Максимальная доза облучения для человека в год. Дозы излучения и единицы ее измерения

В я попробовал внести ясность в путаницу среди обилия дозиметрических единиц измерения. Теперь же я хочу в доступном виде объяснить как расшифровывать показания дозиметра.

В дозиметрии используются только показатели поглощённой эквивалентной эфективной дозы. Она измеряется в зивертах. Среди важных режимов измерений выделяют определение накопленной поглощённой дозы.

Дело в том, что организм способен накоплять всю поглощённую за свою жизнь радиацию в виде необратимых изменений тканей и органов а так же радионуклидов, оседающих во внутренних тканях. Поскольку в природе постоянно присутствует некоторое фоновое излучение, то человек за свою жизнь накопляет дозу от 100 до 700 мЗв (милизивертов). Этот показатель рассчитан на 70 лет жизни. При таком раскладе совсем не трудно рассчитать норму полученой накопленой дозы за год или в сутки. Получается, что в год мы «должны» собрать норму в 1,43 - 10 мЗв, а за сутку, соответственно 0,004 - 0,027 мЗв. Накопленый эквивалент дозы измерятся после включения дозиметра и до тех пор, пока его не выключат или пока не обнулят результаты измерений.

Согласно показаниям моего дозимерта, за 32 часа и 48 минут я поймал 0,005 мЗв (мили зиверта) радиации, что вполне даже соответствует норме.

Но при некоторых «нестандартных ситуациях» бывает, что человек может поймать дозу излучения, во многие разы превышающую естественные фоновые показатели. Эту дозу можно накопить за раз (разовое облучение), кратковременно (облучение до 4-х суток подряд) или на протяжении многих лет.

Облучение малыми дозами но длительное время считается намного опаснее, чем облучение большой дозой, но за короткий промежуток времени.
3 мЗв/год - считается абсолютно безопасной нормальной дозой радиационного фона.

20 мЗв/год - предел годовой дозы облучения для работников ядерной и других видов радиационно-опасных работ.

150 мЗв/год - увеличивает вероятность возникновения онкологических заболеваний.

250 мЗв - после достижения этого порога накопленной дозы ликвидатора аварии на ЧАЭС больше не допускали до опасной работы и отправляли из Чернобыля.

Это были варианты получения накопленных доз за длительное время.
При кратковременном облучении граница предельно допустимой накопленой дозы поднимается.

До 0,01 мЗв - эту дозу можно не учитывать.

Если за одну смену рабочий имеет риск превысить порог в 0,2 мЗв , такая работа относится к радиационно опасным и предполагает ношение дозиметра.

До 100 мЗв - допустимое разовое (!) аварийное облучение населения. Медицинскими методами каких-либо заметных отклонений в строении тканей и органов не наблюдается.

Разовое облучение свыше 200 мЗв считается потенциально опасным, критическим для здоровья.

Облучение дозой 500-1000 мЗв вызывает чувство усталости, наблюдаются умеренные изменения в составе крови. Состояние нормализуется через некоторое время. Но появляется вероятность появления в будущем онкологических заболеваний.

1000-1500 мЗв (1-1,5 Зв) за раз могут вызвать симптомы, указывающие на реакцию органов и систем - тошнота, рвота, нарушение работспособности. Возникают различные формы лучевой болезни.

После значения доз 1500 мЗв (1,5 Зв) и выше (высокие уровни облучения) принято измерять поглощённую дозу в грэях (1 Зв = 1 Гр). Очевидно, что облучённый объект уже не воспринимают как «биологический» (вот такой у нас, медиков, чёрный юмор).

1,5-2,5 Гр (1500-2500 мЗв) - наблюдается кратковременная лёгкая форма лучевой болезни, которая появляется в виде выраженной, продолжающейся длительное время лейкопении (снижения числа лейкоцитов). В 30-50% случаев может наблюдаться рвота в первые сутки после облучения. При дозах больше 2 грэй - высок риск летального исхода.

2,5-4 Гр (2500-4000 мЗв) - возникает лучевая болезнь средней степени тяжести. У всех облученных в первые сутки после облучения наблюдается тошнота и рвота, резко снижается содержание лейкоцитов и появляются подкожные кровоизлияния. Такие дозы - вызывают существенный, непоправимый ущерб здоровью, облысение и белокровие.

Смертельные дозы проникающей радиации:

3-4 Гр (3000-4000 мЗв) - повреждение костного мозга, в течение месяца после облучения смертельный исход возможен у 50% облученных (без медицинского вмешательства).

4-7 Гр (4000-7000 мЗв) - развивается тяжелая форма лучевой болезни и высока смертность.

Свыше 7 Гр (7000 мЗв) - крайне тяжелая форма острой лучевой болезни. В крови полностью исчезают лейкоциты. Появляются множественные подкожные кровоизлияния. Смертность 100%. Причиной смерти, чаще всего являются инфекционные заболевания и кровоизлияния.

10Гр (10 зВ) - смерть в течение 2-3 недель.

15 Гр - 1-5 суток и всё.

Таким образом, накопленная эквивалентная эфективная доза является числом "показательным ". Она уже имеется и ничего с ней не сделаешь. Но есть ещё и показатель "предсказательный ". Он называется мощностью дозы эквивалентного эфективного облучения . Он тоже измеряется в зивертах/час, но показывает «будущее».

