение

В своей работе мы нашли и исследовали различные методы построения с помощью циркуля и линейки отрезка, равного произведению или отношению двух других отрезков, предварительно дав своё определение этим действиям с отрезками, так как ни в одной специальной литературе мы не смогли найти не только определение умножения и деления отрезков, но даже упоминания об этих действиях над отрезками.

Здесь нами было использовано практически все четыре этапа: анализ, построение, доказательство и исследование.

В заключение мы бы хотели отметить возможность применения найденных методов построения отрезков в отдельных разделах физики и математики.

1. Если продлить прямые y=mx-m 2 и y=nx-n 2 (n>m>0) до пересечения с осью ОУ, то можно получить отрезки, равные m 2 , n 2 , n 2 - m 2 (Рис.8) , где ОК=m 2 , ОМ= n 2 , КМ= n 2 - m 2 .

Р
ис.8

Доказательство:

Если х=0, то y=0-m 2 =>ОК=m 2 .

Аналогично доказывается, что ОМ= n 2 =>КМ=ОМ-ОК= n 2 - m 2 .

2. Так как произведение двух отрезков есть площадь прямоугольника со сторонами, равными этим отрезкам, то, найдя отрезок, равный произведению двух других, тем самым мы представляем площадь прямоугольника в виде отрезка, длина которого численно равна этой площади.

3. В механике, термодинамике есть физические величины, например, работа (А=FS,A=PV), численно равные площадям прямоугольников, построенных в соответствующих координатных плоскостях, поэтому в задачах, где требуется, например, сравнить работы по площадям прямоугольников, очень просто это сделать, если эти площади представить в виде отрезков, численно равных площадям прямоугольников. А отрезки легко сравнить между собой.

4. Рассмотренный метод построения позволяет строить и другие отрезки, например, используя систему уравнений y=mx-m 3 и y=nx-n 3 , можно построить отрезки, имея данные m и n такие, как m 2 +mn+n 2 и mn(m+n), так как точка А пересечения прямых, заданных данной системой уравнений, имеет координаты (m 2 +mn+n 2 ; mn(m+n), а также можно построить отрезки n 3 , m 3 , и разность n 3 - m 3 , получаемые на ОУ в отрицательной области при Х=0.

Произведения . ... помощи циркуля и линейки . Алгоритм деления отрезка АВ пополам: 1) поставить ножку циркуля в точку А; 2) установить раствор циркуля равным длине отрезка ...

  • Биография Пифагора

    Биография >> Математика

    ... построением правильных геометрических фигур с помощью циркуля и линейки . ... помощи циркуля и линейки . Со времени возникновения задачи прошло более двух ... равна b/4+p, один катет равен b/4, а другой b/2-p. По теореме Пифагора имеем:(b/4+p)=(b/4)+(b/4-p)или ...



  • Просмотров