История изобретения термометра и виды температур. Шкала фаренгейта и другие температурные шкалы

В настоящее время рекомендована к применению Международ­ная практическая температурная шкала МПШТ-68. Единицей тем­пературы утвержден Кельвин (К). Температуру, определяемую по этой шкале, называют термодинамической Т (например, T = 300 К).

Допускается использовать также температуру t по шкале Цель­сия, определяемую выражением

t = Т - 273,15. (2)

Эта температура выражается в градусах Цельсия °С (например, t = 20 °С). Кельвин и градус Цельсия имеют одинаковую величину и оба равны 1/100 разности температур кипения и замерзания воды при атмосферном давлении.

Шкалы Кельвина и Цельсия отличаются только точкой отсчета: нуль в шкале Кельвина сдвинут вниз на 273,15 К по сравнению со шкалой Цельсия. Температура по шкале Цельсия может быть отри­цательной t < 0 °С, тогда как термодинамическая температура всег­да положительна Т > 0. При приближении термодинамической тем­пературы к нулю (T > 0) внутри тела молекулы постепенно замед­ляют свое колебательное движение около состояния равновесия, и при Т = 0 оно прекращается.

Своеобразными «хранителями» температурных шкал являются постоянные температуры фазового равновесия между двумя или тремя фазами вещества: температуры кипения и затвердевания, температуры тройных точек. Эти значения температур называются опорными, реперными точками. Значения основных реперных точек МПШТ-68 приведены в табл. 1.

Таблица1. Основные реперные точки МПШТ-68

Равновесное состояние

Тройная точка водорода

Тройная точка кислорода

Точка кипения кислорода

Точка замерзания воды

Тройная точка воды

Точка кипения воды

Точка затвердевания цинка

Точка затвердевания серебра

Точка затвердевания золота

За рубежом до сих пор довольно часто применяются темпера­турные шкалы Фаренгейта (t , °F) и Ренкина (T, °R). Они выража­ются следующим образом через температуры Цельсия и Кельвина соответственно:

t °С = (t ° F - 32)/1,8; (3)

T = T ° R / 1,8 . (4)

4. Методы измерения температуры

Температура является мерой кинетической энергии составляю­щих тело молекул. Кинетическую же энергию составляю­щих тело молекул измерить невозможно. Поэтому для измерения температуры применяют косвенные методы, в которых используют зависимость каких-либо свойств вещества от температуры и по изменению этих свойств судят об изменении тем­пературы. Такими свойствами являются объем вещества, давление насыщенного пара, электрическое сопротивление, термоэлектродви­жущая сила, тепловое излучение и др.

Стеклянные жидкостные термометры. Принцип действия стек­лянных жидкостных термометров основан на температурном расши­рении жидкостей. Для того чтобы изменение объема жидкости при изменении температуры было отчетливо видно, обычно к заключен­ному в резервуар объему жидкости примыкает трубка с тонким ка­налом - капилляром. Свободная поверхность жидкости находится в этом капилляре, в результате чего небольшие температурные изме­нения объема жидкости вызывают значительное отчетливо наблюда­емое перемещение свободной поверхности мениска в капилляре. При известных температурах t 1 и t 2 определяются два положения мениска, после чего расстояние между ними делится на равные от­резки, числом равные t 1 - t 2 . Таким образом градуируется термо­метр, и только после нанесения этих делений на шкалу он может быть использован для измерения.

Стеклянные термометры можно применять для измерения темпе­ратур в интервале от -200 до +750 °С, но обычно до температур, не превышающих 150-200 °С. Для их заполнения, в зависимости от диапа­зона измеряемых температур, используются различные, обычно подкра­шиваемые жидкости: ртуть, толуол, этиловый спирт и т.д.

Недостатки жидкостных термометров: сравнительно большой размер, необходи­мость визуального определения температуры и невозможность представления показаний в виде электрического сигнала.

Термометры сопротивления. В термо­метрах сопротивления используется свойство изменения электрического сопротивления металлов при изменении его температуры. Термометры сопротивления применяются для измерения широкого диапазона темпе­ратур. Платиновый термометр сопротивле­ния является эталонным прибором для из­мерения температур в интервале от 13,81 до 903,89 К. Конструкция платинового термометра сопротивления представлена на рис. 2. Платиновая проволока диамет­ром 0,05-0,10 мм, свитая в спираль, уло­жена на кварцевом каркасе геликоидной формы. К концам спирали припаяны вы­воды из платиновой проволоки. Все ус­тройство помещено в защитную кварцевую трубку. Сопротивление платинового тер­мометра измеряют обычно потенциометрическим способом (принципиальная схе­ма приведена на рис. 3).

Рис. 2. Платиновый термометр сопротивления: а - чувствительная часть, б - головка термометра; 1 - защитная кварцевая трубка; 2 - кварцевый каркас; 3 - спираль из платиновой проволоки; 4 - платиновые выводы; 5 - контактные винты; 6 - изоляционная прокладка

Вместо платины в термометрах сопротивления можно применять и другие металлы или полупроводниковые материалы. Основным недостатком термометров сопротивления являются достаточно большие габариты чувствительной части.

Рис. 3. Принципиальная схема измерения сопротивления платинового термометра:

1 - потенциометр

Термоэлектрические термометры. Термоэлектрические термо­метры (термопары) получили широкое распространение как в лабо­раторной практике, так и в промышленном производстве. Это объясняется их уникальными свойствами.

Термопара представляет собой два разнородных металлических проводника (проволочки различных металлов), составляющих общую электрическую цепь. Если температуры мест соединений (спаев) про­водников t 1 и t 2 неодинаковы, то возникает термоЭДС и по цепи проте­кает электрический ток. Причиной возникновения термоЭДС является различная плотность свободных электронов в различных металлах при одинаковой температуре. ТермоЭДС тем больше, чем больше разность температур спаев. По величине термоЭДС судят о разности температур спаев.