На моём дозиметре состоянием на 21:42 (29.01.2012) видно, что мощность эквивалентной эфективной дозы гамма-излучения на текущий момент составляет 0,16 мкЗв/час (микро зиверта в час) с погрешностью 20% (измерить настолько непостоянную величину, как радиоактивный распад можно лишь с погрешностью). Порог срабатывания сигнализации установлен на значение 0,3 мкЗв/час. Это значит, что можно быть увереным в том, что при текущем положении дел через один час я поймаю дозу в 0,16 мкЗв = 0,00016 мЗв . Этот показатель является в пределах допустимого фонового излучения.

0,2 мкЗв/час (~20 микрорентген/час) - наиболее безопасный уровень мощности фонового излучения.

0,3 мкЗв/час (~30 мкР/час) - предел безопасного фонового излучения, установленый санитарными нормами в Укранине.

0,5 мкЗв/час (~50 мкР/час) - верхний предел допустимой безопасной мощности дозы фонового излучения.

Сократив время непрерывного нахождения до нескольких часов - люди могут без особого вреда своему здоровью перенести излучение мощностью в 10 мкЗв/час , а при времени экспозиции до нескольких десятков минут - относительно безвредно облучение с интенсивностью до нескольких миллизивертов в час (при медицинских исследованиях - флюорография, небольшие рентгеновские снимки и др.).

В качестве базовой использовалась эта статья. В ней ещё очень много интересного. Описаны методы защиты от радиации а так же способ создания радиометра «из подручных средств».

Спасибо за внимание.

Вреден ли рентген и какая допустимая доза облучения? Эти вопросы волнуют пациентов, которым назначают рентгенологическое обследование. Зачастую без применения специальных аппаратов нет возможности поставить точный диагноз. Именно поэтому рентгенологическим методам отводится в медицине главная роль. С каждым годом техника усложняется и совершенствуется, снижается доза облучения. Но вред от излучения остается.

Что такое рентген

Рентгеновские лучи – невидимое электромагнитное поле, которое способно проходить во все ткани и органы человека. Длина каждой волны составляет от 8 до 10 см. Она оказывает воздействие на фотопленку, провоцируя ее потемнение.

Структура внутренних органов отображается на пленке после того, как лучи попадают на человека. Благодаря такой особенности рентгенография получила широкое распространение в медицине. Электромагнитное излучение применяют:

  1. В травматологии. Кости скелета отчетливо отражаются на пленке. С помощью рентгена можно выявить любой перелом или наличие трещины.
  2. В стоматологии. Используется для обследования зубов и полости рта. Он необходим для обнаружения нарушений структуры корня.
  3. В целях исследования легких. Рентген позволяет выявить множество тяжелых заболеваний и установить различные изменения в тканях органа.
  4. В промышленных целях. Люди применяют для обнаружения трещин в литье, резине или пластмассе.

В химии и физике также используются рентгеновские лучи в целях анализа соединений. Кроме этого, применяют для изучения кристаллов.

Вред излучения

Во время процедуры электромагнитные лучи проходят через ткани и внутренние органы, изменяя структуру клеток и атомов. Последствиями облучения могут быть как соматические осложнения (развитие различных заболеваний), так и генетические.

Больше всего влиянию рентгеновских лучей подвержена кровеносная система, включая красный костный мозг. При превышении дозы облучения развиваются различные патологии крови. Чем вреден рентген?

  • Лейкемия – заболевание характеризуется снижением количества и изменением строения лейкоцитов. Это приводит к снижению иммунитета и нарушению работоспособности внутренних органов.
  • Различные обратимые изменения – возникают при небольшом превышении дозы.
  • Тромбоцитопения – патология развивается на фоне уменьшение числа тромбоцитов и клеток плазмы, которые отвечают за ее свертываемость. В результате возникают кровотечения и повреждения стенок сосудов.
  • Эритроцитопея – заболевание развивается на фоне снижения числа красных кровяных телец, что вызывает острую недостаточность кислорода в клетках тканей.
  • Гемолитические необратимые изменения в результате влияния значительных доз облучения – в данном случае облучение представляет смертельную опасность для человека.

Кроме изменений в структуре кровяных клеток, последствия рентгеновского облучения могут быть:

  1. Формирование злокачественных новообразований. Однократное облучение во время проведения процедуры рентгенографии увеличивает риск развития рака на 0,001%.
  2. Повреждение хрусталика глаза, приводящее к возникновению катаракты.
  3. Преждевременное старение не только клеток эпидермиса, но и внутренних органов.

Важно! Рентгеновские лучи наиболее опасны при длительном и интенсивном воздействии. В современном оборудовании применяют низкочастотное облучение, которое считается относительно безвредным. Именно поэтому процедуры проводятся многократно.

Но в отличие от радиоактивного излучения, рентгеновские лучи перестают оказывать влияние сразу после отключения аппарата.

Электромагнитные лучи не имеют свойства накапливаться в организме и образовывать радиационный пучок волн. После процедуры не следует принимать мер по выведению их из организма.

Использование в стоматологии

В стоматологии рентгеновское исследование необходимо, так как множество патологий и заболеваний развиваются от корня зуба, который скрыт десной. Результаты помогают установить уровень прогрессирования болезни, провести лечение и его контроль.

Кроме этого рентген также необходим и после удаления больного зуба или его корня, проведения имплантации, протезирования. Многих родителей волнует, вреден ли рентген детям? В том случае, когда врач не может получить полной картины о состоянии зубов при осмотре, назначает рентген.

Сегодня в стоматологических клиниках применяют современное оборудование, которое позволяет получить максимум информации и минимизировать воздействие рентгеновского излучения. Продолжительность процедуры слишком мала, а значит, доза получаемого облучения незначительна.

