Что такое нанотехнологии: просто о сложном. Смотреть что такое "Нанотехнология" в других словарях

Цель: Познакомиться с основами нанотехнологий, показать их значимость в современном мире.

Задачи:

1. Адаптировать учащихся к перспективам нанотехнологий.

2. Способствовать формированию познавательного интереса учащихся, расширить и углубить их представления о влиянии размеров атомных структур на разнообразные физические свойства.

3. Способствовать желанию самостоятельно изучать научную информацию в Интернете и умению анализировать получаемую информацию о развитии нанотехнологий.

Основные понятия:

Нано – дольная приставка единиц, обозначающая 10 -9 .

Наночастица – это частица, объект, имеющий размеры 1-100 нанометра.

Нанотехнология – это технология работы с веществом на уровне отдельных атомов.

План лекции:

  1. Смысл приставки «нано».
  2. Что такое «нанотехнологии».
  3. Этапы развития нанотехнологий.
  4. «Нано» сегодня.
  5. Перспективы нанотехнологий.

Большинство современных школьников знакомо с термином «нанотехнологии», но что стоит за этим словом, не знают. В лучшем случае расшифруют приставку «нано» как дольную единицу физики. Актуально на сегодняшний день предоставить ребятам начальные сведения о нанотехнологиях, об их истории развития, о современных достижениях в данной области и возможных будущих новинках.

Смысл приставки «нано»? Нанотехнология – часто используемое слово. Оно касается таких научных отраслей как химия, физика, электроника, механика, а также медицина и фармакология, космическая и военная промышленность. Данное понятие происходит от греческого слова «nanos», в переводе означающего «гном». Можно предположить, что данное быстро развивающееся направление науки занимается «маленькими объектами». Вот только выражения «малый», «мелкий» в этом случае по-прежнему являются не совсем адекватными, поскольку за наночастицы принимаются частицы размером 1-100 нанометров, что составляет 1-100 миллиардных частей метра.

Как представить себе такую короткую дистанцию? Проще всего это сделать с помощью денег: нанометр и метр соотносятся по масштабу как копеечная монета и земной шар (кстати, если каждый житель Земли даст по монетке, этого вполне хватит, чтобы выложить цепочку вокруг экватора.Уменьшим слона до размера микроба (5000 нм) – тогда блоха у него на спине станет величиной как раз в нанометр. Если бы рост человека вдруг уменьшился до нанометра, мы могли бы играть в футбол отдельными атомами! Толщина листа бумаги казалось бы нам тогда равной… 170 километрам.

Откинем фантазию о крошечных человечках и насекомых. На самом деле нанометрами измеряются лишь самые примитивные существа, вирусы (их длина в среднем 100 нм). Сложные молекулы белков, строительные блоки живого, имеют размеры в 10нм. Простые молекулы в десятки раз меньше. Величина атомов – несколько ангстрем (один ангстрем равен 0,1 нм). Например, диаметр атома кислорода – 0,14 нм. Здесь проходит нижняя граница наномира. Именно в наномире идут процессы фундаментальной важности – совершаются химические реакции, выстраивается строгая геометрия кристаллов, структуры белков. С этими процессами и работают нанотехнологи В этом особом мире работают свои законы и взаимосвязи, значительно отличающиеся от тех, которые действуют в нашем мире. Мы воспринимаем окружающие нас явления с точки зрения знакомых нам законов. Например, мы можем объяснить, почему может разрушиться строение, или почему набравшее скорость тело движется по инерции еще некоторое время. Однако нас удивляет, почему капля воды, муха, или даже некоторые виды ящериц удерживаются на потолке так, как будто закон гравитации на них не действует. Удивительными являются для нас и такие обычные явления, как несмачиваемость листьев некоторых растений или плодов. Все это заставляет задуматься над тем, какие силы работают в данном случае.

Что такое «нанотехнологии»? Исследованиям явлений в данной области сегодня посвящено огромное внимание не только в физике, химии, но и в других естественных науках. С учетом этого необходимо подчеркнуть, что наш организм предлагает целый ряд примеров «нанотехнологических» процессов, таких как дыхание или пищеварение. Возьмём, к примеру, котлету. Представим, что мы её с удовольствием съели за обедом. Каким образом котлета поступает в печень, почки? Расщепляется до отдельных атомов и молекул, и именно на молекулярном уровне идёт усвоение пищи организмом. Работой на уровне отдельных атомов и молекул как раз и занимаются нанотехнологи. Лауреат Нобелевской премии за исследования в области квантовой электродинамики Р.П. Фейнман сказал: „Если природа уже миллионы лет работает на уровне атомов и молекул, то почему же этого не можем делать мы?“. Самое интересное и самое сложное в наномире – всё, что связано с живой природой. Существует много примеров того, как человек только начинает открывать для себя явления и свойства наномира, которое живая природа давно освоила.

Есть одно из свойств природы, называемое «эффект лотоса». Оно заключается в том, что листья этого цветка всегда остаются чистыми. При дожде капли воды не смачивают листья, а просто скатываются с них, увлекая за собой частички грязи. Объясняется это строением поверхности листьев. Она покрыта крошечными шишечками высотой от 5 до 10 микрон, а на шишечках находятся ещё и многочисленные нановолосики. Именно эта структура во многом обеспечивает самоочистку листа и его водоотталкивающие свойства. Сейчас нанотехнологи стремятся использовать «эффект лотоса» в своих разработках самоочищающихся стёкол, красок и тканей.

Ещё одно из замечательных изобретений природы – лапки геккона. Геккон – небольшая ящерка, прославилась тем, что может свободно перемещаться по вертикальным стенам или даже потолку. И все потому, что его лапки покрыты до миллиарда тончайшими волосками особой формы. Они тесно соприкасаются с поверхностью и притягиваются к ней за счет так называемой ван-дерваальсовой силы, силы, действующей между молекулами. Нанотехнологи уже создали экспериментальные аналоги таких нанолипучек на основе углеродных нанотрубок – вполне возможно, что скоро каждый сможет попробовать себя в роли человека-паука.

Многие из давно используемых человечеством материалов являются именно «нанообъектами». Одним из самых древних примеров таких систем являются цветные стекла, окрашенные наночастицами металлов, технология получения которых была известна еще в Древнем Египте. Эта технология дожила до наших дней, войдя в основу окраски кремлевских звезд. Мало кто знает, что рубиновое стекло в буквальном смысле является золотым, поскольку представляет собой наночастицы золота, “растворенные” в высококачественном стекле. Широкую гамму цветов – от фиолетового до желтого – можно наблюдать и в «Кассиевом пурпуре», представляющий собой наночастицы золота, распределенные равномерно в геле оловянной кислоты, и названный так по имени гамбургского стекловара Андреаса Кассия (XVII век).В уникальном музее художественной керамики, размещенном в небольшом итальянском городе Фаенца, посетители могут любоваться экспонатами, украшенными цветной глазурью, технология которой была разработана гончарами Умбрии еще в XV веке и использовала отражающую способность ультрадисперсных металлических частиц для придания керамике необычного блеска.

В самом общем смысле нанотехнологии включают создание и использование материалов, устройств и технических систем, функционирование которых определяется наноструктурой, то есть ее упорядоченными фрагментами размером от 1 до 100 нм.

Согласно рекомендации 7-ой Международной конференции по нанотехнологиям (Висбаден, 2004 г) выделяют следующие типы наноматериалов:
– нанопористые структуры;
– наночастицы;
– нанотрубки и нановолокна;
– нанодисперсии (коллоиды);
– наноструктурированные поверхности и пленки;
– нанокристаллы и нанокластеры.

Нанотехнологии – это способы создания наноразмерных структур, которые придают материалам и устройствам полезные, часто непривычные для нас свойства. Нанотехнология позволяет поместить частицу лекарства в нанокапсулу и точно нацелить на пораженную болезнью клетку, не повредив соседние. Фильтр, пронизанный бесчисленными нанометровыми каналами, которые пропускают воду, но слишком тесны для примесей и микробов, тоже продукт нанотехнологий. В лабораториях нанотехнологов уже испытывают суперматериалы – углеродные волокна, в тысячи раз прочнее стали, покрытия, делающие предмет невидимым. Создание материалов с такими замечательными свойствами стало возможно благодаря тому, что нанотехнологи работают с веществом на атомном и молекулярном уровне.

Этапы развития нанотехнологий. Первое упоминание о методах, которые впоследствии назовут нанотехнологиями, сделал один из крупнейших физиков современности Ричард Фейнман в 1959 году в своей знаменитой лекции «Там внизу много места». Он говорил о том, что скоро люди научатся манипулировать отдельными атомами, это позволит им управлять строением веществ. В 1981 году появился туннельный микроскоп, который позволяет не только видеть отдельные атомы, но и поднимать, перемещать их. Таким образом, доказана принципиальная возможность собрать любой предмет, вещество из отдельных атомов. Сам же термин «нанотехнологии» в 1974 году ввёл японский физик Норио Танигути. В 1986 году вышла книга Эрика Дрекслера «Машины созидания: наступление эры нанотехнологий» и приставка «нано» стала на слуху у широкой публике. В ней автор характеризовал нанотехнологию как «путь к бессмертию и свободе», так как можно будет не только оздоравливать человеческий организм, но и улучшать его природные функции. На данный момент принято делить нанотехнологию на три напрвления: изготовление электронных схем размером до нескольких атомов; сборка из отдельных атомов любых веществ и объектов; создание наномашин (механизмов размером в несколько атомов)

«Нано» сегодня. Уже сегодня рынок нанопродкции огромен. 147 миллиардов долларов – стоимость товаров, выпущенных во всём мире в 2008 году с использованием новейших, только что созданных, нанотехнологий. Энергетика, электроника, биология и медицина, сельское хозяйство и экология – вот где прогресс в этой сфере лучше всего виден уже сейчас.

Солнечные батареи преобразуют энергию дневного света в электрическую. Раньше такие устройства были только на космических станциях, самые дорогие из них давали эффективность лишь 34%. Нанотехнологии вплотную взялись за солнечную энергетику. Солнечные батареи нового поколения - это дешевая полимерная пленка, вместо дорогого кристаллического кремния, которую обрабатывают на слегка переделанных машинах для производства фотоплёнки. В таком полимере при его освещении возникают токи, а чтобы их аккуратно собрать и выдать потребителю энергию, используют нанотехнологии: покрытие, содержащее фуллерены. Новые солнечные батареи будут обладать рядом существенных преимуществ по сравнению с традиционными батареями на основе кремния, которые применяются сегодня. Прежде всего, элементы питания нового типа не требуют прямого падения солнечных лучей, благодаря чему смогут генерировать электричество даже в пасмурную погоду. Кроме того, себестоимость производства таких батарей будет на порядок ниже себестоимости изготовления батарей на базе кремния.

Каждый из нас знаком с энергетикой плееров, диктофонов, фонариков, игрушек. Её основа – обычная литий-ионная батарейка. Здесь тоже видны первые результаты развития нанотехнологий. Недавно начался промышленный выпуск литий-ионных аккумуляторов, содержащих наночастицы и нанопористые материалы – они заряжаются с немыслимой ещё вчера скоростью: на 80% всего лишь за минуту (обычно для этого требуется несколько часов). Представьте, какое преимущество для электромобилей даст эта новинка!

Заметнее всего развитие нанотехнологий в электронике. Достаточно взглянуть на процессор Intelобразца 2008 года, произведённый по нормам 45нм базовых микросхем, он работает на тактовой частоте около 3ГГц, а потребляет всего 35 Вт энергии. Однако применение нанотехнологий не ограничивается уменьшением размера транзистора – появился ряд новых материалов, специально созданных для повышения энергоэффективности микросхем.По той же технологии начат выпуск и совсем маленьких процессоров, содержащих «всего» около 50 миллионов транзисторов на чипе размером с копеечную монету. Они будут использованы в мобильных Интернет-устройствах – так нанотехнологии помогут нам в доступе к деловой и научной информации, образовательным и развлекательным ресурсам Интернета.

Совсем недавно появились антиопухолевые препараты в форме нанокапсул. Такие препараты атакуют главным образом клетки опухоли, не поражая организм в целом (в отличие от традиционных онкологических средств) эффективность лечения за счет этого вырастает во много раз. Антимикробное действие серебра резко повышается, если его применить виде наночастиц. Уже несколько лет существуют заживляющее повязки для ожогов и серьёзных ран, содержащие такое наносеребро. В недалёком будущем начнется промышленный выпуск хитозановых повязок, которые ускорят заживление ран в разы. Планируется выпуск наноцемента для костей – он будет наполнителем, создавая нечто вроде каркаса, на который потом нарастает естественная костная ткань.

Московские нанотехнологи разработали телевизор, который можно свернуть в рулон. Толщиной он всего несколько миллиметров и представляет собой органический светодиод. На сегодняшний день есть у него серьёзный недостаток – на воздухе поверхностный слой быстро портится.

Инженеры из Фраунгоферовского института интегральных схем IIS разработали трансформатор напряжения, который может работать от входного напряжения в 20 милливольт. Этот миниатюрный электроприемник приводят в действие самые малые токи, и получить их можно из окружающей среды, например, из тепла человеческого тела.

При разнице температур всего в 2°C (например, между человеческой кожей и окружающим пространством) теплогенератор размером 2х2 см с новым трансформатором напряжения IC генерирует до 4 мВ. Такие миниатюрные и, соответственно, экономичные в изготовлении трансформаторы напряжения имеют большое преимущество во многих областях применения: в медицинской технике, в инженерных системах зданий и сооружений, в автомобилях, в системах автоматизации и логистике.

Перспективы нанотехнологии . По прогнозам экспертов, к 2020 году многие идеи, которые сегодня находятся на стадии исследований, будут реализованы. Давайте немного пофантазируем, представим мир недалекого будущего. Электричеством нас будут обеспечивать солнечные батареи, встроенные в стены и крыши домов. Телевизоры, компьютеры будут компактными виде стикеров. Все окружающие нас предметы будут оснащены миниатюрными процессорами, чтобы, например, поддерживать необходимую температуру, давление, влажность, следить за составом воздуха. Микро- и нанодатчики помогут в обнаружении любых угроз, от пожара до атаки террористов. Даже одежда будет самоочищающая и умеющая контролировать эмоциональное состояние того, кто её носит. Наноматериалы ширко будут использоваться в технике и промышленности, они будут защищать от грязи, коррозии, различных повреждений. Однако самое интересное и важное – как повлияет развитие нанотехнологий на частную жизнь человека, на жизнь общества в целом. Уже ясно, что эти технологии сильно изменят мир. Но предвидеть эти изменения в деталях пока не может никто.