Электродами термопары являются проволока диаметром 0,1-3,2 мм. Используются следующие термопары: платинородий-платиновая (от 0 до 1300 °С), платинородиевая (от 300 до 1600 °С), вольфрамрениевая (от 0 до 2200 °С), хромель-алюмелевая (от -200 до 1000 °С), хромель-копелевая (от -50 до 600 °С), медь-копелевая (от -200 до 100 °С) и другие.

При измерении температуры один спай цепи термопары, так на­зываемый холодный спай, находится при 0 °С (в тающем льде в со­суде Дьюара), а другой - горячий спай - в среде, температуру которой нужно измерить. Таблицы термоЭДС термопар составлены именно для этого случая. Если по каким-либо причинам не удается поместить холодный спай в среду с температурой 0 °С и он нахо­дится при комнатной температуре (например при 20 °С), то в этом случае возникающая термоЭДС соответствует разности температур горячего и холодного спаев и при определении температуры нужно ввести поправку на холодный спай. Для этого необходимо измерен­ную термоЭДС сложить с термоЭДС, соответствующей температуре холодного спая (20 °С), и по полученному значению определить температуру при помощи таблиц.

По схеме соединения различают термопары с одним и двумя хо­лодными спаями.

Рис.4. Типы термопар: 1 –горячий спай; 2 – холодный спай

Схема термопары с одним холодным спаем изображена на рис. 4,а. Вся цепь выполняется из двух разнородных проводников. В цепь включен милливольтметр для измерения термоЭДС.

Схема с двумя холодными спаями представлена на рис. 4,6. Отличие этой схемы от первой заключается в том, что в цепь термопары вводятся медные провода. Медные провода изображены сплошной линией. Такая схема обычно и используется на практике ввиду того что измерительный прибор может находиться на значительном удалении от места измерения температуры.

Существенным достоинством термопар и термометров сопротивления является то, что они преобразуют значения измеряемой температуры в величину электрического сигнала. Это дает возможность передавать сигнал на большие расстояния, а также использовать его в качестве управляющего сигнала в системах автоматического регулирования и управления.

Инфракрасные термометры. Инфракрасные термометры содержат высокочувствительный датчик, который преобразует энергию инфракрасного (теплового) излучения поверхности объекта в электрический сигнал. Затем эта информация преобразуется в температурные данные, выводимые в цифровом виде на дисплей. Количественное соотношение между интенсивностью теплового излучения поверхности и ее температурой устанавливается законом Стефана-Больцмана для теплового излучения. Диапазон измерения температуры таким прибором от -50 о С до 1500 о С.

Инфракрасный термометр позволяет измерять температуру поверхности бесконтактным способом и на значительном расстоянии. Это делает его особенно удобным в тех случаях, когда другие методы измерения температуры непригодны. Например, если нужно измерить температуру движущегося предмета, поверхности под напряжением или труднодоступной поверхности. Прибор обычно изготавливается в форме пистолета. Для выбора точки измерения температуры на поверхности используется лазерный целеуказатель.

Температура - важнейший параметр окружающей среды (ОС). Температура ОС характеризует степень нагретости, которая определяется внутренней кинетической энергией теплового движения молекул. Температуру можно определить как параметр теплового состояния. Для сравнения степени нагретости тел использует изменение какого либо физического их свойства, зависящего от температуры и легко поддающегося измерению (например, объемное расширение жидкости, изменение электрического сопротивления металла и т.д.).

Чтобы перейти к количественному определению температуры, необходимо установить шкалу температур., т.е. выбрать начало отсчета (нуль температурной шкалы) и единицу измерения температурного интервала (градус).

Температурные шкалы, применяемые до введения единой температурной шкалы, представляет собой ряд отметок внутри температурного интервала, ограниченного двумя легко воспроизводимыми постоянными (основными реперными или опорными) точками кипения и плавления химически чистых веществ. Эти температуры принимали равными произвольным числовым значениям t" и t”. Таким образом, 1 град = (t" - t”)/n, где t" и t” - две постоянные легко воспроизводимые температуры; n - целое число, на которое разбит температурный интервал.

Для разметки температурной шкалы чаще всего использовали объемное расширение тел при нагревании, а за постоянные точки принимали температуры кипения воды и таяния льда. На этом принципе основаны температурные шкалы, созданные Ломоносовым, Фаренгейтом, Реомюром и Цельсием. При построении этих шкал была принята линейная зависимость между объемным расширением жидкости и температурой, т.е.

где k - коэффициент пропорциональности (соответствует относительно температурному коэффициенту объемного расширения). Интегрирование уравнения (1) дает

где D - постоянная интегрирования.

Для определения постоянных k и D используют две выбранные температуры t" и t”. Приняв при температуре t" объем V", а при температуре t” - V”, получим

t" = kV" + D; (3)

t” = kV” + D; (4).

Вычтя уравнение (3) из уравнений (2) и (4), получим

t - t" = k(V - V") (5);

t” - t" = k(V” - V") (6).

Разделив уравнение (5) на уравнение (6), получим

где t" и t” - температура соответственно таяния льда и кипения воды при нормальном давлении и ускорении свободного падения 980,665 см/с 2 ; V" и V” - объемы жидкостей, соответствующие температурам t" и t”; V - объем жидкости, соответствующий температуре t.

В природе нет жидкостей с линейной зависимостью между коэффициентом объемного расширения и температурой поэтому показания термометров зависят от природы термометрического вещества (ртути, спирта и т.п.).

С развитием науки и техники возникла необходимость в создании единой температурной шкалы, несвязанной с какими либо частными свойствами термометрического вещества и пригодные в широком интервале температур. В 1848 году Кельвин, исходя из второго начала термодинамики, предложил определять температуру на основании равенства

T 2 /(T 2 - T 1) = Q 2 /(Q 2 - Q 1),

где Т 1 и Т 2 - температура соответственно холодильника и нагревателя; Q 1 и Q 2 - количество теплоты, соответственно полученной рабочим веществом от нагревателя и отданной холодильнику (для идеальной тепловой машины, работающей по циклу Карно).