Обследование у детей

Многие родители отказываются от процедуры, полагая, что излучение неблагоприятно воздействует на детский организм. Но в медицинской практике отмечено достаточное количество случаев, когда процедура просто необходима для постановки точного диагноза. Кроме этого, Всемирная организация здравоохранения выступает за проведение исследований с помощью рентгеновских аппаратов, когда недоступны или неинформативны другие способы диагностики.

Насколько вреден рентген для детей? На них электромагнитное излучение оказывает то же негативное воздействие, что и на взрослых, вызывая патологии кровеносной системы. Но минимизировать уровень облучения под силу каждому родителю. Прежде чем сделать снимок, необходимо знать некоторые особенности, позволяющие обезопасить малыша от вредного воздействия.

  • Исследование проводить лучше на самом современном оборудовании. Такие аппараты обладают наименьшим излучением, чем старое.
  • Процедура должна проводиться только под контролем высококвалифицированного специалиста.
  • Во время проведения исследования необходимо использовать специальные защитные средства, которые помогут снизить уровень облучения других органов и тканей. Тело ребенка, кроме того участка, где требуется сделать снимок, на время процедуры должно закрываться. Также нужно попросить ребенка закрыть глаза.

Опасность рентгеновского излучения состоит в том, что действие волн может провоцировать развитие аномалий и формирование новообразований. Среди исследований, которые проводятся с помощью рентгеновских аппаратов, выделяют несколько методов. К ним относятся:

  1. Рентгеноскопия.
  2. Рентгенография.
  3. Линейная томография.
  4. Компьютерная диагностика.
  5. Электрорентгенография.
  6. Флюорография.

Все отличаются не только возможностями диагностики, но и уровнем излучения. Флюорография и электрорентгенография детям не назначаются, так как доза радиации у них значительно выше.

Рентгенография назначается маленьким детям только в исключительных случаях, когда иного способа установить диагноз – нет. Причинами данного исследования становятся зачастую заболевания дыхательных органов, сердца, мочеполовой системы, ЖКТ и повреждения костей скелета.

Рентгенография отличается наиболее высоким уровнем излучения. Процедура проводится только в присутствии родителей, применяются средства защиты из специального материала.

В том случае, когда родители считают, что вред от рентгена достаточно значительный для ребенка, в некоторых случаях допустимо заменить его ультразвуковым исследованием или магнитно-резонансным сканированием.

Видео: рентген – школа доктора Комаровского.

Дозы облучения

Общий уровень излучения от рентгеновской аппаратуры измеряется в рентгенах, но доза, которую получает человек – в зивертах. В среднем, за год жизни человек получает дозу естественной радиации в пределах 2-3 мЗв. Складывается из показателей:

  • космическая и солнечная радиация;
  • воздух;
  • вода;
  • пища;
  • почвенно-ландшафтный фон;
  • излучение от строительных материалов.

Кроме влияния внешних факторов, в организме человека накапливаются также собственные радионуклидные соединения, которые представляют источник радиации.

Величина дозы, получаемой при каждом исследовании с помощью рентген аппарата, значительно различаются, в зависимости от типа обследования. Уровень излучений также зависит от года производства и нагрузки на оборудование.

Важно! Современная аппаратура, которой оснащают многие исследовательские центры, имеет уровень излучения в десятки раз ниже, чем старое оборудование. Новая техника в разы безопаснее для человека.

Например, когда человек делает рентген зубов на новых аппаратах, то получает дозу облучения равную 0,015-0,03 мЗв., а на старой технике уровень радиации будет составлять 0,1-0,3 мзв.

Стоит отметить, что исследования в нескольких проекциях повышают дозу радиации для человека соразмерно количеству их проведения.

Рентгеноскопический способ предусматривает не фотографирование отдельных частей тела, а визуальный осмотр через экран монитора. Это дает меньший уровень облучения, но общая доза увеличивается из-за продолжительности процедуры. К примеру, за 15 исследований органов грудной клетки суммарная доза составляет в пределах 2-3,5 мЗв.

Компьютерная томография, в зависимости от области исследования, излучает от 1 до 11 мЗв.

Магнитно-резонансная томография не применяет рентгеновские лучи. Во время проведения процедуры направляется импульс электромагнитных волн. Он возбуждает атомы водорода и измеряет сформированное таким образом электромагнитное поле. Но многие причисляют данный метод к рентгеновским методам обследования.

На основе закона и радиационной безопасности, допустимой нормой для человека является 70 мЗв за 70 лет жизни. Но даже значительные дозы считаются неопасными при непродолжительном облучении. Наиболее опасно продолжительное воздействие небольших доз.

Носителем радиации при проведении исследования на рентген аппаратах являются электромагнитные лучи. После выключения оборудования они пропадают и не оказывают воздействия на организм. Также волны не имеют свойства накапливаться в организме, в отличие от различных токсических веществ. Следовательно, после обследования не нужно принимать мер по выведению радиации из организма.

В случаях, когда врач назначает рентгенографическое исследование, не стоит отказываться, так как это самый эффективный метод для диагностирования многих заболеваний. Вред от излучения аппаратов не является опасным или смертельным при непродолжительных процедурах, особенно во время лечения зубной боли или удаления зуба. Чтобы избежать развития различных патологий, исследование внутренних органов лучше проводить на современном оборудовании.

Термин "радиоактивность" был предложен в 1898 году Марией Склодовской-Кюри, которая вместе с мужем Пьером Кюри открыла два новых радиоактивных химических элемента - полоний и радий. В честь супругов-ученых первая единица измерения радиоактивности была названа "кюри". Чему она равна, запомнить несложно. Радиоактивность в 1 кюри создает 1 г радия.(Эту единицу определяют еще так: 1 кюри - активность такого количества радиоактивного вещества, в котором происходит З,7*10 10 распадов в секунду.)