Что нам ждать от нанотехнологов? Планируется создание молекулярных роботов-врачей, которые «жили» бы внутри человеческого организма, предупреждая о болезнях, или вовсе устраняя их. Более сложные молекулярные роботы предотвратят старение организма, вылечат безнадежно больных. На производстве такие роботы будут собирать любые предметы из атомов и молекул, что, безусловно, повысит качество продукции. Сельское хозяйство полностью преобразуется, так как, например, стакан молока можно будет получить простым нажатием кнопочки. Комплексы молекулярных роботов тут же из атомов произведут все химические процессы, что и в живом организме, и вы получаете стакан настоящего парного молока. Экология будет оздоровляться роботами-санитарами, которые вторсырьё превратят в исходное.

Нанотехнологии – это наше настоящее и будущее. Наверное, нет ни одной сферы жизнедеятельности человека, которую они бы не затронули. Мир нанотехнологий интересен и доступен не только ученым. Ищите, читайте, анализируйте информацию. Занавес в удивительный мир нанотехнологий приоткрыт! Попробуйте самостоятельно познакомиться, например, с наноартом, космическим лифтом.

Интернет-сайты

http://www.nanonewsnet.ru/ - сайт о нанотехнологиях №1 в России

http://www.nanometer.ru/ - сайт нанотехнологического общества «Нанометр»

http://www.nanojournal.ru/ - Российский электронный наножурнал

http://www.nanoware.ru/ - официальный сайт потребителей нанотоваров

http://kbogdanov1.narod.ru/ - «Что могут нанотехнологии?», научно- популярный сайт о нанотехнологиях.

1. Определения и терминология

2. Нанотехнологии: история возникновения и развития

3. Фундаментальные положения

Сканирующая зондовая микроскопия

Наноматериалы

Наночастицы

Самоорганизация наночастиц

Проблема образования агломератов

Микро- и нанокапсулы

Нанотехнологические сенсоры и анализаторы

4. Применения нанотехнологии

Медицина и биология

Генерология

Промышленность

В автомобильной промышленности

Сельское хозяйство

Экология

Освоение космоса

Кибернетика

5. Отношение общества к нанотехнологиям

Нанотехнология - это междисциплинарная область фундаментальной и прикладной науки и техники, имеющая дело с совокупностью теоретического обоснования, практических методов исследования, анализа и синтеза, а также методов производства и применения продуктов с заданной атомной структурой путём контролируемого манипулирования отдельными атомами и молекулами.

Нанотехнология - это технология изучения нанометровых объектов, и работы с объектами порядка нанометра (миллионная доля миллиметра) что сравнимо с размерами отдельных молекул, и атомов.

Определения и терминология

В Техническом комитете ISO/ТК 229 под нанотехнологиями подразумевается следующее:

знание и управление процессами, как правило, в масштабе 1 нм, но не исключающее масштаб менее 100 нм, в одном или более измерениях, когда ввод в действие размерного эффекта (явления) приводит к возможности новых применений;

использование свойств объектов и материалов в нанометровом масштабе, которые отличаются от свойств свободных атомов или молекул, а также от объемных свойств вещества, состоящего из этих атомов или молекул, для создания более совершенных материалов, приборов, систем, реализующих эти свойства.

Согласно «Концепции развития в Российской Федерации работ в области нанотехнологий на период до 2010 года» (2004 г.) нанотехнология определяется как совокупность методов и приемов, обеспечивающих возможность контролируемым образом создавать и модифицировать объекты, включающие компоненты с размерами менее 100 нм, хотя бы в одном измерении, и в результате этого получившие принципиально новые качества, позволяющие осуществлять их интеграцию в полноценно функционирующие системы большего масштаба.

Практический аспект нанотехнологий включает в себя производство устройств и их компонентов, необходимых для создания, обработки и манипуляции атомами, молекулами и наночастицами. Подразумевается, что не обязательно объект должен обладать хоть одним линейным размером менее 100 нм - это могут быть макрообъекты, атомарная структура которых контролируемо создаётся с разрешением на уровне отдельных атомов, либо же содержащие в себе нанообъекты. В более широком смысле этот термин охватывает также методы диагностики, характерологии и исследований таких объектов.

Нанотехнологии качественно отличаются от традиционных дисциплин, поскольку на таких масштабах привычные, макроскопические технологии обращения с материей часто неприменимы, а микроскопические явления, пренебрежительно слабые на привычных масштабах, становятся намного значительнее: свойства и взаимодействия отдельных атомов и молекул или агрегатов молекул (например, силы Ван-дер-Ваальса), квантовые эффекты.

Нанотехнология и в особенности молекулярная технология - новые, очень мало исследованные дисциплины. Основные открытия, предсказываемые в этой области, пока не сделаны. Тем не менее, проводимые исследования уже дают практические результаты. Использование в нанотехнологии передовых научных достижений позволяет относить её к высоким технологиям.

Развитие современной электроники идёт по пути уменьшения размеров устройств. С другой стороны, классические методы производства подходят к своему естественному экономическому и технологическому барьеру, когда размер устройства уменьшается не намного, зато экономические затраты возрастают экспоненциально. Нанотехнология - следующий логический шаг развития электроники и других наукоёмких производств.

Нанотехнология является логическим продолжением и развитием микротехнологии.

Микротехнология, совокупность науки, изучающей микрообьекты, и технологий работы с объектами порядка микрометра (тысячная доля миллиметра), стала основой для создания современной микроэлектроники. Сотовые телефоны, компьютеры, интернет, разнообразная бытовая, промышленная и потребительская электроника, всё это неузнаваемо изменило как мир, так и человека.

Столь же сильно изменит мир и нанотехнология. Нанотехнологии требуют очень больших вычислительных мощностей, чтобы смоделировать поведение атомов, и высокоточных электрических и механических приспособлений, чтобы упорядочить атомы и молекулы разных материалов в новом порядке. Таким образом создается новая материя. Впервые в истории цивилизации создаются материалы с новыми, нужными человеку свойствами. Перечислим только некоторые из них. Это прозрачный и гибкий материал с легкостью пластика и твердостью стали, гибкое пластиковое покрытие, представляющее собой солнечную батарею, материал для электрода электрической батереи, которая в десятки и сотни раз сильнее обычной.

Даже на современном уровне нанотехнология позволяет получить гибкие пластиковые экраны с толщиной бумажного листа, и яркостью современного монитора, компактную электронику на основе соединений углерода, с размерами и энергоемкостью в сотни раз ниже современных. А ещё нанотехнология это - легкие и гибкие конструктивные и строительные материалы, высокоэффективные фильтры для воздуха и воды, лекарства и косметика, действующие на более глубоком уровне, стремительное удешевление стоимости полета в космос, и многое-многое другое.

Пока все нанотехнологические материалы стоят очень дорого. Но, как и в случае компьютерной отрасли, массовое производство приведет к резкому снижению цены. В невидимой борьбе за те прибыли, и влияние, которое даст нанотехнология, основными игроками являются США, Китай, и Россия. Израиль, Европейские страны, и страны Латинской Америки стремительно наращивают свой потенциал в этой области.

К сожалению, несмотря на наличие хорошей научной базы, и крупных частных капиталов, Украинские научные разработки и прикладные продукты в мире представлены слабо.

Особую важность для нанотехнологических разработок имеют научные национальные нанотехнологические программы. Более 50 развитых стран объявили о старте собственных нанотехнологических программ.

Нанотехнологии: история возникновения и развития

Многие источники, в первую очередь англоязычные, первое упоминание методов, которые впоследствии будут названы нанотехнологией, связывают с известным выступлением Ричарда Фейнмана «Там внизу много места» (англ. «There’s Plenty of Room at the Bottom»), сделанным им в 1959 году в Калифорнийском технологическом институте на ежегодной встрече Американского физического общества.

Ричард Фейнман предположил, что возможно механически перемещать одиночные атомы, при помощи манипулятора соответствующего размера, по крайней мере, такой процесс не противоречил бы известным на сегодняшний день физическим законам.

Этот манипулятор он предложил делать следующим способом. Необходимо построить механизм, создававший бы свою копию, только на порядок меньшую. Созданный меньший механизм должен опять создать свою копию, опять на порядок меньшую и так до тех пор, пока размеры механизма не будут соизмеримы с размерами порядка одного атома. При этом необходимо будет делать изменения в устройстве этого механизма, так как силы гравитации, действующие в макромире будут оказывать все меньшее влияние, а силы межмолекулярных взаимодействий и Ван-дер-Ваальсовы силы будут все больше влиять на работу механизма. Последний этап - полученный механизм соберёт свою копию из отдельных атомов. Принципиально число таких копий неограниченно, можно будет за короткое время создать произвольное число таких машин. Эти машины смогут таким же способом, поатомной сборкой собирать макровещи. Это позволит сделать вещи на порядок дешевле - таким роботам (нанороботам) нужно будет дать только необходимое количество молекул и энергию, и написать программу для сборки необходимых предметов. До сих пор никто не смог опровергнуть эту возможность, но и никому пока не удалось создать такие механизмы. Вот как Р. Фейнман описал предполагаемый им манипулятор:

Я думаю о создании системы с электрическим управлением, в которой используются изготовленные обычным способом «обслуживающие роботы» в виде уменьшенных в четыре раза копий «рук» оператора. Такие микромеханизмы смогут легко выполнять операции в уменьшенном масштабе. Я говорю о крошечных роботах, снабженных серводвигателями и маленькими «руками», которые могут закручивать столь же маленькие болты и гайки, сверлить очень маленькие отверстия и т. д. Короче говоря, они смогут выполнять все работы в масштабе 1:4. Для этого, конечно, сначала следует изготовить необходимые механизмы, инструменты и руки-манипуляторы в одну четвертую обычной величины (на самом деле, ясно, что это означает уменьшение всех поверхностей контакта в 16 раз). На последнем этапе эти устройства будут оборудованы серводвигателями (с уменьшенной в 16 раз мощностью) и присоединены к обычной системе электрического управления. После этого можно будет пользоваться уменьшенными в 16 раз руками-манипуляторами! Сфера применения таких микророботов, а также микромашин может быть довольно широкой - от хирургических операций до транспортирования и переработки радиоактивных материалов. Я надеюсь, что принцип предлагаемой программы, а также связанные с ней неожиданные проблемы и блестящие возможности понятны. Более того, можно задуматься о возможности дальнейшего существенного уменьшения масштабов, что, естественно, потребует дальнейших конструкционных изменений и модификаций (кстати, на определенном этапе, возможно, придется отказаться от «рук» привычной формы), но позволит изготовить новые, значительно более совершенные устройства описанного типа. Ничто не мешает продолжить этот процесс и создать сколько угодно крошечных станков, поскольку не имеется ограничений, связанных с размещением станков или их материалоемкостью. Их объем будет всегда намного меньше объема прототипа. Легко рассчитать, что общий объем 1 млн уменьшенных в 4000 раз станков (а следовательно, и масса используемых для изготовления материалов) будет составлять менее 2 % от объема и массы обычного станка нормальных размеров.

Понятно, что это сразу снимает и проблему стоимости материалов. В принципе, можно было бы организовать миллионы одинаковых миниатюрных заводиков, на которых крошечные станки непрерывно сверлили бы отверстия, штамповали детали и т. п. По мере уменьшения размеров мы будем постоянно сталкиваться с очень необычными физическими явлениями. Все, с чем приходится встречаться в жизни, зависит от масштабных факторов. Кроме того, существует еще и проблема «слипания» материалов под действием сил межмолекулярного взаимодействия (так называемые силы Ван-дер-Ваальса), которая может приводить к эффектам, необычным для макроскопических масштабов. Например, гайка не будет отделяться от болта после откручивания, а в некоторых случаях будет плотно «приклеиваться» к поверхности и т. д. Существует несколько физических проблем такого типа, о которых следует помнить при проектировании и создании микроскопических механизмов.

В ходе теоретического исследования данной возможности, появились гипотетические сценарии конца света, которые предполагают, что нанороботы поглотят всю биомассу Земли, выполняя свою программу саморазмножения (так называемая «серая слизь» или «серая жижа»).

Первые предположения о возможности исследования объектов на атомном уровне можно встретить в книге «Opticks» Исаака Ньютона, вышедшей в 1704 году. В книге Ньютон выражает надежду, что микроскопы будущего когда-нибудь смогут исследовать «тайны корпускул».

Впервые термин «нанотехнология» употребил Норио Танигути в 1974 году. Он назвал этим термином производство изделий размеров порядка нанометров. В 1980-х годах этот термин использовал Эрик К. Дрекслер, особенно в своей книге «Машины создания: грядёт эра нанотехнологии» («Engines of Creation: The Coming Era of Nanotechnology»), которая вышла в 1986 году. Этим термином он называл новую область науки, которую он исследовал в своей докторской диссертации в Массачусетском Технологическом Институте (МТИ). Результаты своих исследований он впоследствии опубликовал в книге «Nanosystems: Molecular Machinery, Manufacturing, and Computation». Главную роль в его исследованиях играли математические расчёты, поскольку с их помощью до сих пор можно проанализировать предположительные свойства и разработать устройства размеров порядка нанометров.

В основном сейчас рассматривается возможность механического манипулирования молекулами и создание самовоспроизводящихся манипуляторов для этих целей.

Как уже было сказано, это позволит многократно удешевить любые существующие продукты и создать принципиально новые, решить все существующие экологические проблемы. Также такие манипуляторы имеют огромный медицинский потенциал: они способны ремонтировать повреждённые клетки человека, что приводит фактически к реальному техническому бессмертию человека. С другой стороны, создание наноманипуляторов может привести к сценарию «серой жижи». Также предполагают возможным сценарий, когда определённая группа людей получает полное управление над таким манипулятором и использует его, чтобы полностью утвердить свою власть над другими людьми. Если этот сценарий осуществится, получится идеальная монополия, которую, по-видимому, невозможно будет уничтожить.