Пусть Т 2 равно температуре кипения воды (Т 100), а Т 1 - температура таяния льда (Т 0); тогда, приняв разность T 2 - T 1 равной 100 град и обозначив количество теплоты, соответствующее этим температурам, через Q 100 и Q 0 , получим

Т 100 = Q 100 100/(Q 100 - Q 0); Т 0 = Q 0 100/(Q 100 - Q 0).

При любой температуре нагревателя

Т = Q 100/(Q 100 - Q 0) (8).

Уравнение является уравнением термодинамической шкалы температур, которое не зависит от свойств термометрического вещества.

Решением XI Генеральной конференции по мерам и весам в России предусмотрено применение двух температурных шкал: термодинамической и международной практической.

В термодинамической шкале Кельвина нижней точкой является точка абсолютного нуля (0К), а единственной экспериментальной основной точкой - тройная точка воды. Этой точке соответствует 273,16К. Тройная точка воды (температура равновесия воды в твердой, жидкой и газообразной фазах) ваше точки таяния льда на 0,01 град. Термодинамическую шкалу называют абсолютной, если в ней за нуль принята точка на 273,16К ниже точки плавления льда.

Строго говоря, осуществить шкалу Кельвина невозможно, т.к. уравнение ее выведено из идеального цикла Карно. Термодинамическая шкала температур совпадает со шкалой газового термометра, наполненного идеальным газом. Известно, что некоторые реальные газы (водород, гелий, неон, азот) в широком интервале температур по своим свойствам сравнительно мало отличаются от идеального газа. Так, шкала водородного термометра (с учетом поправок на отклонение свойств реального газа от идеального) представляет собой практически термодинамическую шкалу температур.

Международная практическая температурная шкала основана на ряде воспроизводимых равновесных состояний, которым соответствуют определенные значения температур (основные реперные точки), и на эталонных приборах, градуированных при этих температурах. В интервале между температурами основных реперных точек интерполяцию выполняют по формулам, устанавливающим связь между показаниями эталонных приборов и значениями международной практической шкалы. Основные реперные точки реализуются как определенные состояния фазовых равновесий некоторых чистых веществ и охватывают интервал температур от -259,34 0 С (тройная тоска равновесия водорода) до +1064,43 0 С (точка затвердевания золота).

Эталонным прибором, используемым в области температур от -259,34 до +630,74 0 С, является платиновый термометр сопротивления, от +630,74 до +1064,43 0 С - термоэлектрический термометр с термоэлектродами и платинародия (10% родия) и платины. Для области температур выше 1064,43 0 С температуру по международной практической шкале определяют в соответствии с законом излучения Планка.

Температуру, измеряемую по международной практической шкале, обозначают t, а числовые значения сопровождают знаком 0 С.

Температура по термодинамической шкале связана с температурой по международной практической шкале соотношением T = t + 273,15. На IX генеральной конференции по мерам и весам в 1948 году международная практическая температурная шкала была названа шкалой Цельсия. Для международной практической шкалы температур и шкалы Цельсия общей является одна постоянная точка (температура кипения воды); во всех остальных точках эти шкалы существенно различаются, особенно при высоких температурах.

История

Слово «температура» возникло в те времена, когда люди считали, что в более нагретых телах содержится большее количество особого вещества - теплорода, чем в менее нагретых. Поэтому температура воспринималась как крепость смеси вещества тела и теплорода. По этой причине единицы измерения крепости спиртных напитков и температуры называются одинаково - градусами.

Из того, что температура - это кинетическая энергия молекул, ясно, что наиболее естественно измерять её в энергетических единицах (т.е. в системе СИ в джоулях). Однако измерение температуры началось задолго до создания молекулярно-кинетической теории, поэтому практические шкалы измеряют температуру в условных единицах - градусах.

Шкала Кельвина

В термодинамике используется шкала Кельвина, в которой температура отсчитывается от абсолютного нуля (состояние, соответствующее минимальной теоретически возможной внутренней энергии тела), а один кельвин равен 1/273.16 расстояния от абсолютного нуля до тройной точки воды (состояния, при котором лёд, вода и водяной пар находятся в равновесии). Для пересчета кельвинов в энергетические единицы служит постоянная Больцмана. Используются также производные единицы: килокельвин, мегакельвин, милликельвин и т.д.

Шкала Цельсия

В быту используется шкала Цельсия, в которой за 0 принимают точку замерзания воды, а за 100° точку кипения воды при атмосферном давлении. Поскольку температура замерзания и кипения воды недостаточно хорошо определена, в настоящее время шкалу Цельсия определяют через шкалу Кельвина: градус Цельсия равен кельвину, абсолютный ноль принимается за −273,15 °C. Шкала Цельсия практически очень удобна, поскольку вода очень распространена на нашей планете и на ней основана наша жизнь. Ноль Цельсия - особая точка для метеорологии , поскольку замерзание атмосферной воды существенно всё меняет.

Шкала Фаренгейта

В Англии и, в особенности, в США используется шкала Фаренгейта. В этой шкале на 100 градусов раздёлен интервал от температуры самой холодной зимы в городе, где жил Фаренгейт, до температуры человеческого тела. Ноль градусов Цельсия - это 32 градуса Фаренгейта, а градус Фаренгейта равен 5/9 градуса Цельсия.

В настоящее время принято следующее определение шкалы Фаренгейта: это температурная шкала, 1 градус которой (1 °F) равен 1/180 разности температур кипения воды и таяния льда при атмосферном давлении, а точка таяния льда имеет температуру +32 °F. Температура по шкале Фаренгейта связана с температурой по шкале Цельсия (t °С) соотношением t °С = 5/9 (t °F - 32), то есть изменение температуры на 1 °F соответствует изменению на 5/9 °С. Предложена Г. Фаренгейтом в 1724.

Шкала Реомюра

Предложенна в 1730 году Р. А. Реомюром, который описал изобретённый им спиртовой термометр.

Единица - градус Реомюра (°R), 1 °R равен 1/80 части температурного интервала между опорными точками - температурой таяния льда (0 °R) и кипения воды (80 °R)

1 °R = 1,25 °C.

