Получение основных оксидов. Основные оксиды

Оксиды - это сложные неорганические соединения, состоящие из двух элементов, один из которых кислород (в степени окисления -2).

Например, Na 2 O, B 2 O 3 , Cl 2 O 7 относятся к оксидам. Все перечисленные вещества содержат кислород и еще один элемент. Вещества Na 2 O 2 , H 2 SO 4 , HCl не относятся к оксидам: в первом степень окисления кислорода равна -1, в составе второго не два, а три элемента, а третье вообще не содержит кислорода.

Если вы не понимаете смысл термина "степень окисления", ничего страшного. Во-первых, можно обратиться к соответствующей статье на этом сайте. Во-вторых, даже без понимания этого термина можно продолжать чтение. Временно можете забыть про упоминание о степени окисления.

Получены оксиды практически всех известных на сегодняшний день элементов, кроме некоторых благородных газов и "экзотических" трансурановых элементов. Более того, многие элементы образуют несколько оксидов (для азота, например, их известно шесть).

Номенклатура оксидов

Мы должны научиться называть оксиды. Это очень просто.

Пример 1 . Назовите следующие соединения: Li 2 O, Al 2 O 3 , N 2 O 5 , N 2 O 3 .

Li 2 O - оксид лития,
Al 2 O 3 - оксид алюминия,
N 2 O 5 - оксид азота (V),
N 2 O 3 - оксид азота (III).

Обратите внимание на важный момент: если валентность элемента постоянна, мы НЕ упоминаем ее в названии оксида. Если валентность меняется, следует обязательно указать ее в скобках! Литий и алюминий имеют постоянную валентность, у азота валентность переменная; именно по этой причине названия окислов азота дополнены римскими цифрами, символизирующими валентность.

Задание 1 . Назовите оксиды: Na 2 O, P 2 O 3 , BaO, V 2 O 5 , Fe 2 O 3 , GeO 2 , Rb 2 O. Не забывайте, что существуют элементы как с постоянной, так и с переменной валентностью.

Еще один важный момент: вещество F 2 O правильнее называть не "оксид фтора", а "фторид кислорода"!

Физические свойства оксидов

Физические свойства весьма разнообразны. Обусловлено это, в частности, тем, что в оксидах могут проявляться разные типы химической связи. Температуры плавления и кипения варьируются в широких пределах. При нормальных условиях оксиды могут находиться в твердом состоянии (CaO, Fe 2 O 3 , SiO 2 , B 2 O 3), жидком состоянии (N 2 O 3 , H 2 O), в виде газов (N 2 O, SO 2 , NO, CO).

Разнообразна окраска: MgO и Na 2 O белого цвета, CuO - черного, N 2 O 3 - синего, CrO 3 - красного и т. д.

Расплавы оксидов с ионным типом связи хорошо проводят электрический ток, ковалентные оксиды, как правило, имеют низкую электропроводность.

Классификация оксидов

Все существующие в природе оксиды можно разделить на 4 класса: основные, кислотные, амфотерные и несолеобразующие. Иногда первые три класса объединяют в группу солеобразующих оксидов, но для нас это сейчас несущественно. Химические свойства оксидов из разных классов отличаются весьма сильно, поэтому вопрос классификации очень важен для дальнейшего изучения этой темы!

Начнем с несолеобразующих оксидов . Их нужно запомнить: NO, SiO, CO, N 2 O. Просто выучите эти четыре формулы!

Для дальнейшего продвижения мы должны вспомнить, что в природе существуют два типа простых веществ - металлы и неметаллы (иногда выделяют еще группу полуметаллов или металлоидов). Если вы четко понимаете, какие элементы относятся к металлам, продолжайте читать эту статью. Если есть малейшие сомнения, обратитесь к материалу "Металлы и неметаллы" на этом сайте.

Итак, сообщаю вам, что все амфотерные оксиды являются оксидами металлов, но не все оксиды металлов относятся к амфотерным. Я перечислю наиболее важные из них: BeO, ZnO, Al 2 O 3 , Cr 2 O 3 , SnO. Список не является полным, но перечисленные формулы следует обязательно запомнить! В большинстве амфотерных оксидов металл проявляет степень окисления +2 или +3 (но есть исключения).

