Цикл кребса уравнение. Цикл трикарбоновых кислот(цикл Кребса). Точка пересечения распада и синтеза

ТРИКАРБОНОВЫХ КИСЛОТ ЦИКЛ – цикл лимонной кислоты или цикл Кребса – широко представленный в организмах животных, растений и микробов путь окислительных превращений ди- и трикарбоновых кислот, образующихся в качестве промежуточных продуктов при распаде и синтезе белков, жиров и углеводов. Открыт Х.Кребсом и У.Джонсоном (1937). Этот цикл является основой метаболизма и выполняет две важных функции – снабжения организма энергией и интеграции всех главных метаболических потоков, как катаболических (биорасщепление), так и анаболических (биосинтез).

Цикл Кребса состоит из 8 стадий (в двух стадиях на схеме выделены промежуточные продукты), в ходе которых происходит:

1) полное окисление ацетильного остатка до двух молекул СО 2 ,

2) образуются три молекулы восстановленного никотинамидадениндинуклеотида (НАДН) и одна восстановленного флавинадениндинуклеотида (ФАДН 2), что является главным источником энергии, производимой в цикле и

3) образуется одна молекула гуанозинтрифосфата (ГТФ) в результате так называемого субстратного окисления.

В целом, путь энргетически выгоден (DG 0 " = –14,8 ккал.)

Цикл Кребса, локализованный в митохондриях, начинается с лимонной кислоты (цитрат) и заканчивается образованием щавелевоуксусной кислоты (оксалоацетата – ОА). К субстратам цикла относятся трикарбоновые кислоты – лимонная, цис-аконитовая, изолимонная, щавелевоянтарная (оксалосукцинат) и дикарбоновые кислоты – 2-кетоглутаровая (КГ), янтарная, фумаровая, яблочная (малат) и щавелевоуксусная. К субстратам цикла Кребса следует отнести и уксусную кислоту, которая в активной форме (т.е. в виде ацетилкофермента А, ацетил-SКоА) участвует в конденсации с щавелевоуксусной кислотой, приводящей к образованию лимонной кислоты. Окисляется именно ацетильный остаток, вошедший в структуру лимонной кислоты, подвергается окислению; атомы углерода окисляются до CO 2 , атомы водорода частично акцептируются коферментами дегидрогеназ, частично в протонированной форме переходят в раствор, то есть в окружающую среду.

Как исходное соединение для образования ацетил-КоА обычно указывается пировиноградная кислота (пируват), образующаяся при гликолизе и занимающая одно из центральных мест в перекрещивающихся путях обмена веществ. Под влиянием фермента сложной структуры – пируватдегидрогеназы (КФ1.2.4.1 – ПДГаза) пирувата окисляется с образованием CO 2 (первое декарбоксилирование), ацетил-КоА и восстановливается НАД (см . схему). Однако окисление пирувата – далеко не единственный путь образования ацетил-КоА, который также является характерным продуктом окисления жирных кислот (фермент тиолаза или синтетаза жирных кислот) и других реакций разложения углеводов и аминокислот. Все ферменты, участвующие в реакциях цикла Кребса, локализованы в митохондриях, причем большинство из них растворимы, а сукцинатдегидрогеназа (КФ1.3.99.1) прочно связана с мембранными структурами.