В настоящее время шкала вышла из употребления, дольше всего она сохранялась во Франции, на родине автора.

Пересчёт температуры между основными шкалами

Кельвин

Цельсий

Фаренгейт

Кельвин (K)

С + 273,15

= (F + 459,67) / 1,8

Цельсий (°C)

K − 273,15

= (F − 32) / 1,8

Фаренгейт (°F)

K · 1,8 − 459,67

C · 1,8 + 32

Сравнение температурных шкал

Описание

Кельвин Цельсий

Фаренгейт

Ньютон Реомюр

Абсолютный ноль

−273.15

−459.67

−90.14

−218.52

Температура таяния смеси Фаренгейта (соли и льда в равных количествах)

255.37

−17.78

−5.87

−14.22

Температура замерзания воды (нормальные условия)

273.15

Средняя температура человеческого тела ¹

310.0

36.8

98.2

12.21

29.6

Температура кипения воды (нормальные условия)

373.15

Температура поверхности Солнца

5800

5526

9980

1823

4421

¹ Нормальная температура человеческого тела - 36.6 °C ±0.7 °C, или 98.2 °F ±1.3 °F. Приводимое обычно значение 98.6 °F - это точное преобразование в шкалу Фаренгейта принятого в Германии в XIX веке значения 37 °C. Поскольку это значение не входит в диапазон нормальной температуры по современным представлениям, можно говорить, что оно содержит избыточную (неверную) точность. Некоторые значения в этой таблице были округлены.

Сопоставление шкал Фаренгейта и Цельсия

( o F - шкала Фаренгейта, o C - шкала Цельсия)

o F

o C

o F

o C

o F

o C

o F

o C

459.67
-450
-400
-350
-300
-250
-200
-190
-180
-170
-160
-150
-140
-130
-120
-110
-100
-95
-90
-85
-80
-75
-70
-65

273.15
-267.8
-240.0
-212.2
-184.4
-156.7
-128.9
-123.3
-117.8
-112.2
-106.7
-101.1
-95.6
-90.0
-84.4
-78.9
-73.3
-70.6
-67.8
-65.0
-62.2
-59.4
-56.7
-53.9

60
-55
-50
-45
-40
-35
-30
-25
-20
-19
-18
-17
-16
-15
-14
-13
-12
-11
-10
-9
-8
-7
-6
-5

51.1
-48.3
-45.6
-42.8
-40.0
-37.2
-34.4
-31.7
-28.9
-28.3
-27.8
-27.2
-26.7
-26.1
-25.6
-25.0
-24.4
-23.9
-23.3
-22.8
-22.2
-21.7
-21.1
-20.6

4
-3
-2
-1
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19

20.0
-19.4
-18.9
-18.3
-17.8
-17.2
-16.7
-16.1
-15.6
-15.0
-14.4
-13.9
-13.3
-12.8
-12.2
-11.7
-11.1
-10.6
-10.0
-9.4
-8.9
-8.3
-7.8
-7.2

20
21
22
23
24
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
125
150
200

6.7
-6.1
-5.6
-5.0
-4.4
-3.9
-1.1
1.7
4.4
7.2
10.0
12.8
15.6
18.3
21.1
23.9
26.7
29.4
32.2
35.0
37.8
51.7
65.6
93.3

Для перевода градусов цельсия в кельвины необходимо пользоваться формулой T=t+T 0 где T- температура в кельвинах, t- температура в градусах цельсия, T 0 =273.15 кельвина. По размеру градус Цельсия равен Кельвину.

Температурные шкалы

Температурной шкалой называют конкретную функциональную числовую связь температуры со значениями измеряемого термометрического свойства. В связи с этим представляется возможным построение температурной шкалы на основе выбора любого термометрического свойства. В то же время нет ни одного термометрического свойства, которое линейно изменяется с

изменением температуры и не зависит от других факторов в широком интервале измерения температур. Первые шкалы появились в XVIII в. Для построения их выбирались две опорные, или реперные точки t 1 и t 2 , представляющие собой температуры фазового равновесия чистых веществ. Разность температур t 1 –t 2 называют основным температурным интервалом.

Фаренгейт (1715 г.), Реомюр (1776 г.) и Цельсий (1742 г.) при построении шкал основывались на допущении линейной связи между температурой t и термометрическим свойством, в качестве которого использовалось расширение объема жидкости V (формула 14.27) /8/

t=a+bV, (14.27)

где а и b - постоянные коэффициенты.

Подставив в уравнение (14.27) V=V 1 при t=t 1 и V=V 2 при t=t 2 , после преобразований получим уравнение (14.28) температурной шкалы /8/

В шкалах Фаренгейта, Реомюра и Цельсия точке плавления льда t 1 соответствовали +32, 0 и 0 °, а точке кипения воды t 2 - 212, 80 и 100 °. Основной интервал t 2 –t 1 в этих шкалах делится соответственно на N = 180, 80 и 100 равных частей, и 1/N часть каждого из интервалов называют градусом Фаренгейта - t °F , градусом Реомюра – t °R и градусом Цельсия-t °С. Таким образом, для шкал, построенных по указанному принципу, градус не является единицей измерения, а представляет собой единичный промежуток - масштаб шкалы.

Для пересчета температуры из одной указанной шкалы в другую используют соотношение (14.29)

t °С= 1,25 °R =-(5/9)( - 32), (14.29)

Позднее было выяснено, что показания термометров, имеющих разные термометрические вещества (например, ртуть, спирт и др.), использующих одно и то же термометрическое свойство и равномерную градусную шкалу, совпадают лишь в реперных точках, а в других точках показания расходятся. Последнее особенно заметно при измерении температур, значения которых расположены далеко от основного интервала.

Указанное обстоятельство объясняется тем, что связь между температурой и термометрическим свойством на самом деле нелинейна и эта нелинейность различна для различных термометрических веществ. В частности, в рассматриваемом случае нелинейность между температурой и изменением объема жидкости объясняется тем, что температурный коэффициент объемного расширения жидкости сам изменяется от температуры и это изменение различно для различных капельных жидкостей.