В следующей части статьи мы продолжим говорить о классификации; обсудим кислотные и основные оксиды.

Оксиды.

Это – сложные вещества состоящие из ДВУХ элементов, один из которых кислород. Например:

CuO– оксид меди(II)

AI 2 O 3 – оксид алюминия

SO 3 – оксид серы (VI)

Оксиды делятся (их классифицируют) на 4 группы:

Na 2 O– Оксид натрия

СаО – Оксид кальция

Fe 2 O 3 – оксид железа (III)

2). Кислотные – Это оксидынеметаллов . А иногда и металлов если степень окисления металла > 4. Например:

СО 2 – Оксид углерода (IV)

Р 2 О 5 – Оксид фосфора (V)

SO 3 – Оксид серы (VI)

3). Амфотерные – Это оксиды которые имеют свойства, как основных так и кислотных оксидов. Необходимо знать пять наиболее часто встречающихся амфотерных оксидов:

BeO–оксид бериллия

ZnO– Оксид цинка

AI 2 O 3 – Оксид алюминия

Cr 2 O 3 – Оксид хрома (III)

Fe 2 O 3 – Оксид железа (III)

4). Несолеобразующие (безразличные) – Это оксиды которые не проявляют свойств ни основных, ни кислотных оксидов. Необходимо запомнить три оксида:

СО – оксид углерода (II) угарный газ

NO– оксид азота (II)

N 2 O– оксид азота (I) веселящий газ, закись азота

Способы получения оксидов.

1). Горение, т.е. взаимодействие с кислородом простого вещества:

4Na + O 2 = 2Na 2 O

4P + 5O 2 = 2P 2 O 5

2). Горение, т.е. взаимодействие с кислородом сложного вещества (состоящего из двух элементов ) при этом образуются два оксида.

2ZnS + 3O 2 = 2ZnO + 2SO 2

4FeS 2 + 11O 2 = 2Fe 2 O 3 + 8SO 2

3). Разложение трех слабых кислот. Другие не разлагаются. При этом образуются – кислотный оксид и вода.

Н 2 СО 3 = Н 2 О + СО 2

Н 2 SO 3 = H 2 O + SO 2

H 2 SiO 3 = H 2 O + SiO 2

4). Разложение нерастворимых оснований. Образуются основный оксид и вода.

Mg(OH) 2 = MgO + H 2 O

2Al(OH) 3 = Al 2 O 3 + 3H 2 O

5). Разложение нерастворимых солей. Образуются основный оксид и кислотный оксид.

СаСО 3 = СаО + СО 2

МgSO 3 = MgO + SO 2

Химические свойства.

I . Основных оксидов.

щелочь.

Na 2 O + H 2 O = 2NaOH

CaO + H 2 O = Ca(OH) 2

СuO + H 2 O = реакция не протекает, т.к. возможное основание в состав которого входит медь - нерастворимо

2). Взаимодействие с кислотами, при этом образуется соль и вода. (Основный оксид и кислоты реагируют ВСЕГДА)

К 2 О + 2НСI = 2KCl + H 2 O

CaO + 2HNO 3 = Ca(NO 3) 2 + H 2 O

3). Взаимодействие с кислотными оксидами, при этом образуется соль.

Li 2 O + CO 2 = Li 2 CO 3

3MgO + P 2 O 5 = Mg 3 (PO 4) 2

4). Взаимодействие с водородом, при этом образуется металл и вода.

CuO + H 2 = Cu + H 2 O

Fe 2 O 3 + 3H 2 = 2Fe + 3H 2 O

II. Кислотных оксидов.

1). Взаимодействие с водой, при этом должна образоваться кислота. (Только SiO 2 не взаимодействует с водой)

CO 2 + H 2 O = H 2 CO 3

P 2 O 5 + 3H 2 O = 2H 3 PO 4

2). Взаимодействие с растворимыми основаниями (щелочами). При этом образуется соль и вода.