Наиболее полное определение НТ дано в материалах национальной нанотехнологической инициативы США:

НТ – научно-исследовательские и технологические разработки на атомарном, молекулярном или макромолекулярном уровнях с субстананометровой шкалой по одной или более координатам для обеспечения фундаментального понимания явлений и свойств материалов при таких размерах и для изготовления и использования структур, приборов и систем, которые имеют новые свойства и функции вследствие их малых размеров.

Вместе с тем в работе показано, что основы НТ были заложены еще во второй половине XIX века в связи с развитием коллоидной химии. В 1857 г. М. Фарадей впервые получил устойчивые коллоидные растворы (золи) золота, имеющие красный цвет. В 1861 г. Т. Грэму удалось провести коагуляцию золей и превратить их в гели. Он также ввел деление веществ по степени дисперсности структуры на коллоидные (аморфные) и кристаллоидные (кристаллические).

Кристаллическое или аморфное состояние вещества зависит, прежде всего, от его собственных свойств, а затем от условий, при которых происходит переход в твердое состояние.

В 1869 г. химик И. Борщов высказал гипотезу, что вещество в зависимости от условий может быть получено и в кристалловидном (склонность к образованию кристаллов), и в коллоидном (аморфном) состоянии. Изменяя соответствующим образом условия перехода вещества в твердое состояние, можно получить в кристаллическом состоянии типично аморфные вещества (каучук, клей, стекло) и, наоборот, в аморфном (стеклообразном) состоянии получить типично кристаллические вещества (металлы и поваренную соль).

Поскольку в XIX веке для наблюдения объектов и измерения их размеров существовали только оптические микроскопы, которые не позволяли обнаруживать частицы в коллоидных растворах и зерна в коллоидных веществах, то коллоидными назвали вещества с ультравысокой степенью дисперсности, частицы, волокна, зерна и пленки которых нельзя обнаружить в оптические микроскопы, имеющие разрешение 300 нм при использовании белого света и 150 нм при использовании ультрафиолетового излучения.

В 1892 г. Д. Ивановским была открыта первая биологическая коллоидная частица – вирус мозаичной болезни табака, а в 1901 г. У. Рид выделил первый вирус человека – вирус желтой лихорадки. Следует отметить, что вирусы имеют характерные размеры от 40 до 80 нм.

В 1903 г. Р. Зигмонди и Р. Зидентопфом был изобретен оптический ультрамикроскоп, имеющий разрешение до 5 нм и позволивший наблюдать коллоидные частицы. Ультрамикроскоп построен на принципе наблюдения в отраженном свете, благодаря чему становятся видимыми более мелкие объекты, чем в обыкновенном микроскопе. С помощью ультрамикроскопа Р. Зигмонди удалось установить, что в коллоидных растворах (золях) золота желтого цвета частицы имеют размеры 20 нм, красного – 40 нм, а синего – 100 нм.

В 1904 г. П. Веймарном установлено: Между миром молекул и микроскопически видимых частиц существует особая форма вещества с комплексом присущих ей новых физико-химических свойств – ультрадисперсное или коллоидное состояние, образующееся при степени его дисперсности в области 105–107 см-1, в котором пленки имеют толщину, а волокна и частицы – размер в поперечнике в диапазоне 1,0–100 нм.

Классификация состояния вещества по степени дисперсности приведена в табл.1. Видно, что коллоидное состояние является предельно высокодисперсным или ультрадисперсным состоянием вещества.

Все дисперсные системы являются гетерогенными, так как состоят из сплошной непрерывной фазы – дисперсионной среды и находящихся в ней раздробленных частиц – дисперсной фазы. Обязательное условие их существования – взаимная нерастворимость дисперсной фазы и дисперсионной среды.

Коллоидные системы часто называются ультрамикрогетерогенными, чтобы подчеркнуть, что граница раздела фаз в них не может быть обнаружена с помощью оптических микроскопов. Если частицы дисперсной фазы имеют одинаковые размеры, системы называются монодисперсными, а если разные, то – полидисперсными системами.

Свойства веществ и материалов зависят от их структуры, характеризующейся связанными между собой и влияющими на такие свойства уровнями.

Первый уровень структуры называется кристаллическим и характеризует пространственное расположение атомов, ионов и молекул в кристаллической решетке твердого тела, на которое может накладываться влияние точечных дефектов (вакансий, атомов в междоузлиях, чужеродных атомов). Точечные дефекты подвижны и во многом определяют диффузионные и электрические свойства материалов, особенно полупроводников.

Второй уровень связан с присутствием в твердом теле различных линейных и плоскостных дефектов структуры (дислокаций), число которых в единице объема возрастает при механических нагрузках, приводящих к появлению внутренних напряжений в материале. Подобно точечным дефектам дислокации подвижны, а их плотность и способность к перемещению в твердом теле определяют механические свойства материалов, особенно металлов.

Третий уровень структуры – это объемные дефекты типа пор и капилляров, которые могут создаваться в материалах в процессе их формирования или использования. Они связаны с отсутствием некоторых участков твердого тела.

Все вещества в твердом состоянии можно разделить на монокристаллические, поликристаллические, аморфные (или нанокристаллические) и молекулярные твердые растворы.

Если упорядоченное расположение частиц (атомов, молекул или ионов), отражаемое элементарной ячейкой, сохраняется во всем объеме твердого тела, то образуются монокристаллы.

Если упорядоченность структуры сохраняется в макроскопических (>100 мкм) и микроскопических (>0,1 мкм) участках твердого тела (см.табл. 1), то образуются поликристаллические вещества с так называемыми кристаллитами или зернами кристаллитов соответствующих размеров и пространственно разориентированными друг относительно друга кристаллическими решетками.

До середины 80-х годов прошлого века считалось, что в аморфных веществах отсутствует упорядоченное расположение частиц. Однако проведенные с помощью высокоразрешающих электронных просвечивающих, сканирующих туннельных и силовых атомных микроскопов исследования, особенно на металлических стеклах, позволили обнаружить у аморфных веществ кристаллиты или зерна с размерами в субстананометровом диапазоне.

Таким образом, аморфные вещества и материалы характеризуются ультрадисперсной (коллоидной) степенью раздробленности зерен кристаллической фазы, и их можно называть нанокристаллическими.

В молекулярных твердых растворах, как и в жидких, обычно называемых истинными растворами или просто растворами, распределенное вещество равномерно перемешано с молекулами дисперсионной среды на молекулярном уровне. Поэтому молекулярные твердые и жидкие растворы, не имеющие фаз и поверхностей раздела, являются системами гомогенными.

Кристаллическое состояние вещества всегда более устойчиво, чем аморфное (нанокристаллическое), поэтому самопроизвольный переход из аморфного состояния в кристаллическое возможен, а обратный – нет. Примером может служить расстекловывание – самопроизвольная кристаллизация стекла при повышенных температурах.

Дисперсные системы, в том числе коллоидные, классифицируются по степени дисперсности, агрегатному состоянию дисперсной фазы и дисперсионной среды, интенсивности взаимодействия между ними, отсутствию или образованию структур.

Многообразие коллоидных систем обусловлено тем, что образующие их фазы могут находиться в любом из трех агрегатных состояний; иметь неорганическую, органическую и биологическую природу. В зависимости от агрегатного состояния дисперсной фазы и дисперсионной среды возможны следующие 9 типов дисперсных систем:

Ж1 – Г2, Ж1 – Ж2, Ж1 – Т2,

Т1 – Г2, Т1 – Ж2, Т1 – Т2,

Г1 – Ж2, Г1 – Т2, Т1(Ф1) – Т1(Ф2),

где Г, Ж и Т – газообразное, жидкое и твердое состояние, а цифры 1 и 2 относятся соответственно к дисперсной фазе и дисперсионной среде. Для последнего типа дисперсной системы Ф1 и Ф2 обозначают разные фазы (полиморфные модификации) твердого состояния одного вещества.

В газообразной дисперсионной среде могут быть диспергированы только жидкости и твердые тела, так как все газы при не очень высоких давлениях неограниченно растворяются друг в друге.

Дисперсные системы с газообразной дисперсионной средой называются аэрозолями. Туманы представляют собой аэрозоли с жидкой дисперсной фазой (Ж1 – Г2), а дымы – аэрозоли с твердой дисперсной фазой (Т1 – Г2). Простейшим примером аэрозоля является табачный дым, средний размер твердых частиц которого – 250 нм, тогда как размеры частиц сажи или вулканического пепла могут быть меньше 100 нм, и их аэрозоли относятся к ультрадисперсным (коллоидным) системам.

В жидкой дисперсионной среде могут быть диспергированы газы, жидкости и твердые тела. Пены – это дисперсия газа в жидкости (Г1 – Ж2). Эмульсии – дисперсные системы, в которых одна жидкость раздроблена в другой, не растворяющей ее жидкости (Ж1 – Ж2). Наибольшее значение для химии и биологии имеют коллоидные системы, в которых дисперсионной средой является жидкая фаза, а дисперсной фазой – твердое вещество (Т1 – Ж2), называемые коллоидными растворами или золями, часто лиозолями. Если дисперсионной средой является вода, то такие золи называются гидрозолями, а если органическая жидкость, то – органозолями. Коллоидные растворы очень важны, так как с ними связаны многие процессы, протекающие в живых организмах.

В твердой дисперсионной среде могут быть диспергированы газы, жидкости и твердые тела. Системы (Г1 – Т2) называются твердыми пенами или капиллярно дисперсными системами, в которых газ находится в виде отдельных замкнутых ячеек, разделенных твердой дисперсионной средой. К твердым пенам относятся пенопласты, пенобетон, пемза, шлак, металлы с включением газов, различные пористые материалы (активированный уголь, силикагель, древесина), а также мембраны и диафрагмы, фотонно-кристаллические волокна, кожа, бумага, ткани.

К системе (Ж1 – Т2) относится широкий класс кристаллогидратов – кристаллов, содержащих молекулы кристаллизационной воды. Типичными кристаллогидратами являются многие природные минералы, например гипс CaSO4∙2H2O, карналлит MgCl2∙KCl∙6H2O, алюмокалиевые квасцы KAl(SO4)2·12H2O.

Большое практическое значение имеют дисперсные системы типа (Т1 – Т2), к которым относятся важнейшие строительные материалы, металлокерамические композиции, некоторые сплавы, эмали, ряд минералов, в частности некоторые драгоценные и полудрагоценные камни, многие горные породы, в которых при застывании магмы выделялись кристаллы.

Цветные стекла образуются в результате диспергирования в силикатном стекле наночастиц металлов или их оксидов. Эмали – это силикатные стекла с включениями пигментов SnO2, TiO2 и ZrO2, придающих эмалям непрозрачность и окраску.

Таким образом, под коллоидами понимается не отдельный класс веществ, а особое состояние любого вещества, характеризующееся, прежде всего, определенными размерами частиц. Под наноструктурированием твердого тела следует понимать перевод вещества или материала в коллоидное (ультрадисперсное) состояние, т.е. создание в структуре физических или химических фаз субстананометровых размеров, которые можно рассматривать как своеобразные наночастицы, отделенные от остальной структуры поверхностями раздела.

Такими наночастицами, кроме механически диспергированных нанопорошков, являются:

Нанокристаллические зерна;

Наноразмерные полиморфные фазы;

Наноразмерные структурные дефекты (наноблоки);

Поверхностные наноструктуры (ямки, выступы, канавки, стенки);

Объемные наноструктуры (поры и капилляры);

Наноразмерные химические фазы из чужеродных атомов или молекул, cформированные на его поверхности или в объеме и имеющие волокнисто- или корпускулярнообразную форму;

Наноразмерные структуры, образующиеся в результате физического или химического осаждения из газовой или жидкой фазы (фуллерены, углеродные нанотрубки);

Пленки веществ наноразмерной толщины, сформированные в периодической последовательности;

Макромолекулы, полимолекулярные ансамбли, молекулярные пленки, молекулярные комплексы типа "хозяин – гость" (наличие распределения по размерам является признаком, отличающим наночастицы от макромолекул); наноразмерные и наноструктурированные биологические структуры (вирусы, протеины, гены, белки, хромосомы, молекулы ДНК и РНК).

Коллоидное состояние вещества – это качественно особая форма его существования с комплексом присущих ей физико-химических свойств. По этой причине область естествознания, изучающая объективные физические и химические закономерности гетерогенного ультрадисперсного состояния вещества, высокомолекулярных соединений (полимеров, комплексных соединений и молекулярных ансамблей) и межфазовых поверхностей, сформировалась в начале ХХ века в самостоятельную дисциплину – коллоидную химию.

Быстрое развитие коллоидной химии обусловлено большим значением изучаемых этой наукой явлений и процессов в различных областях человеческой практики. Такие, казалось бы, совершенно различные направления, как жизненные процессы в организмах, образование многих минералов, структура и урожайность почв тесно связаны с коллоидным состоянием вещества. Коллоидная химия является также научной основой промышленных производств многих материалов.

По мере развития технических средств формирования и манипулирования нанообъектами, а также методик их исследования в коллоидной химии стали выделяться более специализированные дисциплины, такие как химия полимеров и физическая химия поверхности (конец 1950-х годов), супрамолекулярная химия (конец 1970-х годов).

Исследование и изучение наноразмерных и наноструктурированных биологических структур (протеинов, генов, хромосом, белков, аминокислот, ДНК, РНК), являющихся предметом биологии ультрадисперсных систем, привело к созданию в 30–50-х годах вирусологии, в 60-х годах молекулярной биологии и в последней четверти ХХ века генетики и иммунохимии.

Если размеры материала хотя бы в одном измерении меньше критических длин, характеризующих многие физические явления, у такого материала появляются новые уникальные физические и химические свойства квантовомеханической природы, которые изучает и использует для создания новых устройств физика низкоразмерных структур, являющаяся наиболее динамично развивающейся областью современной физики твердого тела.

Результатом исследований низкоразмерных систем (квантовые ямы, провода и точки) стало открытие принципиально новых явлений – целочисленный и дробный квантовый эффект Холла в двумерном электронном газе, вигнеровская кристаллизация квазидвумерных электронов и дырок, обнаружение новых композитных квазичастиц и электронных возбуждений с дробными зарядами.

Область коллоидной химии, изучающая процессы деформирования, разрушения и образования материалов и дисперсных структур, выделилась в физико-химическую механику твердых тел и ультрадисперсных структур. Она сформировалась в середине ХХ века благодаря работам академика П. Ребиндера и его школы как новая отрасль знания, пограничная коллоидной химии, молекулярной физике твердого тела, механике материалов и технологии их производства.