На основе описанного принципа построения может быть получено любое количество температурных шкал, значительно различающихся между собой. Такие шкалы называют условными, а масштабы этих шкал - условными градусами. Проблема создания температурной шкалы, не зависящей от термометрических свойств веществ, была решена в 1848 г. Кельвином, а предложенная им шкала была названа термодинамической. В отличие от условных температурных шкал термодинамическая температурная шкала является абсолютной.

Термодинамическая шкала температур основана на использовании второго закона термодинамики. В соответствии с этим законом коэффициент полезного действия тепловой машины, работающей по обратимому циклу Карно, определяется только температурами нагревателя Т Н и холодильника Т X и не зависит от свойств рабочего вещества, таким образом коэффициент полезного действия вычисляют по формуле (14.30) /8/

(14.30)

где Q Н и Q X - соответственно количество теплоты, полученное рабочим веществом от нагревателя и отданное холодильнику.

Кельвином было предложено для определения температуры использовать равенство (14.31) /8/

T Н /Т X = Q Н /Q X , (14.31)

Следовательно, используя один объект в качестве нагревателя, а другой - в качестве холодильника и проводя между ними цикл Карно, можно определить отношение температур объектов путем измерения отношения теплоты, взятой от одного объекта и отданной другому. Полученная шкала температур не зависит от свойств рабочего (термометрического) вещества и называется абсолютной шкалой температур. Чтобы абсолютная температура (а не только отношение) имела определенное значение, было предложено принять разность термодинамических температур между точками кипения воды Т КВ и таяния льда Т ТЛ , равной 100 °. Принятие такого значения разности преследовало цель сохранения преемственности числового выражения термодинамической температурной шкалы от стоградусной температурной шкалы Цельсия. Таким образом, обозначая количество теплоты, полученной от нагревателя (кипящая вода) и отдаваемой холодильнику (тающий лед), соответственно через Q КВ и Q ТЛ и приняв Т КВ – Т ТЛ ==100, используя (14.31), получим равенство (14.32) и (14.33)

(14.32)

(14.33)

Для любой температуры Т нагревателя при неизменном значении температуры Т ТЛ холодильника и количества теплоты Q ТЛ , отдаваемой ему рабочим веществом машины Карно, будем иметь равенство (14.34) /8/

(14.34)

Выражение (14.34) является уравнением стоградусной термодинамической шкалы температур и показывает, что значение температуры Т по данной шкале линейно связано с количеством теплоты Q , полученной рабочим веществом тепловой машины при совершении ею цикла Карно, и, как следствие, не зависит от свойств термометрического вещества. За один градус термодинамической температуры принимают такую разность между температурой тела и температурой таяния льда, при которой производимая по обратимому циклу Карно работа равна 1/100 части работы, совершаемой в цикле Карно между температурой кипения воды и таяния льда (при условии, что в обоих циклах количество теплоты, отдаваемой холодильнику, одинаково). Из выражения (14.30) следует, что при максимальном значении должна быть равна нулю Т X . Эта наименьшая температура была названа Кельвином абсолютным нулем. Температуру по термодинамической шкале обозначают Т К. Если в выражение, описывающее газовый закон Гей-Люссака: (где Ро - давление при t=0 °С ; -температурный коэффициент давления), подставить значение темпе­ратуры, равное - , то давление газа P t станет равным нулю. Естественно предположить, что температура , при которой обеспечивается предельное минимальное давление газа, сама является минимально возможной, и по абсолютной шкале Кельвина принята за нуль. Следовательно, абсолютная температура .



Из закона Бойля-Мариотта известно, что для газов температурный коэффициент давления а равен температурному коэффициенту объемного расширения . Экспериментально было найдено, что для всех газов при давлениях, стремящихся к нулю, в интервале температур 0-100 °С температурный коэффициент объемного расширения = 1/273,15.

Таким образом, нулевое значение абсолютной температуры соответствует °С. Температура таяния льда по абсолютной шкале составит ==273,15 К. Любая температура в абсолютной шкале Кельвина может быть определена как (где t температура в °С). Необходимо отметить, что один градус Кельвина (1 К) соответствует одному градусу Цельсия (1 °С), так как обе шкалы базируются на одинаковых реперных точках. Термодинамическая шкала температур, основанная на двух реперных точках (температура таяния льда и кипения воды), обладала недостаточной точностью измерения. Практически трудно воспроизвести температуры указанных точек, так как они зависят от изменения давления, а также от незначительных примесей в воде. Кельвин и независимо от него Д. И. Менделеев высказали соображения о целесообразности построения термодинамической шкалы температур по одной реперной точке. Консультативный комитет по термометрии Международного комитета мер и весов в 1954 г. принял рекомендацию о переходе к определению термодинамической шкалы с использованием одной реперной точки - wтройной точки воды (точки равновесия воды в твердой, жидкой и газообразной фазах), которая легко воспроизводится в специальных сосудах с погрешностью не более 0,0001 К. Температура этой точки принята равной 273,16 К, т.е. выше температуры точки таяния льда на 0,01 К. Такое число выбрано для того, чтобы значения температур по новой шкале практически не отличались от старой шкалы Цельсия с двумя реперными точками. Второй реперной точкой является абсолютный нуль, который экспериментально не реализуется, но имеет строго фиксированное положение. В 1967 г. XIII Генеральная конференция по мерам и весам уточнила определение единицы термодинамической температуры в следующей редакции: «Кельвин-1/273,16 часть термодинамической температуры тройной точки воды». Термодинамическая температура может быть также выражена в градусах Цельсия: t = Т- 273,15 К. Использование второго закона термодинамики, предложенное Кельвином с целью установления понятия температуры и построения абсолютной термодинамической температурной шкалы, не зависящей от свойств термометрического вещества, имеет огромное теоретическое и принципиальное значение. Однако реализация указанной шкалы с использованием в качестве термометра тепловой машины, работающей по обратимому циклу Карно, практически неосуществима.