SO 3 + 2KOH = K 2 SO 4 + H 2 O

N 2 O 5 + 2KOH = 2KNO 3 + H 2 O

3). Взаимодействие с основными оксидами. При этом образуется только соль.

N 2 O 5 + K 2 O = 2KNO 3

Al 2 O 3 + 3SO 3 = Al 2 (SO 4) 3

Основные упражнения.

1). Закончить уравнение реакции. Определить её тип.

К 2 О + Р 2 О 5 =

Решение.

Что бы записать, что образуется в результате – необходимо определить – какие вещества вступили в реакцию – здесь это оксид калия (основный) и оксид фосфора (кислотный) согласно свойств – в результате должна получиться СОЛЬ (смотри свойство № 3) а соль состоит из атомов металлов (в нашем случае калия) и кислотного остатка в состав которого входит фосфор (т.е. РО 4 -3 – фосфат) Поэтому

3К 2 О + Р 2 О 5 = 2К 3 РО 4

тип реакции – соединение (так как вступают в реакцию два вещества, а образуется – одно)

2). Осуществить превращения (цепочка).

Са → СаО → Са(ОН) 2 → СаСО 3 → СаО

Решение

Для выполнения этого упражнения необходимо помнить, что каждая стрелочка это одно уравнение (одна химическая реакция). Пронумеруем каждую стрелочку. Следовательно, необходимо записать 4 уравнения. Вещество записанное слева от стрелочки(исходное вещество) вступает в реакцию, а вещество записанное справа – образуется в результате реакции(продукт реакции). Расшифруем первую часть записи:

Са + …..→ СаО Мы обращаем внимание, что вступает в реакцию простое вещество, а образуется оксид. Зная способы получения оксидов (№ 1) приходим к выводу, что в данной реакции необходимо добавить –кислород (О 2)

2Са + О 2 → 2СаО

Переходим к превращению № 2

СаО → Са(ОН) 2

СаО + ……→ Са(ОН) 2

Приходим к выводу, что здесь необходимо применить свойство основных оксидов – взаимодействие с водой, т.к. только в этом случае из оксида образуется основание.

СаО + Н 2 О → Са(ОН) 2

Переходим к превращению № 3

Са(ОН) 2 → СаСО 3

Сa(OH) 2 + ….. = CaCO 3 + …….

Приходим к выводу, что здесь речь идет об углекислом газе СО 2 т.к. только он при взаимодействии со щелочами образует соль (смотри свойство № 2 кислотных оксидов)

Сa(OH) 2 + СО 2 = CaCO 3 + Н 2 О

Переходим к превращению № 4

СаСО 3 → СаО

СаСО 3 = ….. СаО + ……

Приходим к выводу что здесь образуется еще СО 2 , т.к. СаСО 3 нерастворимая соль и именно при разложении таких веществ образуются оксиды.

СаСО 3 = СаО + СО 2

3). С какими из перечисленных веществ взаимодействует СО 2 . Напишите уравнения реакций.

А). Соляная кислота Б). Гидроксид натрия В). Оксид калия г). Вода

Д). Водород Е). Оксид серы (IV).

Определяем, что СО 2 – это кислотный оксид. А кислотные оксиды вступают в реакции с водой, щелочами и основными оксидами … Следовательно из приведенного списка выбираем ответы Б, В, Г И именно с ними записываем уравнения реакций:

1). СО 2 + 2NaOH = Na 2 CO 3 + H 2 O

2). CO 2 + K 2 O = K 2 CO 3

Несолеобразующие (безразличные, индифферентные) оксиды СО, SiO, N 2 0, NO.


Солеобразующие оксиды:


Основные. Оксиды, гидраты которых являются основания ми. Оксиды металлов со степенями окисления +1 и +2 (реже +3). Примеры: Na 2 O - оксид натрия, СаО - оксид кальция, CuO - оксид меди (II), СоО - оксид кобальта (II), Bi 2 O 3 - оксид висмута (III), Mn 2 O 3 - оксид марганца (III).