Образование лимонной кислоты, с синтеза которой и начинается собственно цикл, при помощи цитратсинтазы (КФ4.1.3.7 – конденсирующий фермент на схеме), является реакцией эндергонической (с поглощением энергии), и ее реализация возможна благодаря использованию богатой энергией связи ацетильного остатка с KoA [СН 3 СО~SKoA]. Это главная стадия регуляции всего цикла. Далее следует изомеризация лимонной кислоты в изолимонную через промежуточную стадию образования цис-аконитовой кислоты (фермент аконитаза КФ4.2.1.3, обладает абсолютной стереоспецифичностью – чувствительностью к местоположению водорода). Продуктом дальнейшего превращения изолимонной кислоты под влиянием соответствующей дегидрогеназы (изоцитратдегидрогеназа КФ1.1.1.41) является, по-видимому, щавелевоянтарная кислота, декарбоксилирование которой (вторая молекула CO 2) приводит к КГ. Эта стадия также строго регулируется. По ряду характеристик (высокая молекулярная масса, сложная многокомпонентная структура, ступенчатые реакции, частично те же коферменты и т.д.) КГдегидрогеназа (КФ1.2.4.2) напоминает ПДГазу. Продуктами реакции являются CO 2 (третье декарбоксилирование), Н + и сукцинил-КоА. На этой стадии включается сукцинил-КоА-синтетаза, иначе называемая сукцинаттиокиназой (КФ6.2.1.4), катализирующая обратимую реакцию образования свободного сукцината: Сукцинил-КоА + Р неорг + ГДФ = Сукцинат + KoA + ГТФ. При этой реакции осуществляется так называемое субстратное фосфорилирование, т.е. образование богатого энергией гуанозинтрифосфата (ГТФ) за счет гуанозиндифосфата (ГДФ) и минерального фосфата (Р неорг) с использованием энергии сукцинил-КоА. После образования сукцината вступает в действие сукцинатдегидрогеназа (КФ1.3.99.1) – флавопротеид, приводящий к фумаровой кислоте. ФАД соединен с белковой частью фермента и является метаболически активной формой рибофлавина (витамин В 2). Этот фермент также характеризуется абсолютной стереоспецифичностью элиминирования водорода. Фумараза (КФ4.2.1.2) обеспечивает равновесие между фумаровой кислотой и яблочной (также стереоспецифична), а дегидрогеназа яблочной кислоты (малатдегидрогеназа КФ1.1.1.37, нуждающаяся в коферменте НАД + , также стереоспецифична) приводит к завершению цикла Кребса, то есть к образованию щавелевоуксусной кислоты. После этого повторяется реакция конденсации щавелевоуксусной кислотой с ацетил-КоА, приводящая к образованию лимонной кислоты, и цикл возобновляется.

Сукцинатдегидрогеназа входит в состав более сложного сукцинатдегидрогеназного комплекса (комплекса II) дыхательной цепи, поставляя восстановительные эквиваленты, (НАД-Н 2), образующиеся прив реакции, в дыхательную цепь.

На примере ПДГазы можно познакомиться с принципом каскадной регуляции активности метаболизма за счет фосфорилирования-дефосфорилирования соответствующего фермента специальными киназой и фосфатазой ПДГазы. Обе они присоединены к ПДГазе.

Предполагается, что катализ индивидуальных ферментативных реакций осуществляется в составе надмолекулярного «сверхкомплекса», так называемого «метаболона». Преимущества такой организации ферментов состоят в том, что нет диффузии кофакторов (коферментов и ионов металлов) и субстратов, а это способствует более эффективной работе цикла.

Энергетическая эффективность рассмотренных процессов невелика, однако образующиеся при окислении пирувата и последующих реакциях цикла Кребса 3 моля НАДН и 1 моль ФАДН 2 являются важными продуктами окислительных превращений. Дальнейшее их окисление осуществляется ферментами дыхательной цепи также в митохондриях и сопряжено с фосфорилированием, т.е. образованием АТФ за счет этерификации (образования фосфороорганических эфиров)минерального фосфата. Гликолиз , ферментное действие ПДГазы и цикл Кребса – всего в сумме 19 реакций – определяют полное окисление одной молекулы глюкозы до 6 молекул CO 2 с образованием 38 молекул АТФ – этой разменной «энергетической валюты» клетки. Процесс окисления НАДН и ФАДН 2 ферментами дыхательной цепи энергетически весьма эффективен, происходит с использованием кислорода воздуха, приводит к образованию воды и служит основным источником энергетических ресурсов клетки (более 90%). Однако в его непосредственной реализации ферменты цикла Кребса не участвуют. В каждой клетке человека есть от 100 до 1000 митохондрий, обеспечивающих жизнедеятельность энергией.

В основе интегрирующей функции цикла Кребса в метаболизме лежит то, что углеводы, жиры и аминокислоты из белков могут превращаться в конечном счете в интермедиаты (промежуточные соединения) этого цикла или синтезироваться из них. Выведение интермедиатов из цикла при анаболизме должно сочетаться с продолжением катаболической активности цикла для постоянного образования АТФ, необходимого для биосинтезов. Таким образом, цикл должен одновременно выполнять две функции. При этом концентрация интермедиатов (особенно ОА) может понижаться, что способно привести к опасному понижению производства энергии. Для предотвращения служат «предохранительные клапаны», называемые анаплеротическими реакциями (от греч. «наполнять»). Важнейшей является реакция синтеза ОА из пирувата, осуществляемая пируваткарбоксилазой (КФ6.4.1.1), также локализованной в митохондриях. В результате накапливается большое количество ОА, что обеспечивает синтез цитрата и др. интермедиатов, что позволяет циклу Кребса нормально функционировать и, вместе с тем, обеспечивать выведение интермедиатов в цитоплазму для последующих биосинтезов. Таким образом, на уровне цикла Кребса происходит эффективно скоординированная интеграция процессов анаболизма и катаболизма под действием многочисленных и тонких регуляторных механизмов, в том числе гормональных.