Слово "радиоактивность" часто мелькает на страницах газет и журналов в связи с аварией на Чернобыльской АЭС. В этих статьях приводятся цифры, характеризующие степень заражения местности, уровни радиации, дозы облучения. Например, пишут, что в зоне аварии Чернобыльской атомной станции есть районы, где радиоактивность составляет 1200 микрорентген в час. Считается, что безопасно для человека набрать за всю жизнь (за 70 лет) дозу облучения, не превышающую З5 бэров. И сразу возникают вопросы: как сравнить, сопоставить эти цифры: что скрывается за ними?

Радиоактивность можно измерять в различных единицах - в беккерелях, кюри, рентгенах, резерфордах, греях, зивертах и т. д., а мощность излучения - в этих же единицах, отнесенных к единице времени (секунде, часу, суткам, неделе, месяцу, году). Расскажем об основных единицах измерения радиоактивности, чаще других встречающихся в периодической печати.

1 рентген - это такая доза рентгеновских (или гамма) лучей, при которой в 1 см 3 воздуха образуется 2,08*10 9 пар ионов (или в 1 г воздуха -1,61*10 12 пар ионов).

1 бэр (биологический эквивалент рентгена) - доза любого излучения, которая производит такое же биологическое действие, как рентгеновское или гамма-излучение в 1 рентген.

Степень облучения измеряют еще в радах. Слово "рад" образовано от английского radiation absorbed doze - поглощенная доза излучения. 1 рад - это такое излучение, при котором каждый килограмм массы вещества (скажем, человеческого тела) поглощает 0,01 Дж энергии (или 1 г массы поглощает 100 эргов). Для обычных практических расчетов можно считать, что рентгены, рады и бэры равны между собой: 1 рентген=1 рад=1 бэр.

На рисунке приведены мощности различных радиоактивных источников и показано их воздействие на живые организмы. На верхней центральной шкале указано излучение, которое можно наблюдать в эпицентре взрыва атомной и водородной бомбы через определенные промежутки времени - час, день и т. д. На левой нижней шкале приведены мощности радиоактивных источников, с которыми мы сталкиваемся в обыденной жизни. Естественный радиоактивный фон образуется за счет космических лучей, излучения почвы, содержащей радиоактивные вещества, и от выпавших радиоактивных осадков.

На правой шкале приведены средние смертельные дозы для различных животных. Если человек за короткое время, скажем, час, получает дозу облучения 400 рентген, то с вероятностью 50% можно утверждать, что она смертельна. Если доза облучения повысится до 600 рентген, то вероятность летального исхода увеличится до 98%.

Когда взорвался реактор на Чернобыльской атомной электростанции, то мощность излучения из провала достигала 30000 рентген/час, а осколки реактора, попавшие на крышу четвертого блока, "светили" с мощностью 20 000 рентген/час. Нетрудно подсчитать, что достаточно было проконтактировать с ними всего полторы минуты, чтобы получить смертельную дозу облучения.

В заключение несколько слов о периоде полураспада. Так называют время, в течение которого число атомов данного радиоактивного вещества уменьшается вследствие распада вдвое. (Также в два раза уменьшается и интенсивность излучения.) Период полураспада меняется в широких пределах: от долей секунды до миллиардов лет. Среди долгоживущих изотопов, выброшенных в атмосферу в результате взрыва АЭС в Чернобыле, есть стронций-90 и цезий-1З7, периоды полураспада которых около 30 лет, поэтому зона Чернобыльской АЭС еще многие десятилетия будет непригодна для нормальной жизни.

Рисунок и сопровождающий его текст повествуют о малоприятных вещах, но радиация существует, и о ней надо знать.

Радиация - фактор воздействия на живые организмы, который никак ими не распознается. Даже у людей отсутствуют своеобразные рецепторы, которые бы ощущали присутствие радиационного фона. Специалисты тщательно изучили влияние излучения на здоровье и жизнь человека. Были созданы и приборы, с помощью которых можно фиксировать показатели. Дозы облучения характеризуют уровень радиации, под влиянием которой человек находился в течение года.

В чем измеряют излучение?

Во Всемирной паутине можно найти немало литературы, посвященной радиоактивному излучению. Практически в каждом источнике встречаются числовые показатели норм облучения и следствия их превышения. Разобраться в непонятных единицах измерения удается не сразу. Изобилие информации, характеризующей предельно допустимые дозы облучения населения, могут легко запутать и знающего человека. Рассмотрим понятия в минимальном и более понятном объеме.

Список величин весьма внушителен: кюри, рад, грэй, беккерель, бэр - это только основные характеристики дозы облучения. Зачем так много? Их применяют для определенных областей медицины и охраны окружающей среды. За единицу воздействия радиации на какое-либо вещество принимают поглощенную дозу - 1 грэй (Гр), равный 1 Дж/кг.

При воздействии излучения на живые организмы говорят об Она равна поглощенной тканями организма дозе в перерасчете на единицу массы, умноженной на коэффициент повреждения. Константа выделена для каждого органа своя. В результате вычислений получается число с новой единицей измерения - зиверт (Зв).

На основании уже полученных данных о влиянии принятого излучения на ткани определенного органа определяется эффективная эквивалентная доза облучения. Этот показатель вычисляется при помощи умножения предыдущего числа в зивертах на коэффициент, который учитывает разную чувствительность тканей к радиоактивному излучению. Его значение позволяет оценить с учетом биологической реакции организма количество поглощенной энергии.