Амфотерные. Оксиды, гидраты которых являются амфотерными гидроксидами. Оксиды металлов со степенями окисления +3 и +4 (реже +2). Примеры: Аl 2 O 3 - оксид алюминия, Cr 2 O 3 - оксид хрома (III), SnO 2 - оксид олова (IV), МnO 2 - оксид марганца (IV), ZnO - оксид цинка, ВеО - оксид бериллия.


Кислотные. Оксиды, гидраты которых являются кислородсодержащими кислотами. Оксиды неметаллов. Примеры: Р 2 О 3 - оксид фосфора (III), СO 2 - оксид углерода (IV), N 2 O 5 - оксид азота (V), SO 3 - оксид серы (VI), Cl 2 O 7 - оксид хлора (VII). Оксиды металлов со степенями окисления +5, +6 и +7. Примеры: Sb 2 O 5 - оксид сурьмы (V). СrОз - оксид хрома (VI), МnОз - оксид марганца (VI), Мn 2 O 7 - оксид марганца (VII).

Изменение характера оксидов при увеличении степени окисления металла

Физические свойства

Оксиды бывают твердые, жидкие и газообразные, различного цвета. Например: оксид меди (II) CuO черного цвета, оксид кальция СаО белого цвета - твердые вещества. Оксид серы (VI) SO 3 - бесцветная летучая жидкость, а оксид углерода (IV) СО 2 - бесцветный газ при обычных условиях.

Агрегатное состояние


CaO, СuО, Li 2 O и др. основные оксиды; ZnO, Аl 2 O 3 , Сr 2 O 3 и др. амфотерные оксиды; SiO 2 , Р 2 O 5 , СrO 3 и др. кислотные оксиды.



SO 3 , Cl 2 O 7 , Мn 2 O 7 и др..


Газообразные:


CO 2 , SO 2 , N 2 O, NO, NO 2 и др..

Растворимость в воде

Растворимые:


а) основные оксиды щелочных и щелочноземельных металлов;


б) практически все кислотные оксиды (исключение: SiO 2).


Нерастворимые:


а) все остальные основные оксиды;


б) все амфотерные оксиды


Химические свойства

1. Кислотно-основные свойства


Общими свойствами основных, кислотных и амфотерных оксидов являются кислотно-основные взаимодействия, которые иллюстрируются следующей схемой:





(только для оксидов щелочных и щелочно-земельных металлов) (кроме SiO 2).



Амфотерные оксиды, обладая свойствами и основных и кислотных оксидов, взаимодействуют с сильными кислотами и щелочами:



2. Окислительно - восстановительные свойства


Если элемент имеет переменную степень окисления (с. о.), то его оксиды с низкими с. о. могут проявлять восстановительные свойства, а оксиды с высокими с. о. - окислительные.


Примеры реакций, в которых оксиды выступают в роли восстановителей:


Окисление оксидов с низкими с. о. до оксидов с высокими с. о. элементов.


2C +2 O + O 2 = 2C +4 O 2


2S +4 O 2 + O 2 = 2S +6 O 3


2N +2 O + O 2 = 2N +4 O 2


Оксид углерода (II) восстанавливает металлы из их оксидов и водород из воды.


C +2 O + FeO = Fe + 2C +4 O 2


C +2 O + H 2 O = H 2 + 2C +4 O 2


Примеры реакций, в которых оксиды выступают в роли окислителей:


Восстановление оксидов с высокими с о. элементов до оксидов с низкими с. о. или до простых веществ.


C +4 O 2 + C = 2C +2 O


2S +6 O 3 + H 2 S = 4S +4 O 2 + H 2 O


C +4 O 2 + Mg = C 0 + 2MgO


Cr +3 2 O 3 + 2Al = 2Cr 0 + 2Al 2 O 3


Cu +2 O + H 2 = Cu 0 + H 2 O


Использование оксидов малоактивных металлов дпя окисления органических веществ.