В анаэробных условиях вместо цикла Кребса функционируют его окислительная ветвь до КГ (реакции 1, 2, 3) и восстановительная – от ОА до сукцината (реакции 8®7®6). При этом много энергии не запасается и цикл поставляет только интермедиаты для клеточных синтезов.

При переходе организма от покоя к активности возникает потребность в мобилизации энергии и обменных процессов. Это, в частности, достигается у животных шунтированием наиболее медленных реакций (1–3) и преимущественным окислением сукцината. При этом КГ – исходный субстрат укороченного цикла Кребса – образуется в реакции быстрого переаминирования (переноса аминной группы)

Глутамат + ОА = КГ + аспартат

Другая модификация цикла Кребса (так называемый 4-аминобутиратный шунт) – это превращение КГ в сукцинат через глутамат, 4-аминобутират и янтарный семиальдегид (3-формилпропионовую кислоту). Эта модификация важна в ткани мозга, где около 10% глюкозы расщепляется по этому пути.

Тесное сопряжение цикла Кребса с дыхательной цепью, особенно в митохондриях животных, а также ингибирование большинства ферментов цикла под действием АТФ, предопределяют снижение активности цикла при высоком фосфорильном потенциале клетки, т.е. при высоком соотношении концентраций АТФ/АДФ. У большинства растений, бактерий и многих грибов тесное сопряжение преодолевается развитием несопряженных альтернативных путей окисления, позволяющих поддерживать одновременно дыхательную активность и активность цикла на высоком уровне даже при высоком фосфорильном потенциале.

Игорь Рапанович

Цикл трикарбоновых кислот - он же цикл Кребса, поскольку существование такого цикла было предположено Гансом Кребсом в 1937 году.
За это спустя 16 лет он был удостоен Нобелевской премии по физиологии и медицине. Значит, открытие весьма значительное. В чём же смысл этого цикла и почему он так важен?

Как ни крути, все равно придётся начать довольно-таки издалека. Если вы взялись читать эту статью, то хотя бы понаслышке знаете, что основной источник энергии для клеток - это глюкоза. Она постоянно присутствует в крови в практически неизменной концентрации - для этого существуют специальные механизмы, запасающие или высвобождающие глюкозу.

Внутри каждой клетки находятся митохондрии - отдельные органеллы ("органы" клетки), перерабатывающие глюкозу для получения внутриклеточного источника энергии - АТФ. АТФ (аденозинтрифосфорная кислота) универсальна и очень удобна в использовании, как источник энергии: она напрямую встраивается в белки, обеспечивая их энергией. Самый простой пример - это белок миозин, благодаря которому мышцы способны сокращаться.

Глюкозу невозможно превратить в АТФ, несмотря на то, что в ней содержится большое количество энергии. Как извлечь эту энергию и направить в нужное русло, не прибегая к варварским (по клеточным меркам) средствам типа сжигания? Надо использовать обходные пути, благо ферменты (белковые катализаторы) позволяют некоторым реакциям протекать гораздо быстрее и эффективнее.

Первый этап - это превращение молекулы глюкозы в две молекулы пирувата (пировиноградной кислоты) или лактата (молочной кислоты). При этом выделяется небольшая часть (примерно 5%) той энергии, что запасена в молекуле глюкозы. Лактат получается при анаэробном окислении - то есть в отсутствие кислорода. Также есть способ превращения глюкозы в анаэробных условиях в две молекулы этанола и углекислый газ. Это называется брожением, и этот способ мы рассматривать не будем.


...Так же как не будем мы рассматривать подробно сам механизм гликолиза, то есть расщепления глюкозы в пируват. Поскольку, цитируя Леинджера, "Превращение глюкозы в пируват катализируется десятью ферментами, действующими последовательно". Желающие могут открыть учебник по биохимии и подробно ознакомиться со всеми стадиями процесса - он изучен очень хорошо.