Термодинамическая температура эквивалентна газотермической, используемой в уравнениях, описывающих законы идеальных газов. Газотермическую температурную шкалу строят на основе газового термометра, в котором в качестве термометрического вещества используется газ, приближающийся по свойствам к идеальному газу. Таким образом, газовый термометр является реальным средством для воспроизведения термодинамической температурной шкалы. Газовые термометры бывают трех типов: постоянного объема, постоянного давления и постоянной температуры. Обычно применяют газовый термометр постоянного объема (рисунок 14.127), в котором изменение температуры газа пропорционально изменению давления. Газовый термометр состоит из баллона 1 и соединительной трубки 2, заполненных через вентиль 3 водородом, гелием или азотом (для высоких температур). Соединительная трубка 2 подсоединена к трубке 4 двухтрубного манометра, у которого трубку 5 можно перемещать вверх или вниз благодаря гибкому соединительному шлангу 6. При изменении температуры объем системы, заполненной газом, изменяется, и для приведения его к первоначальному значению трубку 5 вертикально перемещают до тех пор, пока уровень ртути в трубке 4 не совпадет с осью Х-Х. При этом столб ртути в трубке 5, отсчитанный от уровня Х-Х, будет соответствовать давлению газа Р в баллоне.

Рисунок 14.127 – Схема газового термометра

Обычно измеряемую температуру Т определяют относительно некоторой точки отсчета, например по отношению к температуре тройной точки воды T 0 , при которой давление газа в баллоне будет Ро . Искомая температура вычисляется по формуле (14.35)

(14.35)

Газовые термометры используют в интервале ~ 2- 1300 К. Погрешность газовых термометров находится в пределах 3-10- 3 - 2-10- 2 К в зависимости от измеряемой температуры. Достижение такой высокой точности измерения -сложная задача, требующая учета многочисленных факторов: отклонения свойств реального газа от идеального, наличие примесей в газе, сорбцию и десорбцию газа стенками баллона, диффузию газа через стенки, изменение объема баллона от температуры, распределение температуры вдоль соединительной трубки.

В силу большой трудоемкости работы с газовыми термометрами предпринимались попытки изыскать более простые методы воспроизведения термодинамической температурной шкалы.

На основе проведенных в различных странах исследований на VII Генеральной конференции по мерам и весам в 1927 г. было принято термодинамическую шкалу заменить «практической» температурной шкалой и назвать ее международной температурной шкалой. Эта шкала была согласована со стоградусной термодинамической шкалой настолько тесно, насколько позволял уровень знаний того времени.

Для построения международной температурной шкалы было выбрано шесть воспроизводимых реперных точек, значения температуры которых по термодинамической шкале были тщательно измерены в различных странах с помощью газовых термометров и приняты наиболее достоверные результаты. С помощью реперных точек градуируются эталонные приборы для воспроизведения международной температурной шкалы. В интервалах между реперными точками значения температур рассчитывают по предлагаемым интерполяционным формулам, устанавливающим связь между показаниями эталонных приборов и температурой по международной шкале. В 1948, 1960 и 1968 гг. в положения о международной температурной шкале был внесен ряд уточнений и дополнений, так как на основе усовершенствованных методов измерений были обнаружены отличия этой шкалы от термодинамической, особенно в области высоких температур, а также в связи с необходимостью продлить температурную шкалу до более низких температур. В настоящее время действует принятая на XIII конференции по мерам и весам усовершенствованная шкала под названием «международная практическая температурная шкала 1968» (МПТП-68). Определение «практическая» указывает, что эта температурная шкала в общем не совпадает с термодинамической. Температуры МПТШ-68 снабжаются индексом (T 68 или t 68 ).

МПТШ-68 базируется на 11 основных реперных точках, приведенных в таблице 9. Наряду с основными имеется 27 вторичных реперных точек, охватывающих диапазон температур от 13,956 до 3660 К (от - 259,194 до 3387 °С). Числовые значения температур, приведенные в таблице 14.4, соответствуют термодинамической шкале и определены с помощью газовых термометров.

В качестве эталонного термометра в интервале температур от 13,81 до 903,89 К (630,74 °С - точка затвердевания сурьмы-вторичная реперная точка) принимается платиновый термопреобразователь сопротивления. Этот интервал разбит на пять подынтервалов, для каждого из которых определены интерполяционные формулы в виде полиномов до четвертой степени. В интервале температур от 903,89 до 1337,58 К используется эталонный платина-платинородиевый термоэлектрический термометр. Интерполяционной формулой, связывающей термоэлектродвижущую силу с температурой, здесь является полином второй степени.

Для температур выше 1337,58 К (1064,43°С) МПТШ-68 воспроизводится с помощью квазимонохроматического термометра с использованием закона излучения Планка.

Таблица 14.4 - Основные реперные точки МПТШ-68

Температурные шкалы

Температурной шкалой называют конкретную функциональную числовую связь температуры со значениями измеряемого термометрического свойства. В связи с этим представляется возможным построение температурной шкалы на основе выбора любого термометрического свойства. В то же время нет ни одного термометрического свойства, которое линейно изменяется с

изменением температуры и не зависит от других факторов в широком интервале измерения температур. Первые шкалы появились в XVIII в. Для построения их выбирались две опорные, или реперные точки t 1 и t 2 , представляющие собой температуры фазового равновесия чистых веществ. Разность температур t 1 –t 2 называют основным температурным интервалом.

Фаренгейт (1715 г.), Реомюр (1776 г.) и Цельсий (1742 г.) при построении шкал основывались на допущении линейной связи между температурой t и термометрическим свойством, в качестве которого использовалось расширение объема жидкости V (формула 14.27) /8/

t=a+bV, (14.27)

где а и b - постоянные коэффициенты.