Что такое допустимые дозы облучения и когда они появились?

Специалисты радиационной безопасности на основе данных о влиянии облучения на здоровье человека разработали предельно допустимые значения энергии, которые могут быть поглощены организмом без вреда. Предельно допустимые дозы (ПДД) указаны для разового или длительного облучения. При этом учитывают характеристику лиц, подвергающихся действию радиационного фона.

  • А - лица, работающие с источниками ионизирующего излучения. По ходу выполнения своих трудовых обязанностей подвергаются облучению.
  • Б - население определенной зоны, работники, чьи обязанности не связаны с получением радиации.
  • В - население страны.

Среди персонала различают две группы: работники контролируемой зоны (дозы облучения превышают 0.3 от годового ПДД) и сотрудники вне такой зоны (0.3 от ПДД не превышается). В пределах доз различают 4 типа критических органов, то есть тех, в чьих тканях наблюдается наибольшее количество разрушений в связи с ионизированным излучением. Учитывая перечисленные категории лиц среди населения и работников, а также критические органы, устанавливает ПДД.

Впервые пределы облучения появились в 1928 году. Величина годового поглощения радиационного фона составляла 600 миллизиверт (мЗв). Установлена она была для медицинских работников - рентгенологов. С изучением влияния ионизированного излучения на продолжительность и качество жизни ПДД ужесточились. Уже в 1956 году планка снизилась до 50 миллизиверт, а в 1996-м Международная комиссия по защите от радиации уменьшила ее до 20 мЗв. Стоит заметить, что при установлении ПДД в расчет не берут естественное поглощение ионизированной энергии.

Естественная радиация

Если избежать встречи с радиоактивными элементами и их излучением еще хоть как-то можно, то от природного фона никуда не скрыться. Естественное облучение в каждом из регионов имеет индивидуальные показатели. Оно было всегда и с годами никуда не пропадает, а лишь накапливается.

Уровень природной радиации зависит от нескольких факторов:

  • показателя высоты над уровнем моря (чем ниже, тем меньше фон, и наоборот);
  • структуры почвы, воды, горных пород;
  • искусственных причин (производство, АЭС).

Человек получает радиацию через продукты питания, излучение почв, солнца, при медицинском обследовании. Дополнительными источниками облучения становятся производственные предприятия, атомные станции, испытательные полигоны и пусковые аэродромы.

Специалисты считают наиболее приемлемым облучение, которое не превышает 0.2 мкЗв за один час. А верхняя граница нормы радиации определяется в 0.5 мкЗв в час. По прошествии некоторого времени непрерывного воздействия ионизированных веществ допустимые дозы облучения для человека увеличиваются до 10 мкЗв/ч.

По мнению врачей, за всю жизнь человек может получить радиацию в размере не более 100-700 миллизиверт. По факту люди, проживающие в горной местности, подвергаются излучению в несколько больших размерах. Средние показатели поглощения ионизированной энергии в год составляют около 2-3 миллизиверт.

Как именно радиация влияет на клетки?

Ряд химических соединений обладает свойством радиационного излучения. Происходит активное деление ядер атомов, что приводит к высвобождению большого количества энергии. Эта сила способна буквально вырывать электроны от атомов клеток вещества. Сам процесс получил название ионизации. Атом, который подвергся такой процедуре, изменяет свои свойства, что приводит к изменению всего строения вещества. За атомами меняются молекулы, за молекулами общие свойства живой ткани. С возрастанием уровня облучения увеличивается и количество измененных клеток, что приводит к более глобальным переменам. В связи с чем и были высчитаны допустимые дозы облучения для человека. Дело в том, что изменения в живых клетках затрагивают и молекулу ДНК. Иммунная система активно восстанавливает ткани и даже способна «починить» поврежденную ДНК. Но в случаях значительного облучения или нарушения защитных сил организма развиваются заболевания.

С точностью предположить вероятность развития болезней, возникающих на клеточном уровне, при обычном поглощении радиации сложно. Если же эффективная доза облучения (это около 20 мЗв в год для работников промышленности) превышает рекомендуемые показатели в сотни раз, общее состояние здоровья значительно снижается. Иммунная система дает сбои, что влечет за собой развитие различных заболеваний.

Огромные дозы радиации, которые могут быть получены вследствие аварии на АЭС или взрыва атомной бомбы, не всегда совместимы с жизнью. Ткани под воздействием измененных клеток погибают в большом количестве и просто не успевают восстановиться, что влечет за собой нарушение жизненно важных функций. Если часть тканей сохранится, то у человека будет шанс на выздоровление.

Показатели допустимых доз облучения

Согласно нормам радиационной безопасности, установлены предельно допустимые величины ионизирующего облучения в год. Рассмотрим приведенные показатели в таблице.

Как видно из таблицы, допустимая доза облучения в год для работников вредных производств и АЭС сильно отличается от показателей, выведенных для населения санитарно-защищенных зон. Все дело в том, что при длительном поглощении допустимого ионизирующего излучения организм справляется со своевременным восстановлением клеток без нарушения здоровья.

Разовые дозы облучения человека

Значительное увеличение радиационного фона приводит к более серьезным повреждениям тканей, в связи с чем начинают неправильно функционировать или вовсе отказывать органы. возникает лишь при получении огромного количества ионизирующей энергии. Незначительное превышение рекомендуемых доз может привести к заболеваниям, которые могут быть вылечены.