Казалось бы, путь от пирувата до углекислого газа должен быть довольно простым. Но оказалось, что он осуществляется посредством девятистадийного процесса, который и называется циклом трикарбоновых кислот. Это кажущееся противоречие с принципом экономии (неужели нельзя было проще?) отчасти объясняется тем, что цикл связывает между собой несколько метаболических путей: вещества, образующиеся в цикле, являются прекурсорами других молекул, уже не имеющих отношения к дыханию (например, аминокислот), а любые другие соединения, подлежащие утилизации, в итоге попадают в цикл и либо "сгорают" для получения энергии, либо перерабатываются в те, которые находятся в недостатке.

Первая стадия, которая традиционно рассматривается в отношении к циклу Кребса - это окислительное декарбоксилирование пирувата в ацетильный остаток (Acetyl-CoA). CoA, если кто не знает - это кофермент А, имеющий в своём составе тиольную группу, на которой он может переносить ацетильный остаток.


Расщепление жиров тоже приводит к ацетилам, которые также вступают в цикл Кребса. (Синтезируются они аналогично - из Acetyl-CoA, что объясняет тот факт, что в жирах почти всегда присутствуют только кислоты с чётным числом атомов углерода).

Ацетил-КоА конденсируется с молекулой оксалоацетата, давая цитрат. При этом высвобождается кофермент А и молекула воды. Эта стадия необратима.

Цитрат дегидрируется в цис-аконитат - вторую трикарбоновую кислоту в цикле.

Цис-аконитат присоединяет обратно молекулу воды, превращаясь уже в изолимонную кислоту. Эта и предыдущая стадии обратимы. (Ферменты катализируют как прямую, так и обратную реакции - вы же знаете, да?)

Изолимонная кислота декарбоксилируется (необратимо) и одновременно окисляется, давая кетоглутаровую кислоту. При этом NAD+, восстанавливаясь, превращается в NADH.

Следующая стадия - окислительное декарбоксилирование. Но при этом образуется не сукцинат, а сукцинил-КоА, который на следующей стадии гидролизуется, направляя высвобождающуюся энергию на синтез АТФ.

При этом образуется ещё одна молекула NADH и молекула FADH2 (кофермент, отличный от NAD, который однако так же может окисляться и восстанавливаться, запасая и отдавая энергию).

Выходит, что оксалоацетат работает как катализатор - он не накапливается и не расходуется в процессе. Так и есть - концентрация оксалоацетата в митохондриях поддерживается довольно низкой. А как избежать накопления других продуктов, как согласовать между собой все восемь стадий цикла?

Для этого, как оказалось, существуют специальные механизмы - своего рода отрицительная обратная связь. Как только концентрация какого-то продукта растёт выше нормы, это блокирует работу фермента, ответственного за его синтез. А для обратимых реакций всё ещё проще: при превышении концентрации продукта реакция просто начинает идти в обратную сторону.

И ещё пара мелких замечаний

цикл Кребса – представляет собой замкнутую систему биохимических окислительно-восстановительных реакций. Цикл назван по имени английского биохимика Ханса Кребса, который постулировал и экспериментально подтвердил основные реакции аэробного окисления. За проведенные исследования Кребс получил Нобелевскую премию (1953). Цикл имеет еще два названия:

цикл трикарбоновых кислот, так как он включает реакции превращения трикарбоновых кислот (кислот, содержащих три карбоксильные группы);

Цикл лимонной кислоты, так как первой реакцией цикла является образование лимонной кислоты.

Цикл Кребса включает 10 реакций, четыре из которых окислительно-восстановительные. В ходе реакций освобождается 70% энергии.

Чрезвычайно велика биологическая роль этого цикла, поскольку это общий конечный пункт окислительного распада всех основных пищевых продуктов. Это главный механизм окисления в клетке, образно его называют метаболическим «котлом». В процессе окисления топливных молекул (углеводов, аминокислот, жирных кислот происходит обеспечение организма энергией в виде АТФ. Топливные молекулы вступают в цикл Кребса после превращения в ацетил-Ко-А.