Подставив в уравнение (14.27) V=V 1 при t=t 1 и V=V 2 при t=t 2 , после преобразований получим уравнение (14.28) температурной шкалы /8/

В шкалах Фаренгейта, Реомюра и Цельсия точке плавления льда t 1 соответствовали +32, 0 и 0 °, а точке кипения воды t 2 - 212, 80 и 100 °. Основной интервал t 2 –t 1 в этих шкалах делится соответственно на N = 180, 80 и 100 равных частей, и 1/N часть каждого из интервалов называют градусом Фаренгейта - t °F , градусом Реомюра – t °R и градусом Цельсия-t °С. Таким образом, для шкал, построенных по указанному принципу, градус не является единицей измерения, а представляет собой единичный промежуток - масштаб шкалы.

Для пересчета температуры из одной указанной шкалы в другую используют соотношение (14.29)

t °С= 1,25 °R =-(5/9)( - 32), (14.29)

Позднее было выяснено, что показания термометров, имеющих разные термометрические вещества (например, ртуть, спирт и др.), использующих одно и то же термометрическое свойство и равномерную градусную шкалу, совпадают лишь в реперных точках, а в других точках показания расходятся. Последнее особенно заметно при измерении температур, значения которых расположены далеко от основного интервала.

Указанное обстоятельство объясняется тем, что связь между температурой и термометрическим свойством на самом деле нелинейна и эта нелинейность различна для различных термометрических веществ. В частности, в рассматриваемом случае нелинейность между температурой и изменением объема жидкости объясняется тем, что температурный коэффициент объемного расширения жидкости сам изменяется от температуры и это изменение различно для различных капельных жидкостей.

На основе описанного принципа построения может быть получено любое количество температурных шкал, значительно различающихся между собой. Такие шкалы называют условными, а масштабы этих шкал - условными градусами. Проблема создания температурной шкалы, не зависящей от термометрических свойств веществ, была решена в 1848 г. Кельвином, а предложенная им шкала была названа термодинамической. В отличие от условных температурных шкал термодинамическая температурная шкала является абсолютной.

Термодинамическая шкала температур основана на использовании второго закона термодинамики. В соответствии с этим законом коэффициент полезного действия тепловой машины, работающей по обратимому циклу Карно, определяется только температурами нагревателя Т Н и холодильника Т X и не зависит от свойств рабочего вещества, таким образом коэффициент полезного действия вычисляют по формуле (14.30) /8/

(14.30)

где Q Н и Q X - соответственно количество теплоты, полученное рабочим веществом от нагревателя и отданное холодильнику.

Кельвином было предложено для определения температуры использовать равенство (14.31) /8/

T Н /Т X = Q Н /Q X , (14.31)

Следовательно, используя один объект в качестве нагревателя, а другой - в качестве холодильника и проводя между ними цикл Карно, можно определить отношение температур объектов путем измерения отношения теплоты, взятой от одного объекта и отданной другому. Полученная шкала температур не зависит от свойств рабочего (термометрического) вещества и называется абсолютной шкалой температур. Чтобы абсолютная температура (а не только отношение) имела определенное значение, было предложено принять разность термодинамических температур между точками кипения воды Т КВ и таяния льда Т ТЛ , равной 100 °. Принятие такого значения разности преследовало цель сохранения преемственности числового выражения термодинамической температурной шкалы от стоградусной температурной шкалы Цельсия. Таким образом, обозначая количество теплоты, полученной от нагревателя (кипящая вода) и отдаваемой холодильнику (тающий лед), соответственно через Q КВ и Q ТЛ и приняв Т КВ – Т ТЛ ==100, используя (14.31), получим равенство (14.32) и (14.33)

(14.32)

(14.33)

Для любой температуры Т нагревателя при неизменном значении температуры Т ТЛ холодильника и количества теплоты Q ТЛ , отдаваемой ему рабочим веществом машины Карно, будем иметь равенство (14.34) /8/

(14.34)

Выражение (14.34) является уравнением стоградусной термодинамической шкалы температур и показывает, что значение температуры Т по данной шкале линейно связано с количеством теплоты Q , полученной рабочим веществом тепловой машины при совершении ею цикла Карно, и, как следствие, не зависит от свойств термометрического вещества. За один градус термодинамической температуры принимают такую разность между температурой тела и температурой таяния льда, при которой производимая по обратимому циклу Карно работа равна 1/100 части работы, совершаемой в цикле Карно между температурой кипения воды и таяния льда (при условии, что в обоих циклах количество теплоты, отдаваемой холодильнику, одинаково). Из выражения (14.30) следует, что при максимальном значении должна быть равна нулю Т X . Эта наименьшая температура была названа Кельвином абсолютным нулем. Температуру по термодинамической шкале обозначают Т К. Если в выражение, описывающее газовый закон Гей-Люссака: (где Ро - давление при t=0 °С ; -температурный коэффициент давления), подставить значение темпе­ратуры, равное - , то давление газа P t станет равным нулю. Естественно предположить, что температура , при которой обеспечивается предельное минимальное давление газа, сама является минимально возможной, и по абсолютной шкале Кельвина принята за нуль. Следовательно, абсолютная температура .

Из закона Бойля-Мариотта известно, что для газов температурный коэффициент давления а равен температурному коэффициенту объемного расширения . Экспериментально было найдено, что для всех газов при давлениях, стремящихся к нулю, в интервале температур 0-100 °С температурный коэффициент объемного расширения = 1/273,15.