Превышающие норму дозы облучения и последствия

Разовая доза (мЗв)

Что происходит с организмом

Изменений в состоянии здоровья не наблюдаются

Снижается общее количество лимфоцитов (снижается иммунитет)

Значительное снижение лимфоцитов, признаки слабости, тошнота, рвота

В 5% случаев смертельный исход, у большинства наблюдается так называемое лучевое похмелье (признаки схожи с алкогольным похмельем)

Изменения в крови, временная мужская стерилизация, 50% смертности в течение 30 дней после облучения

Смертельная доза облучения, не подлежит лечению

Наступает кома, смерть в течение 5-30 минут

Мгновенная смерть от луча

Разовое получение большого количество радиационного излучения негативно влияет на состояние организма: клетки стремительно разрушаются, не успевая восстановиться. Чем сильнее воздействие, тем больше возникает очагов поражения.

Развитие лучевой болезни: причины

Лучевой болезнью называют общее состояние организма, вызванное влиянием радиоактивного излучения, превышающего ПДД. Поражения наблюдаются со стороны всех систем. Согласно заявлениям Международной комиссии по радиологической защите, дозы облучения, вызывающие лучевую болезнь, начинаются с показателей в 500 мЗв за один раз или более 150 мЗв в год.

Поражающее действие высокой интенсивности (более 500 мЗв разово) возникает вследствие использования атомного оружия, его испытаний, возникновения техногенных катастроф, проведения процедур интенсивного облучения при лечении онкологических, ревматологических заболеваний и болезней крови.

Развитию хронической лучевой болезни подлежат медицинские работники, находящиеся в отделении лучевой терапии и диагностике, а также пациенты, которые часто подвергаются радионуклидным и рентгенологическим исследованиям.

Классификация лучевой болезни, в зависимости от доз радиации

Болезнь характеризуют исходя из того, какую дозу ионизирующего облучения получил больной и как долго это происходило. Однократное воздействие приводит к острому состоянию, а постоянно повторяющееся, но менее массивное - к хроническим процессам.

Рассмотрим основные формы лучевой болезни, в зависимости от полученного разового облучения:

  • лучевая травма (менее 1 Зв) - возникают обратимые изменения;
  • костномозговая форма (от 1 до 6 Зв) - имеет четыре степени, в зависимости от полученной дозы. Смертность при таком диагнозе составляет более 50%. Поражаются клетки красного костного мозга. Состояние может улучшить трансплантация. Период восстановления долгий;
  • желудочно-кишечная (10-20 Зв) характеризуется тяжелым состоянием, сепсисом, кровотечениями ЖКТ;
  • сосудистая (20-80 Зв) - наблюдаются гемодинамические нарушения и тяжелая интоксикация организма;
  • церебральная (80 Зв) - летальный исход в течение 1-3 дней вследствие отека мозга.

Шанс на выздоровление и реабилитацию имеют больные с костномозговой формой (в половине случаев). Более тяжелые состояния не подлежат лечению. Смерть наступает в течение нескольких дней или недель.

Течение острой лучевой болезни

После того как была получена высокая доза излучения, и доза облучения достигла 1-6 Зв, развивается острая лучевая болезнь. Врачи разделяют состояния, которые сменяют друг друга, на 4 этапа:

  1. Первичная реактивность. Наступает в первые часы после облучения. Характеризуется слабостью, понижением артериального давления, тошнотой и рвотой. При облучении свыше 10 Зв переходит сразу в третью фазу.
  2. Латентный период. После 3-4 дней с момента облучения и до месячного срока состояние улучшается.
  3. Развернутая симптоматика. Сопровождается инфекционными, анемическими, кишечными, геморрагическими синдромами. Состояние тяжелое.
  4. Восстановление.

Острое состояние лечится в зависимости от характера клинической картины. В общих случаях назначается путем введения средств, нейтрализующих радиоактивные вещества. При надобности выполняется переливание крови, трансплантация костного мозга.

Пациенты, которым удается пережить первые 12 недель течения острой лучевой болезни, в основном имеют благоприятный прогноз. Но даже при полном восстановлении у таких людей возрастает риск развития онкологических заболеваний, а также рождения потомства с генетическими аномалиями.

Хроническая лучевая болезнь

При постоянном воздействии радиоактивного излучения в меньших дозах, но суммарно превышающих в год 150 мЗв (не считая природного фона), начинается хроническая форма лучевой болезни. Ее развитие проходит три этапа: формирование, восстановление, исход.

Первый этап протекает в течение нескольких лет (до 3). Тяжесть состояния может быть определена от легкой до тяжелой. Если изолировать пациента от места получения радиоактивного излучения, то в течение трех лет наступит фаза восстановления. После чего возможно полное выздоровление или же, наоборот, прогрессирование болезни с быстрым смертельным исходом.

Ионизированное излучение способно в мгновения разрушить клетки организма и вывести его из строя. Именно поэтому соблюдение предельных доз излучения является важным критерием работы на вредном производстве и жизни неподалеку от АЭС и испытательных полигонов.

Облучение подстерегает нас в самых неожиданных местах, потому так важно знать безопасную дозу радиации для человека и его организма.

Еще недавно человечеству казалось, что радиация не способна нанести большого урона человеку и его жизнедеятельности, однако, каждый, кто непосредственно сталкивался с подобным излучением, почувствовал на себе всю опасность данного процесса. Сегодня знамениты эксперименты Марии Кюри, которая контактировала с излучением на протяжении продолжительного срока.