Кроме того, цикл трикарбоновых кислот поставляет промежуточные продукты для процессов биосинтеза. Этот цикл происходит в матриксе митохондрий. Рассмотрим реакции цикла Кребса

Цикл начинается с конденсации четырехуглеродного компонента оксалоацетата и двухуглеродного компонента ацетил-Ко-А. Реакция катализируется цитратсинтазой и представляет собой альдольную конденсацию с последующим гидролизом. Промежуточным продуктом является цитрил-Ко-А, который гидролизуется на цитрат и КоА:



IV. Это первая окислительно-восстановительная реакция.

Реакции 4 и 5 представляют собой окислительное декарбоксилирование, катализируются изоцитратдегидрогеназой, промежуточным продуктом реакций является оксалосукцинат.


В сукциниле имеется связь, богатая энергией. Расщепление тиоэфирной связи сукцинил-КоА сопряжено с фосфорилированием гуанозиндифосфата (ГДФ):

Сукцинил-КоА + ~ Ф +ГДФ Сукцинат + ГТФ +КоА

Фосфорильная группа ГТФ легко переносится на АДФ с образованием АТФ:

ГТФ + АДФ АТФ + ГДФ

Это единственная реакция цикла, являющаяся реакцией субстратного фосфорилирования.

VIII. Это третья окислительно-восстановительная реакция:



X. Четвертая окислительно-восстановительная реакция:

В цикле Кребса образуются углекислый газ, протоны, электроны. Четыре реакции цикла являются окислительно-восстановительными, катализируются ферментами – дегидрогеназами, содержащими коферменты НАД, ФАД. Коферменты захватывают образующиеся Н + и ē и передают их в дыхательную цепь (цепь биологического окисления). Элементы дыхательной цепи находятся на внутренней мембране митохондрий.


Образующийся в ПВК-дегидрогеназной реакции ацетил-SКоА далее вступает в цикл трикарбоновых кислот (ЦТК, цикл лимонной кислоты, цикл Кребса). Кроме пирувата, в цикл вовлекаются кетокислоты, поступающие из катаболизма аминокислот или каких-либо иных веществ.

Цикл трикарбоновых кислот

Цикл протекает в матриксе митохондрий и представляет собой окисление молекулы ацетил-SКоА в восьми последовательных реакциях.

В первой реакции связываются ацетил и оксалоацетат (щавелевоуксусная кислота) с образованием цитрата (лимонной кислоты), далее происходит изомеризация лимонной кислоты до изоцитрата и две реакции дегидрирования с сопутствующим выделением СО 2 и восстановлением НАД.

В пятой реакции образуется ГТФ, это реакция субстратного фосфорилирования . Далее последовательно происходит ФАД-зависимое дегидрирование сукцината (янтарной кислоты), гидратация фумаровой кислоты до малата (яблочная кислота), далее НАД-зависимое дегидрирование с образованием в итоге оксалоацетата .

В итоге после восьми реакций цикла вновь образуется оксалоацетат.

Последние три реакции составляют так называемый биохимический мотив (ФАД-зависимое дегидрирование, гидратация и НАД-зависимое дегидрирование, он используется для введения кетогруппы в структуру сукцината. Этот мотив также присутствует в реакциях β-окисления жирных кислот . В обратной последовательности (восстановление, де гидратация и восстановление) этот мотив наблюдается в реакциях синтеза жирных кислот .

Функции ЦТК

1. Энергетическая

  • генерация атомов водорода для работы дыхательной цепи , а именно трех молекул НАДН и одной молекулы ФАДН2 ,
  • синтез одной молекулы ГТФ (эквивалентна АТФ).

2. Анаболическая . В ЦТК образуются

  • предшественник гема – сукцинил-SКоА ,
  • кетокислоты, способные превращаться в аминокислоты – α-кетоглутарат для глутаминовой кислоты, оксалоацетат для аспарагиновой,
  • лимонная кислота , используемая для синтеза жирных кислот ,
  • оксалоацетат , используемый для синтеза глюкозы .

Анаболические реакции ЦТК

Регуляция цикла трикарбоновых кислот

Аллостерическая регуляция

Ферменты, катализирующие 1-ю, 3-ю и 4-ю реакции ЦТК, являются чувствительными к аллостерической регуляции метаболитами:

Регуляция доступностью оксалоацетата

Главным и основны регулятором ЦТК является оксалоацетат , а точнее его доступность. Наличие оксалоацетата вовлекает в ЦТК ацетил-SКоА и запускает процесс.

Обычно в клетке имеется баланс между образованием ацетил-SКоА (из глюкозы, жирных кислот или аминокислот) и количеством оксалоацетата. Источником оксалоацетата является пируват , (образуемый из глюкозы или аланина), получение из аспарагиновой кислоты в результате трансаминирования или цикла АМФ-ИМФ, и также поступление из фруктовых кислот самого цикла (янтарной, α-кетоглутаровой, яблочной, лимонной), которые могут образоваться при катаболизме аминокислот или поступать из других процессов.