Таким образом, нулевое значение абсолютной температуры соответствует °С. Температура таяния льда по абсолютной шкале составит ==273,15 К. Любая температура в абсолютной шкале Кельвина может быть определена как (где t температура в °С). Необходимо отметить, что один градус Кельвина (1 К) соответствует одному градусу Цельсия (1 °С), так как обе шкалы базируются на одинаковых реперных точках. Термодинамическая шкала температур, основанная на двух реперных точках (температура таяния льда и кипения воды), обладала недостаточной точностью измерения. Практически трудно воспроизвести температуры указанных точек, так как они зависят от изменения давления, а также от незначительных примесей в воде. Кельвин и независимо от него Д. И. Менделеев высказали соображения о целесообразности построения термодинамической шкалы температур по одной реперной точке. Консультативный комитет по термометрии Международного комитета мер и весов в 1954 г. принял рекомендацию о переходе к определению термодинамической шкалы с использованием одной реперной точки - wтройной точки воды (точки равновесия воды в твердой, жидкой и газообразной фазах), которая легко воспроизводится в специальных сосудах с погрешностью не более 0,0001 К. Температура этой точки принята равной 273,16 К, т.е. выше температуры точки таяния льда на 0,01 К. Такое число выбрано для того, чтобы значения температур по новой шкале практически не отличались от старой шкалы Цельсия с двумя реперными точками. Второй реперной точкой является абсолютный нуль, который экспериментально не реализуется, но имеет строго фиксированное положение. В 1967 г. XIII Генеральная конференция по мерам и весам уточнила определение единицы термодинамической температуры в следующей редакции: «Кельвин-1/273,16 часть термодинамической температуры тройной точки воды». Термодинамическая температура может быть также выражена в градусах Цельсия: t = Т- 273,15 К. Использование второго закона термодинамики, предложенное Кельвином с целью установления понятия температуры и построения абсолютной термодинамической температурной шкалы, не зависящей от свойств термометрического вещества, имеет огромное теоретическое и принципиальное значение. Однако реализация указанной шкалы с использованием в качестве термометра тепловой машины, работающей по обратимому циклу Карно, практически неосуществима.

Термодинамическая температура эквивалентна газотермической, используемой в уравнениях, описывающих законы идеальных газов. Газотермическую температурную шкалу строят на основе газового термометра, в котором в качестве термометрического вещества используется газ, приближающийся по свойствам к идеальному газу. Таким образом, газовый термометр является реальным средством для воспроизведения термодинамической температурной шкалы. Газовые термометры бывают трех типов: постоянного объема, постоянного давления и постоянной температуры. Обычно применяют газовый термометр постоянного объема (рисунок 14.127), в котором изменение температуры газа пропорционально изменению давления. Газовый термометр состоит из баллона 1 и соединительной трубки 2, заполненных через вентиль 3 водородом, гелием или азотом (для высоких температур). Соединительная трубка 2 подсоединена к трубке 4 двухтрубного манометра, у которого трубку 5 можно перемещать вверх или вниз благодаря гибкому соединительному шлангу 6. При изменении температуры объем системы, заполненной газом, изменяется, и для приведения его к первоначальному значению трубку 5 вертикально перемещают до тех пор, пока уровень ртути в трубке 4 не совпадет с осью Х-Х. При этом столб ртути в трубке 5, отсчитанный от уровня Х-Х, будет соответствовать давлению газа Р в баллоне.

Рисунок 14.127 – Схема газового термометра

Обычно измеряемую температуру Т определяют относительно некоторой точки отсчета, например по отношению к температуре тройной точки воды T 0 , при которой давление газа в баллоне будет Ро . Искомая температура вычисляется по формуле (14.35)

(14.35)

Газовые термометры используют в интервале ~ 2- 1300 К. Погрешность газовых термометров находится в пределах 3-10- 3 - 2-10- 2 К в зависимости от измеряемой температуры. Достижение такой высокой точности измерения -сложная задача, требующая учета многочисленных факторов: отклонения свойств реального газа от идеального, наличие примесей в газе, сорбцию и десорбцию газа стенками баллона, диффузию газа через стенки, изменение объема баллона от температуры, распределение температуры вдоль соединительной трубки.

В силу большой трудоемкости работы с газовыми термометрами предпринимались попытки изыскать более простые методы воспроизведения термодинамической температурной шкалы.

На основе проведенных в различных странах исследований на VII Генеральной конференции по мерам и весам в 1927 г. было принято термодинамическую шкалу заменить «практической» температурной шкалой и назвать ее международной температурной шкалой. Эта шкала была согласована со стоградусной термодинамической шкалой настолько тесно, насколько позволял уровень знаний того времени.

Для построения международной температурной шкалы было выбрано шесть воспроизводимых реперных точек, значения температуры которых по термодинамической шкале были тщательно измерены в различных странах с помощью газовых термометров и приняты наиболее достоверные результаты. С помощью реперных точек градуируются эталонные приборы для воспроизведения международной температурной шкалы. В интервалах между реперными точками значения температур рассчитывают по предлагаемым интерполяционным формулам, устанавливающим связь между показаниями эталонных приборов и температурой по международной шкале. В 1948, 1960 и 1968 гг. в положения о международной температурной шкале был внесен ряд уточнений и дополнений, так как на основе усовершенствованных методов измерений были обнаружены отличия этой шкалы от термодинамической, особенно в области высоких температур, а также в связи с необходимостью продлить температурную шкалу до более низких температур. В настоящее время действует принятая на XIII конференции по мерам и весам усовершенствованная шкала под названием «международная практическая температурная шкала 1968» (МПТП-68). Определение «практическая» указывает, что эта температурная шкала в общем не совпадает с термодинамической. Температуры МПТШ-68 снабжаются индексом (T 68 или t 68 ).

МПТШ-68 базируется на 11 основных реперных точках, приведенных в таблице 9. Наряду с основными имеется 27 вторичных реперных точек, охватывающих диапазон температур от 13,956 до 3660 К (от - 259,194 до 3387 °С). Числовые значения температур, приведенные в таблице 14.4, соответствуют термодинамической шкале и определены с помощью газовых термометров.

В качестве эталонного термометра в интервале температур от 13,81 до 903,89 К (630,74 °С - точка затвердевания сурьмы-вторичная реперная точка) принимается платиновый термопреобразователь сопротивления. Этот интервал разбит на пять подынтервалов, для каждого из которых определены интерполяционные формулы в виде полиномов до четвертой степени. В интервале температур от 903,89 до 1337,58 К используется эталонный платина-платинородиевый термоэлектрический термометр. Интерполяционной формулой, связывающей термоэлектродвижущую силу с температурой, здесь является полином второй степени.

Для температур выше 1337,58 К (1064,43°С) МПТШ-68 воспроизводится с помощью квазимонохроматического термометра с использованием закона излучения Планка.

Таблица 14.4 - Основные реперные точки МПТШ-68



Просмотров