Основной задачей физико-химической механики является создание конструкционных материалов с заданными свойствами и оптимальной для целей их применения структурой.

Еще одной отраслью, которая изучает и создает элементы, структуры и приборы в субстананометровом диапазоне, является микроэлектроника, в которой можно выделить наноэлектронику (разработка и производство интегральных схем с субстананометровыми размерами элементов – интегральных наносхем (ИНС), молекулярную электронику, функциональную электронику наноструктурированных материалов и наноэлектромеханические системы (НЭМС).

Суммируя изложенное, а также исходя из анализа, проведенного в работе, можно сформулировать определение НТ: Нанотехнология – это контролируемое получение веществ и материалов в коллоидном (ультрадисперсном, наноструктурированном с размерами структурных элементов в диапазоне 1,0–100 нм) состоянии, исследование и измерение их свойств и характеристик и использование их в различных отраслях науки, техники и промышленности.

Все термины, связанные с созданием и изучением коллоидного (наноструктурированного) уровня структуры материи под брендом "нанотехнология", автоматически получили приставку "нано", хотя до середины 1980-х годов они назывались соответственно: механика, фотоника, кристаллография, химия, биология и электроника ультрадисперсных или коллоидных систем; а предметы их исследования носили названия: ультрадисперсные порошки и композиты, аэро-, гидро- и органозоли, обратимые и необратимые гели, ультрадисперсная керамика и т.д.

Возникновение интереса к коллоидному состоянию вещества под брендом "нанотехнология" в последние 20 лет обусловлено, во-первых, его уникальными свойствами, а во-вторых, развитием и созданием технологического и контрольно-измерительного оборудования для получения и исследования субстананоразмерного уровня структуры материи: его физики, химии и биологии.

Вместо открытия новых материалов и явлений в результате счастливого случая или хаотических исследований контролируемый перевод вещества в наноструктурированное (коллоидное) состояние, называемый концепцией нанотехнологии, позволяет делать это систематически. Вместо того чтобы находить наночастицы и наноструктуры с хорошими свойствами с помощью интуиции, знание законов образования и стабилизации ультрадисперсных систем открывает возможность их искусственного конструирования по определенной системе.

Особенно интересным оказалось приобретение некоторыми хорошо известными веществами совершенно новых свойств при наноразмерах.

Наноструктурированные (коллоидные) системы, в соответствии с их промежуточным положением между миром атомов и молекул и миром микроскопических и макроскопических тел, могут быть получены двумя основными путями: диспергированием, т.е. измельчением (дроблением) крупных систем, и конденсацией, т.е. образованием наносистем из атомов, молекул, кластеров и наноструктур.

Методы получения наноструктурированных систем по первому пути называются диспергационными, а по второму – конденсационными. Существуют смешанные методы получения наноструктурированных систем, которые называются соответственно диспергационно-конденсационными и конденсационно-диспергационными.

В традиционной наноэлектронике при изготовлении интегральных наносхем (ИНС) по классической КМОП-технологии контролируемое наноструктурирование функциональных слоев (ФС) на кремниевых пластинах обеспечивается проекционным (фотошаблоны и наноштампы) масочным (резистивные маски) литографическим паттернированием.

При этом используется стратегический подход диспергирования или подход "сверху вниз" (top–down), т.е. осуществляется локальное удаление ненужных областей ФС путем их травления. Точность воспроизведения размеров элементов структур в горизонтальной плоскости обеспечивается с помощью резистивных масок, сформированных в процессах литографии.

В связи с этим, подчеркивая используемый стратегический подход диспергирования или "сверху вниз", традиционную промышленную наноэлектронику удобнее называть Д-наноэлектроникой (D-nanoelectronics).

Конденсационные методы (нелитографические методы синтеза), использующие для получения наноструктурированных систем подход "снизу вверх" (bottom-up), можно разделить на две группы: традиционные и новые, созданные в рамках последних достижений нанотехнологий.

Фундаментальные положения

Сканирующая зондовая микроскопия

Одним из методов, используемых для изучения нанообъектов, является сканирующая зондовая микроскопия. В рамках сканирующей зондовой микроскопии реализованы как не оптические, так и оптические методики.

Исследований свойств поверхности с помощью сканирующего зондового микроскопа (СЗМ) проводят на воздухе при атмосферном давлении, вакууме и даже в жидкости. Различные СЗМ методики позволяют изучать как проводящие, так и не проводящие объекты. Кроме того, СЗМ поддерживает совмещение с другими методами исследования, например с классической оптической микроскопией и спектральными методами.

С помощью сканирующего зондового микроскопа (СЗМ) можно не только увидеть отдельные атомы, но также избирательно воздействовать на них, в частности, перемещать атомы по поверхности. Учёным уже удалось создать двумерные наноструктуры на поверхности, используя данный метод. Например, в исследовательском центре компании IBM, последовательно перемещая атомы ксенонa на поверхности монокристалла никеля, сотрудники смогли выложить три буквы логотипа компании, используя 35 атомов ксенона.

При выполнении подобных манипуляций возникает ряд технических трудностей. В частности, требуется создание условий сверхвысокого вакуума (10−11 тор), необходимо охлаждать подложку и микроскоп до сверхнизких температур (4-10 К), поверхность подложки должна быть атомарно чистой и атомарно гладкой, для чего применяются специальные методы её приготовления. Охлаждение подложки производится с целью уменьшения поверхностной диффузии осаждаемых атомов.

Наноматериалы

Наноматериалы - это материалы, структурированные на уровне молекулярных размеров или близком к ним. Структура может быть более или менее регулярной или случайной. Поверхности со случайной наноструктурой могут быть получены обработкой пучками частиц, плазменным травлением и некоторыми другими методами.

Что касается регулярных структур, то небольшие участки поверхности могут быть структурированы "извне" - например, с помощью зондового сканирующего микроскопа (см. ниже). Однако, достаточно большие (~1 мк2 и больше) участки, а также объёмы вещества могут быть структурированы, видимо, только способом самосборки молекул.

Самосборка широко распространена в живой природе. Структура всех тканей определяется их самосборкой из клеток; структура клеточных мембран и органоидов определяется самосборкой из отдельных молекул.

Самосборка молекулярных компонентов разрабатывается как способ построения периодических структур для изготовления наноэлектронных схем, и здесь были достигнуты заметные успехи.

В медицине материалы с наноструктурированной поверхностью могут использоваться для замены тех или иных тканей. Клетки организма опознают такие материалы как "свои" и прикрепляются к их поверхности.

В настоящее время достигнуты успехи в изготовлении наноматериала, имитирующего естественную костную ткань. Так, учёные из Северо-западного университета (США) Jeffrey D. Hartgerink, Samuel I. Stupp и другие использовали трехмерную самосборку волокон около 8 нм диаметром, имитирующих естественные волокна коллагена, с последующей минерализацией и образованием нанокристаллов гидроксиапатита, ориентированных вдоль волокон. К полученному материалу хорошо прикреплялись собственные костные клетки, что позволяет использовать его как "клей" или "шпатлёвку" для костной ткани.

Представляет интерес и разработка материалов которые обладают противоположным свойством: не позволяют клеткам прикрепляться к поверхности. Одним из возможных применений таких материалов могло бы стать изготовление биореакторов для выращивания стволовых клеток. Дело в том, что, прикрепившись к поверхности, стволовая клетка стремится дифференцироваться, образуя те или иные специализированные клетки. Использование материалов с наноразмерной структурой поверхности для управления процессами пролиферации и дифференциации стволовых клеток представляет собой огромное поле для исследований.

Мембраны с нанопорами могут быть использованы в микрокапсулах для доставки лекарственных средств и для других целей. Так, они могут применяться для фильтрации жидкостей организма от вредных веществ и вирусов. Мембраны могут защищать нанодатчики и другие вживляемые устройства от альбумина и подобных обволакивающих веществ.

Наночастицы

Современная тенденция к миниатюризации показала, что вещество может иметь совершенно новые свойства, если взять очень маленькую частицу этого вещества. Частицы, размерами от 1 до 100 нанометров обычно называют «наночастицами». Так, например, оказалось, что наночастицы некоторых материалов имеют очень хорошие каталитические и адсорбционные свойства. Другие материалы показывают удивительные оптические свойства, например, сверхтонкие пленки органических материалов применяют для производства солнечных батарей. Такие батареи, хоть и обладают сравнительно низкой квантовой эффективностью, зато более дёшевы и могут быть механически гибкими. Удается добиться взаимодействия искусственных наночастиц с природными объектами наноразмеров - белками, нуклеиновыми кислотами и др. Тщательно очищенные наночастицы могут самовыстраиваться в определенные структуры. Такая структура содержит строго упорядоченные наночастицы и также зачастую проявляет необычные свойства.

Нанообъекты делятся на 3 основных класса: трёхмерные частицы, получаемые взрывом проводников, плазменным синтезом, восстановлением тонких плёнок и т. д.; двумерные объекты - плёнки, получаемые методами молекулярного наслаивания, CVD, ALD, методом ионного наслаивания и т. д.; одномерные объекты - вискеры, эти объекты получаются методом молекулярного наслаивания, введением веществ в цилиндрические микропоры и т. д. Также существуют нанокомпозиты - материалы, полученные введением наночастиц в какие-либо матрицы. На данный момент обширное применение получил только метод микролитографии, позволяющий получать на поверхности матриц плоские островковые объекты размером от 50 нм, применяется он в электронике; метод CVD и ALD в основном применяется для создания микронных плёнок. Прочие методы в основном используются в научных целях. В особенности следует отметить методы ионного и молекулярного наслаивания, поскольку с их помощью возможно создание реальных монослоёв.

Американская компания C-Sixty Inc. Проводит предклинические испытания средств на основе фуллереновых наносфер С60 с упорядоченно расположенными на их поверхности химическими группами. Эти группы могут быть подобраны таким образом, чтобы связываться с заранее выбранными биологическими мишенями. Спектр возможных применений чрезвычайно широк. Он включает борьбу с вирусными заболеваниями такими, как грипп и ВИЧ, онкологическими и нейродегенеративными заболеваниями, остеопорозом, заболеваниями сосудов. Например, наносфера может содержать внутри атом радиоактивного элемента, а на поверхности - группы, позволяющие ей прикрепиться к раковой клетке.

Подобные разработки проводятся и в России. В Институте экспериментальной медицины (Санкт-Петербург) использовали аддукт фуллерена с поливинилпирролидоном (ПВП). Это соединение хорошо растворимо в воде, а полости в его структуре близки по размерам молекулам С60. Полости легко заполняются молекулами фуллерена, и в результате образуется водорастворимый аддукт с высокой антивирусной активностью. Поскольку сам ПВП не обладает антивирусным действием, вся активность приписывается содержащимся в аддукте молекулам С60.

В пересчете на фуллерен его эффективная доза составляет примерно 5 мкг/мл, что значительно ниже соответствующего показателя для ремантадина (25 мкг/мл), традиционно используемого в борьбе с вирусом гриппа. В отличие от ремантадина, который наиболее эффективен в ранний период заражения, аддукт С60/ПВП обладает устойчивым действием в течение всего цикла размножения вируса. Другая отличительная особенность сконструированного препарата - его эффективность против вируса гриппа А- и В-типа, в то время как ремантадин действует только на первый тип.

Наносферы могут использоваться и в диагностике, например, как рентгеноконтрастное вещество, прикрепляющееся к поверхности определенных клеток и показывающее их расположение в организме.

Особый интерес вызывают дендримеры. Они представляют собой новый тип полимеров, имеющих не привычное линейное, а ветвящееся строение.

Собственно говоря, первое соединение с такой структурой было получено еще в 50-е годы, а основные методы их синтеза разработаны в основном в 80-е годы. Термин "дендримеры" появился раньше, чем "нанотехнология", и первое время они между собой не ассоциировались. Однако последнее время дендримеры все чаще упоминаются именно в контексте их нанотехнологических (и наномедицинских) применений.

Это связано с целым рядом особых свойств, которыми обладают дендримерные соединения. Среди них:

Предсказуемые, контролируемые и воспроизводимые с большой точностью размеры макромолекул;

Наличие в макромолекулах каналов и пор, имеющих хорошо воспроизводимые формы и размеры;

Способность к высокоизбирательной инкапсуляции и иммобилизации низкомолекулярных веществ с образованием супрамолекулярных конструкций "гость-хозяин".

Самоорганизация наночастиц

Одним из важнейших вопросов, стоящих перед нанотехнологией - как заставить молекулы группироваться определенным способом, самоорганизовываться, чтобы в итоге получить новые материалы или устройства. Этой проблемой занимается раздел химии - супрамолекулярная химия. Она изучает не отдельные молекулы, а взаимодействия между молекулами, которые способны упорядочить молекулы определённым способом, создавая новые вещества и материалы. Обнадёживает то, что в природе действительно существуют подобные системы и осуществляются подобные процессы. Так, известны биополимеры, способные организовываться в особые структуры. Один из примеров - белки, которые не только могут сворачиваться в глобулярную форму, но и образовывать комплексы - структуры, включающие несколько молекул протеинов (белков).

Уже сейчас существует метод синтеза, использующий специфические свойства молекулы ДНК. Берётся комплементарная ДНК, к одному из концов подсоединяется молекула А или Б. Имеем 2 вещества: ----А и ----Б, где ---- - условное изображение одинарной молекулы ДНК. Теперь, если смешать эти 2 вещества, между двумя одинарными цепочками ДНК образуются водородные связи, которые притянут молекулы А и Б друг к другу. Условно изобразим полученное соединение: ====АБ. Молекула ДНК может быть легко удалена после окончания процесса.

Проблема образования агломератов

Частицы размерами порядка нанометров или наночастицы, как их называют в научных кругах, имеют одно свойство, которое очень мешает их использованию. Они могут образовывать агломераты, то есть слипаться друг с другом. Так как наночастицы многообещающи в отраслях производства керамики, металлургии, эту проблему необходимо решать. Одно из возможных решений - использование веществ - дисперсантов, таких как цитрат аммония (водный раствор), имидазолин, олеиновый спирт (нерастворимых в воде). Их можно добавлять в среду, содержащую наночастицы. Подробнее это рассмотрено в источнике "Organic Additives And Ceramic Processing, ", D. J. Shanefield, Kluwer Academic Publ., Boston (англ.).