Синтез оксалоацетата из пирувата

Регуляция активности фермента пируваткарбоксилазы осуществляется при участии ацетил-SКоА . Он является аллостерическим активатором фермента, и без него пируваткарбоксилаза практически неактивна. Когда ацетил-SКоА накапливается, то фермент начинает работать и образуется оксалоацетат, но, естественно, только при наличии пирувата.

Также большинство аминокислот при своем катаболизме способны превращаться в метаболиты ЦТК, которые далее идут в оксалоацетат, чем также поддерживается активность цикла.

Пополнение пула метаболитов ЦТК из аминокислот

Реакции пополнения цикла новыми метаболитами (оксалоацетат, цитрат, α-кетоглутарат и т.п) называются анаплеротическими .

Роль оксалоацетата в метаболизме

Примером существенной роли оксалоацетата служит активация синтеза кетоновых тел и кетоацидоз плазмы крови при недостаточном количестве оксалоацетата в печени . Такое состояние наблюдается при декомпенсации инсулинзависимого сахарного диабета (СД 1 типа) и при голодании. При указанных нарушениях в печени активирован процесс глюконеогенеза , т.е. образования глюкозы из оксалоацетата и других метаболитов, что влечет за собой снижение количества оксалоацетата. Одновременная активация окисления жирных кислот и накопление ацетил-SКоА запускает резервный путь утилизации ацетильной группы – синтез кетоновых тел . В организме при этом развивается закисление крови (кетоацидоз ) с характерной клинической картиной: слабость, головная боль, сонливость, снижение мышечного тонуса, температуры тела и артериального давления.

Изменение скорости реакций ЦТК и причины накопления кетоновых тел при некоторых состояниях

Описанный способ регуляции при участии оксалоацетата является иллюстрацией к красивой формулировке "Жиры сгорают в пламени углеводов ". В ней подразумевается, что "пламень сгорания" глюкозы приводит к появлению пирувата, а пируват превращается не только в ацетил-SКоА, но и в оксалоацетат. Наличие оксалоацетата гарантирует включение ацетильной группы, образуемой из жирных кислот в виде ацетил-SКоА, в первую реакцию ЦТК.

В случае масштабного "сгорания" жирных кислот, которое наблюдается в мышцах при физической работе и в печени при голодании , скорость поступления ацетил-SКоА в реакции ЦТК будет напрямую зависеть от количества оксалоацетата (или окисленной глюкозы).

Если количество оксалоацетата в гепатоците недостаточно (нет глюкозы или она не окисляется до пирувата), то ацетильная группа будет уходить на синтез кетоновых тел . Такое происходит при длительном голодании и сахарном диабете 1 типа .

ЦТК – заключительный этап катаболизма углеводов, липидов и белков, в ходе которого двухуглеродный остаток ацетила разлагается до 2-х молекул углекислого газа.

1. Начальная реакция – конденсация ацетила и молекулы оксалоацетата с образование лимонной кислоты (цитрата)

Фермент : цитратсинтаза. Скорость реакции зависит от количества оксалоацетата, который является одновременно субстратом и аллостерическим активатором для цитратсинтазы.

2. Превращение лимонной кислоты в изолимонную (цитрата в изоцитрат). Реакция протекает в два этапа с образованием промежуточного продукта – цис-аконитовой кислоты.

Фермент: аконитаза. В условиях клетки равновесие в системе этих двух реакций сдвинуто в сторону образования изоцитрата, из-за постоянной его убыли в последующей реакции.

3. Окисление (дегидрирование) изолимонной кислоты (изоцитрата). Это первая реакция дегидрирования в ЦТК, которая служит потенциальным источником энергии. В ходе этой реакции происходит отщепление первой молекулы углекислого газа.

Фермент: изоцитратдегидрогеназа . В качестве кофермента содержит НАД + . Это основной регуляторный фермент цикла, его эффекторы: активатор – НАД + , ингибитор – НАДН.

Так как начальные промежуточные продукты изучаемого процесса являются трикарбоновыми кислотами, то его называют циклом трикарбоновых кислот, а по исследователю – циклом Кребса.