Некоторые оксиды, в которых элемент имеет промежуточную с. о., способны к диспропорционированию;


например:


2NO 2 + 2NaOH = NaNO 2 + NaNO 3 + H 2 O

Способы получения

1. Взаимодействие простых веществ - металлов и неметаллов - с кислородом:


4Li + O 2 = 2Li 2 O;


2Cu + O 2 = 2CuO;



4P + 5O 2 = 2P 2 O 5


2. Дегидратация нерастворимых оснований, амфотерных гидроксидов и некоторых кислот:


Cu(OH) 2 = CuO + H 2 O


2Al(OH) 3 = Al 2 O 3 + 3H 2 O


H 2 SO 3 = SO 2 + H 2 O


H 2 SiO 3 = SiO 2 + H 2 O


3. Разложение некоторых солей:


2Cu(NO 3) 2 = 2CuO + 4NO 2 + O 2


CaCO 3 = CaO + CO 2


(CuOH) 2 CO 3 = 2CuO + CO 2 + H 2 O


4. Окисление сложных веществ кислородом:


CH 4 + 2O 2 = CO 2 + H 2 O


4FeS 2 + 11O 2 = 2Fe 2 O 3 + 8SO 2


4NH 3 + 5O 2 = 4NO + 6H 2 O


5.Восстановление кислот-окислителей металлами и неметаллами:


Cu + H 2 SO 4 (конц) = CuSO 4 + SO 2 + 2H 2 O


10HNO 3 (конц) + 4Ca = 4Ca(NO 3) 2 + N 2 O + 5H 2 O


2HNO 3 (разб) + S = H 2 SO 4 + 2NO


6. Взаимопревращения оксидов в ходе окислительно-восстановительных реакций (см. окислительно-восстановительные свойства оксидов).

Оксиды, их классификация и свойства - это основа такой важной науки, как химия. Их начинают изучать в первый год обучения химии. В таких точных науках, как математика, физика и химия, весь материал связан между собой, именно поэтому неусвоение материала влечет за собой непонимание новых тем. Поэтому очень важно разобраться в теме оксидов и полностью в ней ориентироваться. Об этом мы с вами сегодня и постараемся поговорить более подробно.

Что такое оксиды?

Оксиды, их классификация и свойства - это то, что нужно понять первостепенно. Итак, что же такое оксиды? Вы помните это из школьной программы?

Оксиды (или оксилы) - бинарные соединения, в состав которых входят атомы электроотрицательного элемента (менее электроотрицательный, чем кислород) и кислорода со степенью окисления -2.

Окислы - это невероятно распространенные на нашей планете вещества. Примеры оксидного соединения: вода, ржавчина, некоторые красители, песок и даже углекислый газ.

Образование оксидов

Окислы можно получить самыми различными способами. Образование окислов также изучает такая наука, как химия. Оксиды, их классификация и свойства - вот, что должны знать ученые, чтобы понять, как образовался тот или иной оксид. Например, они могут быть получены путем прямого соединения атома (или атомов) кислорода с химическим элементом - это взаимодействие химических элементов. Однако есть и косвенное образование оксидов, это когда оксиды образуются путем разложения кислот, солей или оснований.

Классификация оксидов

Оксиды и их классификация зависят от того, как они образовались. По своей классификации окислы делятся всего на две группы, первая из которых солеобразующие, а вторая несолеобразующие. Итак, рассмотрим подробнее обе группы.

Солеобразующие оксиды - это довольно большая группа, которая делится на амфотерные, кислотные и основные оксиды. В результате любой химической реакции солеобразующие оксиды образуют соли. Как правило, в состав оксидов солеобразующих входят элементы металлов и неметаллов, которые в результате химической реакции с водой образуют кислоты, но при взаимодействии с основаниями образуют соответствующие кислоты и соли.

Несолеобразующие окислы - это такие окислы, которые в результате химической реакции не образуют соли. Примерами таких окислов могут служить и углерода.

Амфотерные оксиды

Оксиды, их классификация и свойства - очень важные в химии понятия. В состав солеобразующих входят оксиды амфотерные.

Амфотерные оксиды - это такие окислы, которые могут проявлять основные или кислотные свойства, в зависимости от условий химических реакций (проявляют амфотерность). Такие окислы образуются переходными металлами (медь, серебро, золото, железо, рутений, вольфрам, резерфордий, титан, иттрий и многие другие). Амфотерные окислы реагируют с сильными кислотами, а в результате химической реакции они образуют соли этих кислот.