Микро- и нанокапсулы

Для доставки лекарственных средств в нужное место организма могут быть использованы миниатюрные (~1 мк) капсулы с нанопорами. Уже испытываются подобные микрокапсулы для доставки и физиологически регулируемого выделения инсулина при диабете 1-го типа. Использование пор с размером порядка 6 нм позволяет защитить содержимое капсулы от воздействия иммунной системы организма. Это дает возможность помещать в капсулы инсулин-продуцирующие клетки животного, которые иначе были бы отторгнуты организмом.

Микроскопические капсулы сравнительно простой конструкции могут взять на себя также дублирование и расширение естественных возможностей организма. Примером такой концепции может послужить предложенный Р. Фрейтасом респироцит - искусственный носитель кислорода и двуокиси углерода, значительно превосходящий по своим возможностям как эритроциты крови, так и существующие кровезаменители (например, на основе эмульсий фтороуглеродов). Более подробно возможная конструкция респироцита будет рассмотрена ниже.

Нанотехнологические сенсоры и анализаторы

Использование микро- и нанотехнологий позволяет многократно повысить возможности по обнаружению и анализу сверхмалых количеств различных веществ. Одним из вариантов такого рода устройства является "лаборатория на чипе" (lab on a chip. Это пластинка, на поверхности которой упорядоченно размещены рецепторы к нужным веществам, например, антитела. Прикрепление молекулы вещества к рецептору выявляется электрическим путем или по флюоресценции. На одной пластинке могут быть размещены датчики для многих тысяч веществ.

Такое устройство, способное обнаруживать буквально отдельные молекулы может быть использовано при определении последовательности оснований ДНК или аминокислот (для целей идентификации, выявления генетических или онкологических заболеваний), обнаружения возбудителей инфекционных заболеваний, токсических веществ.

Устройство размером в несколько миллиметров может быть помещено на поверхности кожи (для анализа веществ, выделяемых с потом) или внутри организма (в полость рта, желудочно-кишечный тракт, под кожу или в мышцу). При этом оно сможет сообщать о состоянии внутренней среды организма, сигнализировать о любых подозрительных изменениях.

В Институте молекулярной биологии им. Энгельгардта Российской академии наук разработана система, предназначенная для экспресс выявления штамма возбудителя; на одном чипе размещается около сотни флуоресцентных датчиков.

Интересную идею разрабатывают сразу несколько групп исследователей. Суть ее состоит в том, чтобы "пропустить" молекулу ДНК (или РНК) через нанопору в мембране. Размер поры должен быть таким, чтобы ДНК проходила в "распрямленном" виде, одно основание за другим. Измерение электрического градиента или квантового туннельного тока через пору позволило бы определить, какое основание проходит через нее сейчас. Основанный на таком принципе прибор позволил бы получить полную последовательность ДНК за один проход.

Применения нанотехнологии

Медицина и биология

Станет возможным "внедрение" в живой организм на уровне атомов. Последствия могут быть самыми различными - от "восстановления" вымерших видов до создания новых типов живых существ, биороботов. Создание молекулярных роботов-врачей, которые "жили" бы внутри человеческого организма, устраняя все возникающие повреждения, или предотвращали бы возникновение таковых, включая повреждения генетические.

Как утверждают ученые из университета штата Мичиган, настанет тот день, когда с помощью нанотехнологий в кровяные клетки человека можно будет встраивать микроскопические датчики, предупреждающие о появлении первых признаков радиационной угрозы или развития болезни.

На протяжении последних лет сотрудники Центра биологических нанотехнологий под руководством доктора Джеймса Бэйкера работают над созданием микродатчиков, которые будут использоваться для обнаружения в организме раковых клеток и борьбы с этой страшной болезнью.

Новая методика распознания раковых клеток базируется на вживлении в тело человека крошечных сферических резервуаров, сделанных из синтетических полимеров под названием дендримеры (от греч. dendron - дерево). Эти полимеры были синтезированы в последнее десятилетие и имеют принципиально новое, не цельное строение, которое напоминает структуру кораллов или дерева. Такие полимеры называются сверхразветвленными или каскадными. Те из них, в которых ветвление имеет регулярный характер, и называются дендримерами. В диаметре каждая такая сфера, или наносенсор, достигает всего 5 нанометров - 5 миллиардных частей метра, что позволяет разместить на небольшом участке пространства миллиарды подобных наносенсоров.

Оказавшись внутри тела, эти крошечные датчики проникнут в лимфоциты - белые кровяные клетки, обеспечивающие защитную реакцию организма против инфекции и других болезнетворных факторов. При иммунном ответе лимфоидных клеток на определенную болезнь или условия окружающей среды - простуду или воздействие радиации, к примеру, - белковая структура клетки изменяется. Каждый наносенсор, покрытый специальными химическими реактивами, при таких изменениях начнет флуоресцировать или светиться.

Чтобы увидеть это свечение, д-р Бэйкер и его коллеги собираются создать специальное устройство, сканирующее сетчатку глаза. Лазер такого устройства должен засекать свечение лимфоцитов, когда те один за другим проходят сквозь узкие капилляры глазного дна. Если в лимфоцитах находится достаточное количество помеченных сенсоров, то для того, чтобы выявить повреждение клетки, понадобится 15-секундное сканирование, заявляют ученые.

Сама идея находится пока в состоянии исследования, однако она уже привлекла внимание руководства НАСА, которое выделило на проведение дальнейших исследований 2 млн. долларов. НАСА заинтересовала возможность создания вышеописанных датчиков, постоянно отслеживающих уровень радиации, которому подвергается космонавт, и появление любых признаков болезни или инфекции в его организме.

По словам Бэйкера, его команда работала над подобной технологией выявления раковых клеток, однако для завершения исследования пока еще далеко. Пока неясно, например, каким образом можно будет уловить свечение наносенсоров в белых клетках крови, когда вокруг находится огромное количество более темных красных кровяных клеток. Исследователи уже добились определенных успехов на лабораторных опытах с культурами клеток, и уже в этом году планируется испытать новую технологию на животных.

Ученые из штата Мичиган утверждают, что с помощью нанотехнологий можно будет встраивать микроскопические датчики в кровяные клетки человека, которые будут предупреждать о признаках радиации или развития болезни. Так в США, по предложению NASA, ведется разработка таких наносенсоров. Джейм Бейнер представляет себе «наноборьбу» с космическими излучениями так перед стартом астронавт используя шприц для подкожных инъекций, вводят в кроваток прозрачную жидкость, насыщенную миллионами наночастиц на время полета он вставляет себе в ухо маленькое устройство (наподобие слухового аппарата). В течение полета это устройство будет использовать маленький лазер для поиска светящихся клеток. Это возможно, т.к. клетки проходят по капиллярам барабанной перепонки. По беспроводной связи информация клеток будет передаваться на главный компьютер космического корабля, а затем обрабатывается. В случае чего будут приниматься необходимые меры.

Все это может воплотиться в реальность примерно через 5-10 лет. А наночастицы ученые используют уже более 5 лет.

А сейчас, сенсоры тоньше человеческого волоса могут оказаться в 1000 раз чувствительнее стандартных анализов ДНК. Американские ученые, разработавшие эти наносенсоры, полагают, что врачи смогут проводить целый спектр различных анализов, пользуясь лишь одной каплей крови. Одним из преимуществ этой системы является возможность моментально пересылать результаты анализа на карманный компьютер. Исследователи полагают, что на разработку полностью функциональной модели наносенсора, которым смогут воспользоваться врачи в повседневной работе, понадобиться около пяти лет.

С помощью нанотехнологий медицина сможет не только с любой болезнью, но и предотвращать ее появление, сможет помогать адоптации человека в космосе.

Когда механизм завершит свою работу, нанодоктора должны будут удалять нанороботов из организма человека. Поэтому опасность того, что «устаревшие нанороботы», оставшиеся в теле человека будут работать неверно, очень мала. Нанороботы должны будут спроектированы так, чтобы избежать сбоев в работе и уменьшить медицинский риск. А как нанороботы будут удалены из тела? Некоторые из них будут способны к самоудалению из организма человека путем естественных каналов. Другие же будут спроектированы таким образом, чтобы их могли удалить медики. Процесс удаления будет зависеть от устройства данного наноробота.

Считается, что первостепенной опасностью для пациента будет некомпетентность лечащего врача. Но ведь ошибки могут происходить и в неожиданных случаях. Одним из непредвиденных случаев может быть взаимодействие между роботами при их столкновении. Такие неисправности трудно будет определить. Иллюстрацией такого случая может служить работа двух видов нанороботов А и В в организме человека. Если наноробот А будет удалять последствия работы робота В, то это приведет к повторной работе А, и этот процесс будет продолжаться до бесконечности, то есть нанороботы будут исправлять работу друг друга. Чтобы таких ситуаций не возникало лечащий врач должен постоянно следить за работой нанороботов и в случае чего перепрограммировать их. Поэтому квалификация врача является очень важным фактором.

Как известно, наша иммунная система реагирует на чужеродные тела. Поэтому размер наноробота будет играть важную роль при этом, так же как шероховатость поверхности и подвижность устройства. Утверждается что проблема биосовместимости не очень сложна. Выходом из этой проблемы будет создание роботов на основе алмазоидных материалов. Благодаря сильной поверхностной энергии и алмазоидной поверхности и сильной ее гладкости внешняя оболочка роботов будет химически инертной.

Нанотехнологии, применяемые в медицине в последнее время

Уже сейчас нанотехнологии применяются в медицине. Основными областями ее применения являются: технологии диагностики, лекарственные аппараты, протезирование и имплонтанты.

Ярким примером является открытие профессора Азиза. Людям, страдающим болезнью Паркинсона, через два крошечных отверстия в черепе внедряют в мозг электроды, которые подключены к стимулятору. Примерно через неделю больному вживляют и сам стимулятор в брюшную полость. Регулировать напряжение пациент может сам с помощью переключателя. С болью удается справиться уже в 80 % случаях:

У кого-то боль исчезает совсем, у кого-то затихает. Через метод глубокой стимуляции мозга прошло около четырех десятков людей.

Многие коллеги Азиза говорят, что этот метод не эффективен и может иметь негативные последствия. Профессор же убежден, что метод действенен. Ни то ни другое сейчас не доказано. Мне кажется надо верить лишь сорока пациентам, которые избавились от невыносимой боли. И снова захотели жить. И если уже 8 лет этот метод практикуется и не сказывается негативно на здоровье больных, почему бы тогда не расширить его применение.

Еще одним революционным открытием является биочип – небольшая пластинка с нанесенными на нее в определенном порядке молекулами ДНК или белка, применяемые для биохимических анализов. Принцип работы биочипа прост. На пластиковую пластинку наносят определенные последовательности участков расщепленной ДНК. При анализе на чип помещают исследуемый материал. Если он содержит такую же гинетическую информацию, то они сцепливаются. В результате чего можно наблюдать. Преимуществом биочипов являются большое количество биологических тестов со значительной экономией исследуемого материала, реактивов, трудозатрат и время на проведение анализа.

Генерология

Достижение личного бессмертия людей за счет внедрения в организм молекулярных роботов, предотвращающих старение клеток, а также перестройки и "облагораживания" тканей человеческого организма. Оживление и излечение тех безнадежно больных людей, которые были заморожены в настоящее время методами крионики. Прогнозируемый срок реализации: третья - четвертая четверти XXI века.

Промышленность

Замена традиционных методов производства сборкой молекулярными роботами предметов потребления непосредственно из атомов и молекул. Вплоть до персональных синтезаторов и копирующих устройств, позволяющих изготовить любой предмет. Первые практические результаты могут быть получены в начале XXI века.

Графен. В октябре 2004 года в Манчестерском университете было создано небольшое количество материала, названного графен. Роберт Фрейтас предполагает, что этот материал может служить подложкой для создания алмазных механосинтетических устройств.

Новый процессор Intel. 19 июня 2007 года компания Intel начала выпускать обычные и многоядерные процессоры, содержащие наименьший структурный элемент размерами примерно 45 нм. В дальнейшем компания намерена достичь размеров структурных элементов до 5 нм. В дальнейшем компания намерена перейти на новые материалы, такие как квантовые точки, полимерные пленки и нанотрубки. Основной конкурент Intel – AMD, во второй половине 2008 года запустит процессоры, выполненные по 45-нм техпроцессу.

Антенна-осциллятор. 9 февраля 2005 года сообщается, что в лаборатории Бостонского университета была получена антенна-осциллятор размерами порядка 1 мкм. Это устройство насчитывает 5 миллиардов атомов и способно осциллировать с частотой 1,49 гигагерц. Это позволит передавать с ее помощью большие объемы информации.

Наноаккумулятор. В начале 2005 года компания Altair Nanotechnologies (США) объявила о создании инновационного материала для электродов литий-ионных аккумуляторов. Аккумуляторы с особыми электродами имеют время зарядки 10-15 минут. В феврале 2006 года компания начала производство аккумуляторов на своём заводе в Индиане.

Новые топливные элементы для портативной техники. Был разработан водородный топливный элемент “Casio”. Топливный элемент вдвое легче литиевого аккумулятора. Время автономной работы больше в 3 раза. Уже появились первые образцы данного устройства. Ожидается его серийное производство в скором будущем.

Бронежилет. Австралийские ученые предложили изготавливать жилеты из материалов на основе углеродных нанотрубок. Последние обладают пулеотталкивающим свойством – под воздействием пули тоненькие трубки прогибаются, а затем восстанавливают форму с отдачей энергии.

Молекулярный автомобиль обзавелся мотором (2006 г.). Особенно важным в области наномеханики можно считать создание нано-багги Джеймсом Туром из университета Райса. Эта молекулярная машина ездит по атомам золотой подложки с помощью световой энергии. Правда, у молекулярного автомобиля пока что нет заднего хода и рулевого управления и колеса из фуллеренов (С60 молекулы углерода, напоминающие футбольный мяч), но зато он состоит всего из 300 атомов золота и имеет собственный автономный мотор. Наномашины настолько малы (их размер составляет 3-4 нанометра), что 20 тыс. устройств можно поместить на торце человеческого волоса. Научный мир высоко оценивает работы Джеймса, так как до сих пор никому не удавалось создать движущуюся наносистему такой сложности.