Незнание опасности привело не только к скоропостижной и мучительной смерти великой женщины, но и к необходимости ее захоронения в полной изоляции на долгие годы. До сих пор саркофаг, в котором находится исследователь, излучает опасные дозы радиации, способные навредить человеку.

Еще один яркий пример вреда, нанесенного радиационным фоном – авария на знаменитой Чернобыльской АЭС. В апреле 1986 года во время рядовых испытаний на одном из энергоблоков, находящемся в непосредственной близости к рабочему городку Припять, произошел сильнейший взрыв, огромные дозы радиации обрушились не только на работников станции и жителей города, но и на большую часть Европы.

Сегодня, спустя несколько десятилетий, город ассоциируется с ужасом тех лет – жить здесь невозможно до сих пор из-за высокого радиационного фона, а саму станцию вынужденно упрятали в прочный стальной саркофаг.

Самым печальным является тот факт, что практически все, кто принимал непосредственное участие в ликвидации последствий аварии, скоропостижно скончались от лучевой болезни. Именно это заболевание может спровоцировать опасное излучение, а муки, в которых умирает пострадавший, напоминаю настоящее суровое наказание.

К сожалению, в то время мало кто знал, что радиация способна убить человека с такой удивительной легкостью, потому и последствия оказались весьма плачевными.

Что такое радиация?

На самом деле понятие радиации гораздо шире, чем мы привыкли думать. Ученые относя к этому термину излучения, распространяющиеся в виде элементарных частиц и квантовых потоков. Выделяется несколько видов радиации:

  1. Световая.
  2. Инфракрасная.
  3. Ультрафиолетовая.
  4. Ионизирующая.

Особенный интерес человечество проявляет к последнему виду излучения – ионизирующему. Именно оно обладает способностью проникать в клетки любого живого организма и разрушать важный элемент – белок, являющийся строительным инструментом для тканей.

Процессы, происходящие в результате подобного разрушения, могут привести не только к развитию серьезных патологий, но и к смерти живого организма, потому под словом «радиация» в современном мире понимается именно такое излучение.

Виды радиации

Большинство людей сегодня ошибочно считают, что любая радиация непременно несет за собой смертельную опасность. На деле все обстоит совершенно иначе, существует даже безопасная доза радиации для человека, не наносящая практически никакого урона при разовом воздействии. Конечно, если соприкасаться с излучением регулярно, эффект будет исключительно негативным – частицы имеют свойство скапливаться на одежде, вещах, волосах и даже коже человека.

Некоторое излучение человечество научилось использовать с целью получения собственной выгоды. Среди таких факторов применения можно отметить следующие:

  • селекция различных видов животных;
  • лечение опасных заболеваний, в том числе онкологии;
  • народное хозяйство;
  • энергетика.

Обратите внимание! Следует различать радиацию и радиоактивность. Несмотря на то что эти понятия тесно связаны между собой, разница в них очевидна. Радиация – это потоки энергии, способные существовать в открытом пространстве до соприкосновения с предметом или живым существом, а радиоактивность – это способность определенного предмета поглощать эти самые потоки.

Как было сказано выше, существует несколько видов радиационного излучения. Среди них можно выделить основные и самые распространенные:

  1. Альфа-излучение, основанное на положительно заряженных частицах с большой массой. Подобный вид излучения способен ионизировать организм, потому опасен для человека. Проникая в желудочно-кишечный тракт, частицы не распространяются по всему организму, так как восприимчивы к преградам.
  2. Бета излучение, чья проникающая способность замено выше, чем у предыдущего вида. Предотвратить облучение в этом случае поможет алюминиевый лист или деревянный саркофаг.
  3. Гамма-лучи и рентгеновское излучение – частицы, заряженные нейтрально. У них наблюдается максимальная проникающая способность, за счет чего возникает сильная опасность не только для человеческого, но и для любого другого живого организма. Защита от такого облучения состоит из создания плотного саркофага, например, созданного из стали, при этом слой должен составлять несколько сантиметров.

Помимо распределения излучений, основанного на характере лучей, существуют и другие разновидности радиации. Излучение может производиться как естественным путем, так и извлекаться в результате человеческого труда. Второй вариант чаще используется на промышленных предприятиях с целью получения энергии, и именно такой способ применялся на Чернобыльской АЭС.

Если говорить о природе, то основным источником радиационного фона на нашей планете является Солнце – звезда, находящаяся в непосредственной близости к Земле. Доза облучения, проникающая на поверхность, остается в рамках допустимого за счет озонового слоя, который эффективно поглощает лучи и не дает им уничтожить человечество.

Интересно, что даже человеческий организм, функционирующий в нормальном режиме, регулярно производи радиационные лучи, которые никак не сказываются на жизнедеятельности.

Искусственная радиация, как правило, возникает в процессе деятельности атомных электростанций, создания любого вида техники и даже ее применения. Использование радиоактивных изотопов в процессе лечения любого страшного заболевания также провоцирует появление лучей.

Обратите внимание! Отходы, регулярно выбрасываемые большинством предприятий, функционирующих на нашей планете, не только разрушают озоновый слой, но и создают повышенную радиационную опасность. Как правило, вещества, входящие в состав производственных отходов, требуют профессиональной утилизации, но предприятий, способных провести это процесс, сегодня очень мало.

Внешнее и внутреннее облучение

Помимо уже перечисленных категорий облучения, существует еще и распределение по типу облучения человека. Он напрямую зависит от вида проникновения вредного элемента в организм одним из следующих способов:

  • Вредные вещества проникают в организм через пищеварительный тракт вместе с пищей или жидкостью, что полностью связано с образом жизни или характером работы пострадавшего.
  • Излучение может проникать в организм и из внешней среды. Если человек работает на предприятии, непосредственно связанном с излучением, или проживает недалеко от подобного завода или станции, через его кожу и волосы в организм регулярно попадают вредные вещества, постепенно разрушающие строительные элементы всех систем организма.