Кислотные оксиды

Или ангидриды - это такие окислы, которые в химических реакциях проявляют а также образуют кислородсодержащие кислоты. Ангидриды всегда образуются типичными неметаллами, а также некоторыми переходными химическими элементами.

Оксиды, их классификация и химические свойства - это важные понятия. Например, у кислотных оксидов химические свойства совершенно отличаются от амфотерных. Например, когда ангидрид взаимодействует с водой, образуется соответствующая кислота (исключение составляет SiO2 - Ангидриды взаимодействуют с щелочами, а в результате таких реакций выделяется вода и сода. При взаимодействии с образуется соль.

Основные оксиды

Основные (от слова "основание") окислы - это оксиды химических элементов металлов со степенями окисления +1 или +2. К ним относятся щелочные, щелочноземельные металлы, а также химический элемент магний. Основные окислы отличаются от других тем, что именно они способны реагировать с кислотами.

Основные окислы взаимодействуют с кислотами, в отличии от кислотных оксидов, а также с щелочами, водой, другими оксидами. В результате этих реакций, как правило, образуются соли.

Свойства оксидов

Если внимательно изучить реакции различных оксидов, можно самостоятельно сделать выводы о том, какими химическими свойствами оксилы наделены. Общее химическое свойство абсолютно всех оксидов заключается в окислительно-восстановительном процессе.

Но тем не менее, все окислы отличаются друг от друга. Классификация и свойства оксидов - это две взаимосвязанные темы.

Несолеобразующие оксиды и их химические свойства

Несолеобразующие окислы - это такая группа оксидов, которая не проявляет ни кислотных, ни основных, ни амфотерных свойств. В результате химических реакций с несолеобразующими оксидами никаких солей не образуется. Раньше такие оксиды называли не несолеобразующими, а безразличными и индиффирентными, но такие названия не соответсвуют свойствам несолеобразующих оксидов. По своим свойствам эти оксилы вполне способны к химическим реакциям. Но несолебразующих оксидов очень мало, они образованы одновалентными и двухвалентными неметаллами.

Из несолеобразующих оксидов в результате химической реакции могут быть получены солеобразующие оксиды.

Номенклатура

Практически все оксиды принято называть так: слово "оксид", после чего следует название химического элемента в родительном падеже. Например, Al2O3 - это оксид алюминия. На химическом языке этот окисл читается так: алюминий 2 о 3. Некоторые химические элементы, такие как медь, могут иметь несколько степеней оксиления, соответственно, оксиды тоже будут разными. Тогда оксид CuO - это оксид меди (два), то есть со степенью оксиления 2, а оксид Cu2O - это оксид меди (три), который имеет степень оксиления 3.

Но существуют и другие наименования оксидов, которые выделяют по числу в соединении атомов кислорода. Монооксидом или моноокисью называют такие оксиды, в которых содержится всего один атом кислорода. Диоксидами называют такие оксилы, в которых содержится два атома кислорода, о чем сообщается приставка "ди". Триоксидами называют такие оксиды, в которых содержится уже три атома кислорода. Такие наименования как монооксид, диоксид и триоксид, уже устарели, но часто встречаются в учебниках, книгах и других пособиях.

Существуют и так называемые тривиальные названия оксидов, то есть те, которые сложились исторически. Например, CO - это окисл или монооксид углерода, но даже химики чаще всего называют это вещество угарным газом.

Итак, оксид - это соединение кислорода с химическим элементом. Основной наукой, которая изучает их образование и взаимодействия, является химия. Оксиды, их классификация и свойства - это несколько важных тем в науке химия, не поняв которую нельзя понять все остальное. Окислы - это и газы, и минералы, и порошки. Некоторые окислы стоит подробно знать не только ученым, но и обычным людям, ведь они даже могут быть опасны для жизни на этой земле. Окислы - это тема очень интересная и достаточно легкая. Соединения оксидов очень часто встречаются в повседневной жизни.