Двигатель внутреннего сгорания из двух молекул (2006 г.). Японскими же учеными удалось синтезировать новый тип наномотора, который приводится в движение светом. В работе двух молекул используется принцип работы кривошипно-шатунного механизма совместно с поршнем, только на атомарном уровне. Решение проблемы передачи и превращения разных видов энергии одна в другую в наноразмерном диапазоне - один из открытых вопросов наномеханики, поэтому достижения японских ученых могут пригодиться при разработке наноробототехники. Первая рабочая микросхема на нанотрубке (2006 г.). Американским ученым из IBM удалось впервые в мире создать полнофункциональную интегральную микросхему на основе углеродной нанотрубки, способную работать на терагерцевых частотах. Наноустройство работает на частоте, которая в 100 тыс. раз больше, нежели у предыдущих нанотрубочных чипов. Флэш-память на основе нанотрубок (2006 г.). Нанотрубочная электроника становится "теплой", и это позволит ей скорее выйти на потребительский рынок. Группе исследователей удалось создать флэш-память на основе нанотрубок. Устройство пока еще не является полноценным коммерческим продуктом, но ученые надеются, что их исследования приведут к разработке новых типов архитектуры молекулярной памяти и позволят наладить массовый выпуск таких электронных устройств. Новая флэш-ячейка - это своеобразный «бутерброд», состоящий из нанотрубок, композита и кремниевой подложки. Его толщина всего несколько нанометров. Естественно, память, изготовленная на основе «нанобутерброда» будет гораздо более миниатюрной, чем современные аналоги.

Создан самый быстрый полевой нанотранзистор (2006 г.). Это уникальное устройство, созданное учеными из Гарварда, состоит из германиево/кремниевого ядра и кремниевых нанострун. По мнению экспертов, это самый совершенный полевой транзистор, который когда-либо был создан. Ge/Si нанострунный полевой транзистор быстрее в 3-4 раза, чем любые современные кремниевые. Дисплеи-невидимки появятся уже в 2008 году (2006 г.). Исследования по созданию «невидимой» электроники ведутся давно, но до сих пор ученым не удавалось создать материал для транзисторов, который был бы «невидимым» и в то же время обеспечивал высокую скорость работы. Теперь же учеными созданы прозрачные транзисторы, которые могут совмещаться с такими технологиями, как органические светодиоды, жидкокристаллические панели и электролюминесцентные дисплеи, которые широко используются для изготовления телевизоров, мониторов, ноутбуков и сотовых телефонов. По словам исследователей, опытные образцы мониторов на прозрачных транзисторах появятся в течение ближайших 12-18 месяцев.

"Святой Грааль" от электроники. В 2006 появился новый класс полупроводниковых устройств, в которые можно интегрировать наномагниты методом точного размещения атомов металла на материал, из которого формируется подложка чипа. Таким образом ученые надеются получить контроль на атомном уровне за архитектурой чипа и произвести объединение нескольких ключевых компонентов компьютеров (процессор, память, жесткий диск) в одно устройство. Объединение этих устройств компьютеров в одно позволит уменьшить энергопотребление и увеличит скорость обработки информации. В перспективе данная технология может привести к появлению на рынке мультимедийные устройств с одним чипом, в котором будет "вся" вычислительная электроника и память. Это и "одноразовые" электронные книги, и различные мобильные мультимедийные игры, и просто "умная пыль". О массовом производстве подобных чипов пока речи нет - ученые разместили несколько атомов с помощью зонда сканирующего туннельного микроскопа (СТМ), "вынув" предварительно атомы материала подложки.

"Жидкая броня" защитит лучше кевлара? (2006 г.). На вооружении США вскоре может появиться обмундирование нового типа, которое по своим защитным свойствам и эргономическим характеристикам превосходит современные кевларовые аналоги. Эффект сверхзащиты достигается благодаря специальному пакету из кевлара, наполненному раствором сверхтвердых наночастиц в неиспаряющейся жидкости. Как только происходит механическое давление высокой энергии на кевларовую оболочку, наночастицы собираются в кластеры, изменяя при этом структуру раствора жидкости, который превращается в твердый композит. И недавно американский холдинг-производитель солдатского обмундирования и бронежилетов U. S. Armor Holdings лицензировал технологию «жидкого бронежилета» и планирует начать его массовое производство в конце этого года.

Нанотехнологии в текстильной промышленности

Волна нанотехнологий показала огромный успех в текстильной и швейной промышленности, которые, как правило, очень традиционны.

Целому ряд продуктов нанотех текстиля уже присутствует на рынке. Примеры отраслей, где нанотехнологии широко используются, это спортивная промышленность, средства по уходу за кожей, косметика и одежда, а также технологии для лучшей защиты в экстремальных условиях. Использование нанотехнологий позволяют текстильной промышленности стать многофункциональной и производят ткани со специальными качествами, в том числе антибактериальные, УФ-защитные, легкие чистые, водоотталкивающие, грязиестойкие. Во многих случаях позволяют экономить ресурсы в производстве.

Возможно, одним из наиболее широко признанных из современных достижений нанотехнологий является купальный костюм, в котором плавает олимпийский чемпион Майкл Фелпс, на счету которого несколько мировых рекордов. На этот костюме есть тонкий слой, нанесенный плазменным методом, для отражения молекул воды, помогающий плавать с минимальным сопротивлением.

Одним из применений нанотехнологий в текстильной промышленности являются полимерные материалы для изготовления обычного волокна, такие как полиэстер, полиамид и полипропилен на наноуровне. Нановолокна имеют хорошие свойства, такие как высокая площадь поверхности, малый диаметр волокна, хорошую фильтрацию и высокую проницаемостью.

Существует значительный потенциал для выгодных применений нанотехнологий в текстильной промышленности. Удачное применение нанотехнологий может быть использовано для достижения повышения производительности текстильной промышленности. Нанотехнологии преодолевают ограниченное применение традиционных методов, чтобы придать определенные качества текстильным материалам. Нет сомнений, что в ближайшие несколько лет нанотехнологии будут проникать во все сферы текстильной промышленности. Однако, есть еще много факторов, которые надо принять во внимание до промышленной коммерциализации нанопродуктов. Помимо стоимости, ключевым моментом является вопрос о последствиях неконтролируемого выброса наночастиц. В целом, состояние исследований в области здравоохранения и окружающей среды могут быть представлены как предполагающее, что ограничены текущим результатами исследований. В будущем сотрудничество междисциплинарные исследования приведут к значительным достижениям в текстильной промышленности.

Нанотехнологии в автомобильной промышленности

Сегодня нанотехнологии внедряют несколько крупнейших производителей, но к 2010 году их будут использовать все автомобилестроители и большинство их поставщиков. 70 ведущих мировых автомобилестроителей, включая Renault, General Motors, BMW, Toyota, Audi, Ford, Volkswagen, Mercedes-Benz, Opel, Ferrari, MAN, FIAT, Volvo, Hyundai, Honda, Nissan, Chrysler, Jaguar, Porsche, Peugeot, Saab, Rover, Citroen, Huachangcar, Mazda, Alfa Romeo, Asia Motors, Mitsubishi, Vauxhall, Subaru и др., провели совместное исследование возможностей применения нанотехнологий в автомобилях с 2002 до 2015 года.

Нанотехнологии обещают целый ряд выгод от широкомасштабного внедрения в массовое производство автомобилей. Так буквально каждый узел или компонент в конструкции автомобиля может быть в значительной степени усовершенствован при помощи нанотехнологий.

Одним из наиболее перспективных и многообещающих направлений применения (в том числе коммерческого) достижений современной нанотехнологии является область наноматериалов и электронных устройств.

Уже существуют легко очищающиеся и водоотталкивающие покрытия для материалов, основанные на использовании диоксида кремния.

В форме наночастиц это вещество приобретает новые свойства, в частности, высокую поверхностную энергию, что и позволяет частицам SiO2 при высыхании коллоидного раствора прочно присоединяться к различным поверхностям, в первую очередь к родственному им по составу стеклу, образуя, тем самым, сплошной слой наноразмерных выступов.

Покрытие из наночастиц кремнезема делает обработанную поверхность гидрофобный - на поверхности с плёнкой из SiO2 капля воды касается субстрата лишь немногими точками, что во много раз уменьшает Ван-дер-ваальсовые силы и позволяет силам поверхностного натяжения жидкости сжать каплю в шарик, который легко скатывается по наклоненному стеклу, унося с собой накопившуюся грязь.

В силу наноразмерной толщины, такие покрытия совершенно невидимы, а благодаря биоинертности кремнезема - безвредны для человека и окружающей среды. Они устойчивы к ультрафиолету и выдерживают температуры до 400 °C, а действие водоотталкивающего эффекта длится в течение 4 месяцев.

Несколько зарубежных фирм уже выпускают подобные покрытия в промышленных масштабах. На российском рынке их продукцию представляет эксклюзивный дистрибутор - компания Nanotechnology News Network.

Что касается в прямом понимании самоочищающихся поверхностей, то такая технология основана на использовании диоксида титана. Принцип действия материала с таким покрытием заключается в следующем.

При попадании ультрафиолетового излучения на нанопокрытие из TiO2 происходит фотокаталитическая реакция. В ходе этой реакции испускаются отрицательно заряженные частицы - электроны, а на их месте остаются положительно заряженные дырки. Благодаря появлению комбинации плюсов и минусов на поверхности, покрытой катализатором, содержащиеся в воздухе молекулы воды превращаются в сильные окислители - радикалы гидроокиси (HO), которые в свою очередь окисляют и расщепляют грязь, а также нейтрализуют различные запахи и убивают микроорганизмы.

Кроме покрытий для стекол также разработаны и выпускаются составы с аналогичным действием для тканей, металла, пластика, керамики - и все они имеют потенциал для применения в автомобильной промышленности.

Из серийных моделей автомобилей гидрофобное покрытие наносится на боковые стекла Nissan Terrano II. Оно не создает полноценный водоотталкивающий эффект, но уменьшает пятно контакта поверхности с каплями воды, благодаря чему во время дождя стекло остается вполне прозрачным.

По некоторым сообщениям концерн BMW работает над созданием самоочищающихся покрытий на основе нанопорошков.

Компания Mercedes-Benz с конца 2003 года выпускает модели А, С, E, S, CL, SL, SLK покрытых новым поколением прозрачных лаков, изготовленных с использованием нанотехнологии. В состав верхнего слоя такого лакокрасочного покрытия вводят наноскопические керамические частицы. По утверждению создателей, новое лакокрасочное покрытие защищает кузов от царапин в три раза эффективнее, чем обычный лак.

По результатам испытаний оказалось, что покрытые лаком нового типа машины сохраняют блеск на 40% сильнее, чем покрашенные обычной краской.

Новое лаковое покрытие не только защищает кузов от механических повреждений, но еще и полностью отвечает требованиям Mercedes относительно устойчивости к воздействию химических элементов, находящихся в воздухе.

В настоящее время с использованием нанотехнологических подходов уже производятся высокоэффективные антифрикционные и противоизносные покрытия для автотранспорта. Так российский концерн "Наноиндустрия" наладил серийное производство ремонтно-восстановительного состава "Нанотехнология". Состав предназначен для обработки механических деталей, испытывающих трение - двигали, трансмиссия.

При применении состав позволяет создавать модифицированный высокоуглеродистый железосиликатный защитный слой (МВЗС) толщиной 0,1-1,5 мм в областях интенсивного трения металлических поверхностей, что дает возможность избирательной компенсации износа мест трения и контакта деталей за счет образования в этих местах нового модифицированного поверхностного слоя. Использование РВС позволяет увеличивать ресурс работы узлов и деталей в 2-3 раза за счет замены плановых ремонтов предупредительной обработкой, снижает вибрации и шум, на 70-80% снижает токсичность выхлопа автомобиля без применения каких-либо других мер.

В аэрокосмической промышленности уже широко применяется семейство наноструктурированных аэрогелей. Так кремниевый аэрогель - лучший в мире твердый теплоизолятор, когда-либо обнаруженный или полученный. Для промышленности он представляет интерес, так как обладает высокой термической изоляцией - до 800° С (2,5-сантиметровый лист из силиконового аэрогеля надежно защищает руку человека от огня паяльной лампы) и акустической изоляцией - скорость звука при прохождении через аэрогель составляет лишь 100 м/сек. Развитие нанотехнологии позволит снизить себестоимость производства аэрогелей и сделает этот вид материалов доступным для применения в различных отраслях промышленности, в том числе автомобильной.

Большие перспективы имеются в улучшении электронных компонентов автомобиля с помощью нанотехнологий. Так МикроЭлектроМеханические системы (MEMS) уже расширяют стандартную технологию микроэлектроники, позволяет объединять в одной микросхеме элементы, обеспечивающие как механическое перемещение физических частей, так и электронов в электрической схеме.

Это позволяет вместо раздельного производства микроактуаторов и сенсоров, делать их в виде интегрированного в микросхему единого изделия. При этом для их производства используется уже апробированная традиционная технология производства интегральных микросхем и полупроводников.

Идею подвижного кремния (еще так называют MEMS) прекрасно иллюстрируют MEMS-акселерометры, которые уже широко используются в качестве сенсоров автомобильных подушек безопасности.

Вращающиеся акселерометры также используются для расширения возможностей антиблокировочных систем автомобиля (ABS). Кроме того, в автомобилях MEMS находят применение в датчиках продольных и поперечных ускорений, датчиках крена и т.д. Определяя положение кузова, они служат источником информации для работы различных электронных систем стабилизации и контроля курсовой устойчивости. Также MEMS представляют интерес для создания датчиков давления, температуры. В дорогих автомобилях количество датчиков и сенсоров на основе MEMS-технологии может составлять до нескольких десятков штук.

Кроме измерения ускорений и детектирования перемещений, MEMS используется в системах GPS-навигации.

История развития MEMS насчитывает более сорока лет, но широкое практическое распространение эти системы получили только с середины 90-ых годов прошлого века. В настоящее время уже идет речь о развитии NEMS - NanoElectroMechanical Systems. В результате эволюции MEMS происходит уменьшение до нано размеров механических компонентов систем, снижается их масса, при этом увеличивается их резонансная частота и уменьшается константы взаимодействия, что сказывается на значительном повышении функциональности данного рода устройств. Точность измерения перемещения у лучших образцов таких устройств составляет 10 нанометров.