Обратите внимание! Опасность радиационного облучения несут не только крупные предприятия, нацеленные на получение энергии или производство ресурсов, но даже простые строительные материалы, при изготовлении которых не соблюдалась или недостаточно соблюдалась технология и техника безопасности.

Дозы

Доза облучения, которая не нанесет вреда человеку, определяется не только из его индивидуальных показателей, но зависит о местности проживания человека и характера его работы. При длительном воздействии небольшого количества лучей организм начинает самостоятельную борьбу и адаптируется к условиям, тем самым защищая себя от серьезного поражения.

Величина, показывающая уровень облучения, определяется дозой, полученной за конкретный период времени.

  1. Экспозиционная доза, определяющая количество проникающих в организм гамма-лучей. Основной величиной, которая и отмечает количество, является рентген.
  2. Доза, которую смог поглотить человеческий или другой животный организм или даже предмет измеряется в так называемых «греях».
  3. Доза, допустимая для облучения организма, не влияющая на его нормальную жизнедеятельность, для каждого организма определяется в индивидуальном порядке.
  4. Полноценная доза полученного излучения рассчитывается также индивидуально и полностью зависит от продолжительности и вида облучения.

Нормы

Города и поселения, находящиеся в непосредственной близости от серьезных промышленных предприятий, регулярно находятся в опасности. Именно поэтому в таких поселениях производятся измерения радиационного фона для того, чтобы исключить возможное поражение граждан.

Средний показатель нормы составляет около пятидесяти микрорентген в час, но он может значительно меняться. Например, в зонах с повышенной радиацией нормальный показатель будет расти, а в экологически чистых зонах радиационный фон значительно уменьшается. Исследовать подобные показатели рекомендуется исходя из индивидуальных особенностей определенной территории.

Важно понимать, что при регулярном нахождении в зоне повышенного радиационного фона создается определенная опасность. Проникающие лучи воздействуют на весь человеческий организм, разрушая его структуру и препятствуя нормальному росту и развитию клеток.

Потому специалистам, работающим в зонах повышенной опасности, необходимо не только часто меняться сменами и покидать зараженное помещение, но и регулярно принимать душ, носить защитную одежду и проверять собственный радиационный фон.

Заражение

Стоит обратить внимание на то, что высокую опасность для человеческого здоровья несет не только разовое нахождение в неблагополучной зоне, но и регулярное воздействие небольшого количества гамма-лучей. Радиационным заражением принято считать облучение, которое способно нанести серьезный вред здоровью и жизни человека.

Основной группой риска являются люди, проживающие вблизи территорий, на которых происходили аварии или утечки вредоносного вещества, так как период распада у подобных элементов довольно длительный и может составлять десятки, а иногда и сотни лет.

Нормальный радиационный фон может быть нарушен в результате утечки, произошедшей при производстве или транспортировке вредного вещества, в результате техногенной катастрофы, а также при утере радиоисточников.

Обратите внимание! Самыми опасными веществами, которые могут стать причиной заражения, являются йод-131, стронций, цезий, кобальт и америций. В случае с этими веществами период полураспада может занимать от нескольких суток до нескольких лет, а в случае техногенных аварий на атомных станциях урон от выпадения подобных элементов максимален.

Видео: подробнее о радиации.

Опасные дозы

Несмотря на все меры предосторожности, которые существуют на большинстве современных предприятий, облучение радиацией до сих пор может нести смертельную опасность для людей. Убить человека за несколько дней может доза радиации, равная 15Гр, при этом она считается максимальной.

Уже на 3-4 Гр человек получает практически несовместимое с жизнью заражение, и половина пострадавших постепенно умирает. При заражении, равном 9Гр, умирает практически каждый пострадавший за редким исключением.

После подобного заражения у человека развивается лучевая болезнь, длительность которой зависит от количества лучей и вида заражения. Средняя продолжительность жизни пациентов редко достигает трех недель, хотя в истории были случаи, когда пострадавшие держались несколько месяцев. Смерть от такого заражения весьма мучительна, органы постепенно разрушаются, а первым симптомом считается общее недомогание и облысение.

Симптомы возникновения лучевой болезни полностью зависят от того, какое количество лучей попало в организм. Слабое отравление чаще всего сопровождается головокружениями, тошнотой и общим недомоганием, может проявляться рвотный позыв. При следующей степени существующие симптомы заметно усиливаются, начинается развитие патологических процессов и разрушение клеток.

Две последние стадии предполагают полное нарушение всех важных органов и их отказ, что приводит к мучительной смерти. Шансов на выздоровление у пациентов с серьезными поражениями практически нет, потому рекомендуется соблюдать все меры безопасности на предприятии и регулярно проводить проверки на радиационный фон.

Несмотря на то что такие вредные и опасные лучи нанесли непоправимый урон тысячам людей, сегодня именно они способны и спасти человеческую жизнь. Практически каждый сталкивается с рентгеновскими лучами, проходя медицинское обследование, а лечение лучами является одним из эффективных методов борьбы с онкологическими заболеваниями.

Возможно, когда-то человечество научится обращаться с опасными элементами и они станут частью повседневной жизни, но сегодня все еще важно обезопасить себя и своих близких от влияния такого негативного фактора.



Просмотров