Если вы в школе не увлекались химией, вы вряд ли с ходу вспомните, что такое оксиды и какова их роль в окружающей среде. На самом деле это довольно распространенный тип соединения, который наиболее часто в окружающей среде встречается в форме воды, ржавчины, углекислого газа и песка. Также к оксидам относятся минералы - вид горных пород, имеющий кристаллическое строение.

Определение

Оксиды - это химические соединения, в формуле которых содержится как минимум один атом кислорода и атомы других химических элементов. Оксиды металлов, как правило, содержат анионы кислорода в степени окисления -2. Значительная часть Земной коры состоит из твердых оксидов, которые возникли в процессе окисления элементов кислородом из воздуха или воды. В процессе сожжения углеводорода образуется два основных оксида углерода: монооксид углерода (угарный газ, СО) и диоксид углерода (углекислый газ, CO 2).

Классификация оксидов

Все оксиды принято делить на две большие группы:

  • солеобразующие оксиды;
  • несолеобразующие оксиды.

Солеобразующие оксиды - химические вещества, в которых помимо кислорода содержатся элементы металлов и неметаллов, которые образуют кислоты при контакте с водой, а соединяясь с основаниями - соли.

Солеобразующие оксиды в свою очередь подразделяются на:

  • основные оксиды, в которых при окислении второй элемент (1, 2 и иногда 3-валентный металл) становится катионом (Li 2 O, Na 2 O, K 2 O, CuO, Ag 2 O, MgO, CaО, SrO, BaO, HgO, MnО, CrO, NiО, Fr 2 O, Cs 2 O, Rb 2 O, FeO);
  • кислотные оксиды, в которых при образовании соли второй элемент присоединяется к отрицательно заряженному атому кислорода (CO 2 , SO 2 , SO 3 , SiO 2 , P 2 O 5 , CrO 3 , Mn 2 O 7 , NO 2 , Cl 2 O 5 , Cl 2 O 3);
  • амфотерные оксиды, в которых второй элемент (3 и 4-валентные металлы или такие исключения, как оксид цинка, оксид бериллия, оксид олова и оксид свинца) может стать как катионом, так и присоединиться к аниону (ZnO, Cr 2 O 3 , Al 2 O 3 , SnO, SnO 2 , PbO, PbO 2 , TiO 2 , MnO 2 , Fe 2 O 3 , BeO).

Несолеобразующие оксиды не проявляют ни кислотных, ни основных, ни амфотерных свойств и, как следует из названия, не образуют солей (CO, NO, NO 2 , (FeFe 2)O 4).

Свойства оксидов

  1. Атомы кислорода в оксидах обладают высокой химической активностью. Благодаря тому, что атом кислорода всегда заряжен отрицательно, он образует устойчивые химические связи практически со всеми элементами, что обуславливает широкое многообразие оксидов.
  2. Благородные металлы, такие как золото и платина, ценятся из-за того, что они не окисляются естественным путем. Коррозия металлов образуется в результате гидролиза или окисления кислородом. Сочетание воды и кислорода лишь ускоряет скорость реакции.
  3. В присутствии воды и кислорода (или просто воздуха) реакция окисления некоторых элементов, к примеру, натрия, происходит стремительно и может быть опасна для человека.
  4. Оксиды создают защитную оксидную пленку на поверхности. В качестве примера можно привести алюминиевую фольгу, которая благодаря покрытию из тонкой пленки оксида алюминия, подвергается коррозии значительно медленнее.
  5. Оксиды большинства металлов имеют полимерную структуру, благодаря чему не разрушаются под действием растворителей.
  6. Оксиды растворяются под действием кислот и оснований. Оксиды, которые могут реагировать как с кислотами, так и с основаниями, называются амфотерными. Металлы, как правило, образуют основные оксиды, неметаллы - кислотные оксиды, а амфотерные оксиды получаются из щелочных металлов (металлоиды).
  7. Количество оксида металла может сократиться под действием некоторых органических соединений. Такие окислительно-восстановительные реакции лежат в основе многих важных химических трансформаций, таких как детоксикация препаратов под воздействием P450 энзимов и производство этиленоксида, из которого потом производят антифриз.

Тем, кто увлекается химией, будут интересны также следующие статьи.



Просмотров