Развитие нанотехнологий обещает массовое распространение новых конструкционных материалов с порою уникальными свойствами и характеристиками. Наибольший интерес для инженеров и исследователей представляют углеродные материалы, из которых в настоящее время наиболее изученными, а также наиболее перспективными для целей практического применения являются углеродные нанотрубки (УНТ). Они обладают самым широким набором уникальных свойств, делающих их чрезвычайно перспективными для использования, в том числе в автомобилестроении.

Баллистический характер электропроводности УНТ (электроны движутся, как бы скользя по поверхности, не встречая препятствий) позволит создавать высокоэффективные электропроводящие узлы различных машин и механизмов, в том числе автомобилей.

Углеродные нанотрубки уже находят применение в конструкции современных автомобилей. Например, инженеры компании Toyota добавляет композиционный материал на основе УНТ в пластиковые бамперы и дверные панели своих автомобилей. Помимо повышения прочности и снижения массы, пластик со смолой из УНТ становится электропроводным, и его можно покрывать теми же красками с электрическим нанесением, что и металлические детали.

Электронные системы все более тесно интегрируются в конструкцию автомобиля. Существует тенденция дальнейшего расширения использования электроники в автомобилях с одновременным усовершенствованием самой полупроводниковой техники и появлении наноэлектроники и молекулярной электроники.

Нанотранзисторы, в том числе с нанотрубками в конструкции будут обладать рядом улучшенных характеристик и бесспорных преимуществ по сравнению с традиционными кремниевыми:

Повышенное быстродействие;

термо - и радиационная стойкость;

миниатюрность;

низкое энергопотребление и как следствие - незначительное тепловыделение при работе.

Большой интерес представляют нанотехнологии для создания перспективных автомобилей на топливных элементах.

С помощью нанотрубок предполагается решить проблему надежного и безопасного хранения водорода на борту транспортного средства, так как наряду с металлами и жидкостями углеродные нанотрубки могут заполняться газообразными веществами и связывать большое его количество.

Работы по использованию УНТ для хранения водорода поводят и сами автопроизводители. Так Toyota начала разработку технологии производства легкие и компактные баков для хранения водородного топлива, используя УНТ.

Нанотрубки перспективны для усовершенствования конструкции самих топливных элементов. В процессе роста УНТ и УНВ (углеродных нановолокон) образуются случайным образом ориентированные спиралевидные нанотрубки, что приводит к образованию значительного количества полостей и пустот нанометрового размера. В результате удельная поверхность материала нанотрубок достигает значений около 600 м2/г. Столь высокая удельная поверхность открывает возможность их использования прежде всего в фильтрах и подложках катализаторов топливных элементов.

Китайские и американские ученые совместно разработали нанолампочку, в которой нитью накаливания служит не вольфрамовая проволочка, а углеродные нанотрубки. Лампочка с УНТ более экономичная - при равном напряжении она испускает больше света.

Сейчас конструкторы "гибридных" автомобилей уже сталкиваются с потребностью в компактных, легких и высокоемких аккумуляторных батареях. Стоит напомнить, что ставшие традиционными кислотные аккумуляторы не годятся, в силу большой массы, громоздкости, экологической "небезупречности". С ростом парка гибридов, а также с массовым появлением водородных автомобилей на ТЭ потребность в автономных источниках хранения электрической энергии возрастет еще больше. Нанотехнологии предлагают ряд решений данной проблемы.

В силу того, что большинство автомобилей будущего будет работать на электрической тяге, гораздо больший интерес станет представлять использование фотоэлементов в конструкции автомобиля. В этом отношении нанотехнология позволяет создавать долговечные, ультратонкие и гибкие преобразователи солнечного света. Кроме того, использование нанотехнологических принципов позволит получать солнечные панели с КПД до 80-90%.

Кроме конструкции автомобиля, измениться структура самой автомобильной промышленности.

Так с появлением автоматизированной молекулярной нанотехнологии получит новое развитие уже наметившаяся тенденция - разделение функций разработки/проектирования автомобилей и их производства с окончательным закреплением приоритета за первой из перечисленных двух функций. Собственно в будущем автомобильные концерны будут только разрабатывать конструкции тех или иных моделей автомобилей для последующей продажи права на их производство методами поатомной сборки сторонним организациям.

Тем самым не автомобиль будет товаром, а информация об особенности его конструкции, что будет полностью соответствовать модели новой экономической формации, где единственным предметом обмена станет информация.

Сами же автомобили станут:

доступными (нанотехнологические методы производства позволяют создавать товары и услуги с низкой себестоимостью; в автомобилях будущего основной составляющей цены будет являться "брэнд");

комфортными (более совершенная работа механических частей, улучшенная шумо- и вибро- изоляция на основе наноструктурированных материалов, эргономичный салон);

эффективными (повышения средней скорости движения автомобилей, повышение КПД использования энергии, необходимой для перевозки людей и грузов);

интеллектуальными (широкое внедрение информационных систем во все узлы и компоненты автомобилей, принятие автомобилем все больших функций водителя на себя);

безопасными для человека и окружающей среды (новые, экологически чистые силовые установки, в том числе на топливных элементах, качественно новый уровень пассивной и активной безопасности для обитателей салона и пешеходов, широкое использование в конструкции авто биодеградируемых материалов, а с созданием дисассемблеров - возможность 100% утилизации устаревших автомобилей).

Сельское хозяйство

Замена "естественных машин" для производства пищи (растений и животных) их искусственными аналогами - комплексами из молекулярных роботов. Они будут воспроизводить те же химические процессы, что происходят в живом организме, однако более коротким и эффективным путем. Например, из цепочки "почва - углекислый газ - фотосинтез - трава - корова - молоко" будут удалены все лишние звенья. Останется "почва - углекислый газ - молоко (творог, масло, мясо - все, что угодно)". Подобное "сельское хозяйство" не будет зависеть от погодных условий и не будет нуждаться в тяжелом физическом труде. А производительности его хватит, чтобы решить продовольственную проблему раз и навсегда. По разным оценкам, первые такие комплексы будут созданы во второй - четвертой четвертях XXI века.

Биологические наночипы помогут проводить диагностику соматических и инфекционных заболеваний, в том числе видовую идентификацию возбудителей особо опасных инфекций и токсинов получены материалы с наночастицами серебра, обладающие антибактериальными свойствами. Они применимы в медицине для борьбы со стафилококками и другими бактериями в виде красок, бесхлорных средств дезинфекции, перевязочных материалов, лака для покрытия катетеров и т.д. Такие материалы используют в сельском хозяйстве, например в доильных аппаратах, решают проблему загрязнения фильтров любых кондиционеров.

Направления использования нанотехнологий в сельском хозяйстве связаны с воспроизводством сельскохозяйственных видов, переработкой конечной продукции и улучшением ее качества. Нанотехнологии уже используют для обеззараживания воздуха и различных материалов, в том числе кормов и конечной продукции животноводства; обработки семян и урожая в целях его сохранения. Их применяют при стимуляции роста растений; лечении животных; улучшении качества кормов. Есть опыт внедрения этих технологий для уменьшения энергоемкости производства, оптимизации методов обработки сырья и увеличения выхода конечной продукции; разработки новых упаковочных материалов, позволяющих долго сохранять конечную продукцию.

Большинство из них связано с пищевой промышленностью, с использованием наноматериалов для упаковки пищи или определения и, в отдельных случаях, нейтрализации опасных токсинов, аллергенов или патогенов. Развиваются проекты по созданию и улучшению пищевых добавок, получению растительного масла с нанодобавками, которые препятствуют поступлению холестерина в кровь млекопитающих.

Другие направлены на развитие более эффективных и средосберегающих агротехнологий. Например, использование наноматериалов для очистки вод в агроэкосистемах. Или их применение для переработки отходов растениеводства в этанол. В животноводстве разрабатывают методы использования нанодобавок в целях уменьшения доз ростовых факторов и гормонов, нейтрализации патогенов на ранних стадиях их контакта с животными.

Большие надежды в применении нанотехнологий обнаруживаются и в агропромышленном комплексе. Увеличение производства и качества переработки сельскохозяйственного сырья, увеличение ресурса работы спецтехники, повышения сроков хранения, получение высококачественной пищевой продукции и кормов - все эти задачи агробизнеса могут решить нанотехнологии.

Употребление нанотехнологий в овощеводстве.

Мониторинг разработанных нанотехнологических процессов и наноматериалов подтверждает, что применение нанопрепаратов в растениеводстве обеспечивает повышение устойчивости к неблагоприятным погодным условиям и увеличение выхода готовой продукции. Почти для всех технических и продовольственных культур - картофеля, зерновых, овощных, плодово-ягодных, хлопка и льна показатели урожая увеличились в 1,5-2 раза. Нанотехнологии уже активно внедряются при послеуборочной обработке подсолнечника, табака и картофеля, хранении яблок в регулируемых средах, озонировании воздушной среды.

В свете последних открытий нанотехнологий была изучена биологическая роль кремния в живых организмах и изучена биологическая активность органических соединений кремния - силатранов. Силатраны, являющиеся клеточным образованием и содержащие кремний, оказывают физиологическое действие на живые организмы на всех этапах эволюционного развития от микроорганизмов до человека. Применение кремнеорганических биостимуляторов в растениеводстве позволяет повысить холодостойкость, выносливость к жаре и засухе, помогает благополучно выйти из стрессовых погодных ситуаций (возвратные заморозки, резкие перепады температуры и т. д.), усиливает защитные функции растений к болезням и вредителям. Препараты снимают угнетающее, седативное действие химических реагентов по защите растений при комплексных обработках. Суперсовременное направление нанобиотехнологии (нанотехнологии в биологии) в растениеводстве - это создание культурных растений, особенно устойчивых к насекомым вредителям.

Нанотехнологии в животноводстве

В животноводстве нанотехнологии целесообразно использовать в технологических процессах, где они дают вспомогательное превосходство. При формировании микроклимата в помещениях, где содержатся животные и птицы, их использование позволяет заменить энергоемкую приточно-вытяжную систему вентиляции электрохимической очисткой воздуха с обеспечением нормативных параметров микроклимата: температура, влажность, газовый состав, микробиообсемененность, запыленность, скорость движения воздуха, устранение запахов с сохранением тепловыделений животных. Российские ученые применяют на практике экологически чистую нанотехнологию электроконсервирования силосной массы зеленых кормов электроактивированным консервантом. Делается это взамен дорогостоящих органических кислот, требующих соблюдения строгих мер техники безопасности. Такая новая нанотехнология повышает сохранность кормов до 95%. В животноводстве и птицеводстве при приготовлении кормов нанотехнологии обеспечивают повышение продуктивности в 1, 5-3 раза, сопротивляемость стрессам, и падеж уменьшается в 2 раза. Наноустройства, которые могут имплантироваться в растения, животных, позволяют автоматизировать многие процессы и передавать в реальном времени необходимые данные.

Нанотехнологии в переработке агропродукции

Новая наноэлектротехнология комбинированной сушки зерна основана на том, что в нагретом зерне создается избыточное давление влаги при температуре ниже температуры кипения воды. Вследствие этого ускоряется фильтрационный перенос влаги из зерновки на поверхность в капельножидком состоянии. С поверхности влага выпаривается горячим воздухом. Расход энергии на сушку зерна по сравнению с традиционной конвективной сокращается в 1, 3 раза и более, снижаются микроповреждения семян до 6%, их посевные качества улучшаются на 5%. Для низкотемпературной досушки и обеззараживания зерна дополнительно использовали озон, что уменьшило количество бактерий в 24 раза и снизило в 1, 5 раза энергозатраты.

Применительно к АПК внедрение нанотехнологий сулит увеличение объемов сельскохозяйственной продукции и повышение ее качества. Нанотехнологии могут быть применены в различных отраслях АПК: растениеводство, ветеринарная медицина, животноводство, переработка продуктов жизнедеятельности животных и отходов сельхозпродукции, переработка, хранение, упаковка сельскохозяйственной продукции.

Например, в настоящее время в животноводстве успешно применяются наночастицы серебра в фильтрах и других деталях оборудования молочной промышленности для ингибирования процессов брожения и скисания молока. Наночастицы железа и других микроэлементов включают в состав премиксов для повышения жизнестойкости животных и их продуктивности. Нанотехнологии применяются при упаковке и хранении пищевых продуктов.

При помощи наночастиц серебра, обладающих активных антимикробным действием, можно эффективно дезинфицировать различные виды продуктов. Активно сегодня применяются ДНК-технологии, которые позволяют выявить гены, ассоциированные с хозяйственно-ценными признаками, устойчивости к стрессам, инфекционным болезням, а также гены носители рецессивных мутаций – генетических аномалий. В целом вся молекулярная биология может быть названа нанотехнологией.

За рубежом наноиндустрия стремительно развивается. Например, с конца 90-х годов прошлого столетия с использованием молекулярной биологии ведется анализ племенной ценности животных в США, в Канаде, в странах Европейского союза. По данным агентства "Сьянтифика", зафиксировано 150 случаев применения нанотехнологий в пищевой промышленности по всему миру. Другое аналитическое агентство "Хельмут Кайзер" предсказывает, что вклад нанотехнологий в производство продуктов питания к 2010 году в США составит порядка 20 миллиардов долларов. Так, например, правительство США инвестирует до 1,2 миллиардов долларов в программу внедрения нанотехнологий в сельское хозяйство. Российскими учеными уже сделан большой вклад в развитие нанотехнологий. У нас есть очень серьезные разработки, не только в области АПК, о которых, я частично упомянул, но и в других отраслях экономики.

Любая инновация имеет свой путь развития, свою цепочку становления. В настоящее время трудно оценить выгоды от внедрения нанотехнологий в АПК, однако можно с уверенностью сказать, что это внедрение позволит интенсифицировать сельское хозяйство и повысить конкурентоспособность животноводческой продукции.

Экология

Полное устранение вредного влияния деятельности человека на окружающую среду. Во-первых, за счет насыщения экосферы молекулярными роботами-санитарами, превращающими отходы деятельности человека в исходное сырье, а во-вторых, за счет перевода промышленности и сельского хозяйства на безотходные нанотехнологические методы. Прогнозируемый срок реализации: середина XXI века.