4. Окислительное декарбоксилирование a-кетоглутаровой кислоты. Это вторая реакция дегидрирования в ЦТК и вторая реакция, сопровождающаяся образованием конечного продукта – СО 2 . Равновесие в этой реакции настолько сдвинуто вправо, что её можно считать физиологически необратимой

Фермент: мультиэнзимный комплекс a-кетоглутаратдегидрогеназа . В состав комплекса входят 3 фермента:

1. a-кетоглутаратдекарбоксилаза

2. трансацилаза

3. дигидролипоилдегидрогеназа

Комплекс включает 5 коферментов: ТДФ, липоевая кислота, НS-КоА, ФАД, НАД + .

5. Реакция III-го субстратного фосфорилирования

Эта реакция сопряжена с образование АТФ.

Фермент : сукцинаттиокиназа.

Субстратное фосфорилирование это способ синтеза АТФ или ГТФ за счёт энергии макроэргических молекул. Биологическая роль процесса – быстрое получение АТФ в клетке без затраты кислорода.

6. Окисление янтарной кислоты (сукцината). 3-я реакция дегидрирования.

Фермент: сукцинатдегидрогеназа. В качестве кофермента содержит ФАД. Это единственный фермент ЦТК который находится не в растворимой части матрикса, а связан с внутренней мембраной митохондрий. В качестве конкурентного ингибитора этого фермента может быть использована малоновая кислота – структурный аналог янтарной кислоты.



7. Образование яблочной кислоты (малата)

Фермент : фумараза. Этотфермент обладает стереохимической специфичностью и способен присоединять воду по двойной связи только в транс конформации.

8. Окисление яблочной кислоты (малата) – 4-я реакция дегидрирования.

Фермент: малатдегидрогеназа. В качестве кофермента содержит НАД + .

Образующий в ходе реакций оксалоацетат является одновременно начальным субстратом, что и делает процесс циклическим.

Биологическая роль цикла Кребса :

ЦТК это центральный метаболический путь, который связан с превращением всех остальных классов биомолекул. Выполняет две основные функции

1. энергетическая функция. ЦТК является основным поставщиком водородов в составе НАДН и ФАДН 2 в дыхательную цепь. В последующем, е, содержащиеся в составе этих водородов, переносятся при участии ферментов дыхательной цепи на кислород с образованием конечного продукта окисления – воды, а выделяющаяся при этом энергия используется на синтез АТФ. ЦТК это аэробный процесс, требующий постоянного участия кислорода. В отсутствии кислорода происходит накопление восстановленных форм НАДН и ФАДН и, как следствие торможение реакций дегидрирования ЦТК.

Кроме того, в ходе реакций ЦТК образуется 1 моль ГТФ в реакции субстратного фосфорилирования.

2. Амфиболическая функция.

Под амфиболической функцией цикла Кребса понимают использование интермедиатов (промежуточных продуктов) цикла на синтез других молекул. Например, сукцинил-КоА является исходным соединением в синтезе гема; a-кетоглутарат – аминокислот (глутамата, глутамина, пролина, гистидина) .

Использование промежуточных продуктов цикла Кребса на синтетические процессы приводит к снижению уровня оксалоацетата в митохондриях, торможению цикла и нарушению энергетического обмена. Для того чтобы этого не происходило, в митохондриях существуют реакции, пополняющие фонд оксалоацетата.

Реакции, пополняющие запас оксалоацетата в митохондрии называются анаплеротическими.

1. Карбоксилирование пирувата:

Фермент: пируваткарбоксилаза

2. Трансаминирование аспарагиновой кислоты:

Аспартат + a-КГ оксалоацетат + глутамат

Фермент: аспартатаминотрансфераза.

Регуляция цикла Кребса.

Регуляция осуществляется по двум механизмам:

1. Фосфорилирование-дефосфорилирование. При высоком уровне АТФ в митохондриях происходит фосфорилирование 1-го фермента – цитратсинтазы и скорость реакций цикла Кребся снижается. При снижении АТФ и накоплении АДФ происходит дефосфорилирование фермента и его активность повышается.

2. Аллостерическая регуляция. По такому механизму осуществляется регуляция двух ферментов.

Цитратсинтаза активируется оксалоацетатом.

Изоцитратдегидрогеназа (основной регуляторный фермент) активируется НАД + и ингибируется НАДН 2

a-кетоглутаратдегидрогеназа ингибируется продуктом реакции – сукцинил-КоА.



Просмотров