Проблема экологии занимала человечество с давних времён. А с ростом прогресса, соответственно, загрязнением окружающей среды, проблемы экологии становятся всё более важными. В последнее время их всё чаще пытаются решить с помощью нанотехнологий. Нанотехнология - это область науки и техники, которая занимается совокупностью теоретических и практических методов исследования, анализом и синтезом и методами изготовления и применения продукции, которая имеет заданную атомную структуру. Производство таких продуктов осуществляется контролируемым манипулированием отдельными молекулами и атомами. Применение нанотехнологий помогает значительно снизить загрязнение окружающей среды. Методы нанотехнологии применяют в самых разных областях во многих странах мира.

Занимаются этой наукой и в России - в последнее время она применяется всё чаще. Уже имеется немало достижений в нанотехнологиях, которые помогают уменьшить вредное влияние на окружающую среду: например, эта наука даёт новые возможности переработки мусора, очистки воды, определения ртути и так далее. Дальнейшие исследования дадут новые результаты, а, значит, и новые возможности. В наше время развитие науки нанотехнологии, а также промышленности, с ней связанной, показывает на развитость государства. Однако нанотехнология - новая наука, и, несмотря на свои преимущества и достоинства, вызывает и опасения. Впрочем, у любой медали всегда две стороны. Поэтому, несмотря на множество явного положительного влияния нанотехнологий на жизнь современных людей, наночастицы могут наносить и вред, используясь в некоторых отраслях.

Нанотехнологии в наши дни используются почти во всех сферах современной жизни. Наночастицы используются, например, даже в косметике и парфюмерии. Так, наночастицы оксида титана содержатся в некоторых солнцезащитных кремах. Эти наночастицы поглощают излучение ультрафиолета с большой эффективностью, что, несомненно, делают такие кремы куда более эффективными, чем обычные. Однако впоследствии были проведены исследования, которые показали, что, например, углеродные нанотрубки оказывали губительное воздействие на крыс. Углеродные нанотрубки, попадая в лёгкие крыс, вызывали сильные нарушения, а затем разносились кровью по организму. Или, например, были изобретены носки, содержащие наночастицы серебра. Таким образом, носки не приобретают неприятный запах. Но исследования показали, что при стирке эти наночастицы попадают в воду, в которой могут вызвать сильные нарушения работы мозга и функций размножения организмов, живущих в воде.

Так как практически все канализационные воды попадают в природные водоёмы, это может нанести вред не только организмам, живущих в них, но и людям. Главная проблема в том, что наночастицы проникают сквозь абсолютно все очистительные фильтры, которые существуют на наш день. Поэтому, так как использование нанотехнологий становится всё более активным, произойдёт и некоторая революция в экологии. Будут создаваться специальные фильтры, задерживающие наночастицы. И, конечно, практически все новые технологии чаще всего в первую очередь применяются в военной отрасли. Если применять нанотрубки при создании взрывчатых веществ, то, во-первых, это обеспечит огромную силу взрыва, во-вторых, нанотрубки, рассеивающиеся в воздухе, могут нарушать работу органов и клеток людей. Впрочем, страшилки можно рассказывать про любое новое явление. Так как нанотехнологии видимо облегчают жизнь человека, то можно предположить, что, во-первых, нанотехнологии будут использовать не во всех отраслях, а только в тех, где это необходимо. И, во-вторых, вскоре негативное влияние наночастиц будет изучено и будут придуманы новые методы защиты.

Освоение космоса

По-видимому, освоению космоса "обычным" порядком будет предшествовать освоение его нанороботами. Огромная армия роботов-молекул будет выпущена в околоземное космическое пространство и подготовит его для заселения человеком - сделает пригодными для обитания Луну, астероиды, ближайшие планеты, соорудит из "подручных материалов" (метеоритов, комет) космические станции. Это будет намного дешевле и безопаснее существующих ныне методов.

Космос - это не только уникальная лаборатория, где создаются новые материалы и исследуется Вселенная. Космос - это еще и арена будущего распространения человечества, точнее - постчеловечества. Это материал, из которого в далеком будущем мы сможем творить СВОЮ Вселенную.

В XX-и веке мы вырвались в космос, обрели планетарное и космическое сознание. Мы превзошли себя. Это было одним из самых первых сверхчеловеческих, трангсуманистических деяний Человека. И вот прошло почти полвека с полета первого спутника. Что же мы имеем сейчас? Какие перспективы раскрывают нам последние достижения исследователей?

К началу XXI-го века сотни людей побывали в космосе; человек высадился на Луне, автоматические аппараты побывали на многих планетах Солнечной системы, астероидах и кометах. Автоматический зонд Вояджер-1 пролетел более 14 миллиардов километров и приближается к границе Солнечной системы. В изучении космоса уже активно используются современные роботы, а также искусственный интеллект, хотя ему пока редко доверяют дорогие аппараты. В последние годы были найдены десятки планет, обращающихся вокруг других звёзд, обнаружены крупные объекты в поясе Купера (за орбитой Плутона), сверхмощные телескопы заглянули в глубины космоса более чем на 10 млрд световых лет (и на столько же лет в прошлое Вселенной).

Помимо знания о Вселенной, освоение космоса дало огромные практические результаты. С самого начала спутниковая фотография использовалась для изучения Земли, мониторинга окружающей среды, промышленных объектов. К 2002 году развитие телекоммуникаций сделало огромный объём спутниковых снимков всей уголков нашей планеты доступным каждому с помощью программы Google Earth.

Спутниковые коммуникации широко используются для телевизионной, Интернет и телефонной связи. Космические системы позиционирования используются самолётами, морскими судами, автомобилями и туристами.

Человечество уже выросло из своей колыбели - без космоса наша жизнь уже немыслима. Поэтому сегодня многие страны начинают собственные космические программы, а в начале 21 века началось и частное освоение космоса. В 2001 году отправился на орбиту первый космический турист Деннис Тито. В 2004 в рамках соревнования X-Prize совершил суборбитальный полёт (на высоту 112 км) космолёт многоразового использования SpaceShipOne, созданный независимыми разработчиками. В 2005 году начато строительство частных космодромов в Мохаве (США), Рас Аль Хаймах (ОАЭ) и Сингапуре. На ближайшие годы планируется огромное расширение туризма (Virgin Galactic планирует отправить на космические круизы 7000 человек до 2013 года, благодаря доступной цене в 200 тыс. долл.). Владелец крупнейшей сети мотелей Роберт Биголоу планирует открыть первый орбитальный отель Skywalker уже в 2010 году.

Всё это и намного большее станет возможным с появлением нового пути в космос, более эффективного даже, чем современные корабли многоразового использования. С участием NASA разрабатываются планы строительства космического лифта! Ввиду малой силы притяжения Луны, строительство такого лифта из точек Лагранжа (Л-1 или Л-2), где уравновешены силы тяготения Луны, Земли и Солнца, до поверхности Луны возможно даже с помощью сегодняшних технологий! Потребуется лишь кабель из свехпрочного волокна «M5», общим весом 7 тонн, который может быть поднят в космос за один запуск.

Строительство такого лифта на Земле потребует более совершенных материалов, при этом, по расчётам, углеродные нанотрубки будут достаточно прочными для этих целей. Необходимые технологии могут быть разработаны в течение 10-15 лет. Но когда космический лифт будет построен, стоимость вывода грузов на орбиту упадёт до десятков долларов за килограмм. Вероятно, сразу же после появления первого лифта по экватору будут возведены новые, потом их усовершенствуют, и они будут представлять собой уже не несколько тонких лент, а ажурные башни с сооружениями на промежуточных уровнях. Возможно. что через какое-то время на уровне геостационарной орбиты будет создано целое кольцо - гигантская орбитальная космическая станция, подобная описанной А. Кларком в «Одиссее-3000».

Также сейчас серьезно рассматриваются планы (НАСА) по добыче ресурсов на Луне и астероидах. Один из видов полезных ископаемых, добыча которого в космосе может быть экономически оправдана - это гелий-3. На Земле его нет, на Луне он присутствует в избытке (собранный Луной из солнечного ветра за миллиарды лет). А он, в то же время, является отличным топливом для термоядерной энергетики. При этом, чтобы обеспечить всей нашей планете потребление энергии в масштабах 2005 года, потребуется в год доставлять на Землю лишь 100 тонн гелия-3!

Независимо от экономических перспектив, вопросы строительства обитаемых баз на Луне и Марсе остаются на повестке дня. Китай собирается построить первую базу на Луне, Россия и США стремятся к Марсу. Постепенное улучшение технологий делает эти проекты всё более реальными.

Теперь о двигателях. В начале космической эры мы использовали ракетные двигатели. С тех пор предлагалось много альтернатив, но пока они не стали доминирующими. В будущем для полётов внутри Солнечной системы будут использовать ионные двигатели. Уже сейчас они обеспечивают необычайно высокую эффективность. Для подъёма на орбиту могут найти применение лазерные двигатели. Когда космический лифт будет построен, он заменит ракеты в этой области.

Еще пример.В 1958-м году был разработан проект «Орион»: проект космического корабля, взлетающего с поверхности Земли с помощью взрывов ядерных микробомб. Но запрет на взрыв ядерных устройств в атмосфере, вступивший в силу в 1963 году, положил конец этому проекту. В данный момент существует проект космического корабля подобного типа «Прометей», который планируется отправить на Марс.

Также для полёта к звёздам могут быть использованы атомные и фотонные двигатели, позволяющие путешествовать на околосветовых скоростях. Однако, если это физически возможно, то Сверхразум будущего наверняка найдёт способ обхода светового барьера, например, за счёт использования червоточин, сжатия пространства или других способов.

Тут надо заметить, что вряд ли простое открытие, изучение или колонизация новых миров останутся важными для сверхцивилизаций. Ведь компьютерные технологии сделают возможной симуляцию всего богатства возможностей триллионов звёздных систем в рамках компьютеров-генераторов виртуальной реальности. Первый шаг на этом пути будет сделан в ближайшие годы с выходом компьютерной игры Spore. Поэтому, вероятно, что отношение Сверхразума к далёким звёздам будет более прагматичным.

Прежде чем что-либо использовать, надо до этого долететь. Весьма вероятно, что эту задачу возьмут на себя так называемые зонды Фон-Неймана: разумные самовоспроизводящиеся корабли-автоматы, способные, долетев до цели, изучить её, передать информацию и создать сотни своих копий, которые будут отправлены к новым звёздам. Подобная децентрализация может оказаться намного эффективнее романтичных звёздных экспедиций homo sapiens с роботами-помошниками, описываемых научной фантастикой.

Развитие ракетостроения закладывает исследовательскую и зкспериментальную базу для будущего, скорее всего, постсингулярного сверхтехнологического прорыва в ближний, а затем и в дальний космос. Но каковы перспективы для жизни людей в космосе? Мы видим три кардинально различные возможности: терраформинг, адаптация человека к условиям космоса и перестройка космической материи в компьютрониум. Рассмотрим их все.

Уже сейчас существуют проекты терраформинга Марса. Перестройка поверхности других планеты может быть осуществлена с помощью искусственных микроорганизмов или нанороботов, создающих атмосферу, защитный слой озона, почву, реки и моря... Сверхразум сможет даже создать устройство - назовем его условно «Генезис» - способное сделать планету обитаемой в течение нескольких дней или месяцев.

Однако, возможна и другая альтернатива: развитие автотрофности человека, его самодостаточности и независимости от окружающей среды. Достижимые с помощью нанотехнологий изменения сделают возможной жизнь человека (как в физическом теле, так и внутри компьютерных систем) в условиях вакуума и сверхвысоких давлений, сверхвысоких радиации и гравитации, сверхнизких или сверхвысоких температур, то есть, практически везде, кроме, разве что, Солнца.

Если же человек откажется от привычных нам форм существования, то самым эффективным сценарием может оказаться разборка планет солнечной системы и перестройка всей материи в сверхмощные компьютеры, объединённые в единую сеть. Гипотетическое вещество, обеспечивающее максимальную вычислительную мощность на единицу массы называется компьютрониум (computronium). Если отказаться от идеи создать в космосе комфортную для человека среду, то даже существование внутри Солнца может оказаться возможным для Сверхразума: ведь везде, где могут существовать упорядоченные структуры, могут и идти вычисления, а значит - существовать сознание. Любопытно, что, говоря о пределах вычислительной мощности, учёные обычно описывают шары раскалённой плазмы - объекты, весьма напоминающие внутренность Солнца.

Какими бы путями ни шло освоение космоса, постчеловечество не откажется от космической экспансии. Ведь Сверхразум не является имманентно планетарным. Ему чуждо это разделение, поскольку физических ограничений на жизнь в космосе для него нет. И он обязательно будет заниматься космическим мегастроительством, превращать косную космическую материю в разумную.

Возможно, это произойдет так. После освоения планет солнечной системы мы построим увеличивающую наши территориальные возможности мегаконструкцию, например, гигантские космические города. Поскольку мы ожидаем развитие самых различных типов постлюдей, то примерно в этот период часть постличностей будет преобразовывать ближайшие к Солнцу (и более богатые солнечной энергией) планеты в «мозги-матрёшки», другая же, более похожая на своих предков (то есть, нас), возможно, будет занята строительством мега-миров (таких как «мир-кольцо») между орбитами Земли и Марса. Газовые гиганты будут разобраны, а составляющее их вещество использовано для наших целей. Через какое-то время, чтобы максимально эффективно использовать энергию Солнца, вокруг Солнечной системы будет воздвигнута сфера Дайсона.

В более далёком будущем Сверхразум займётся галактическими проектами. Такими, как добыча энергии из черных дыр, подъем вещества из активных звёзд, включение и выключение звёзд, создание червоточин в пространстве для преодоления светового барьера.

А когда Вселенский Разум исчерпает возможности нашего Универсума, придет время создания новых дочерних вселенных. Практическая ценность дочерних вселенных в том, чтобы обеспечить действительно бесконечное существование разума, перенося его из умирающих вселенных во вновь создаваемые. Однако, согласно некоторым моделям, бесконечно долгое субъективное существование можно обеспечить и в рамках нашей вселенной.

Кибернетика

Произойдет переход от ныне существующих планарных структур к объемным микросхемам, размеры активных элементов уменьшаться до размеров молекул. Рабочие частоты компьютеров достигнут терагерцовых величин. Получат распространение схемные решения на нейроноподобных элементах. Появится быстродействующая долговременная память на белковых молекулах, емкость которой будет измеряться терабайтами. Станет возможным "переселение" человеческого интеллекта в компьютер. Прогнозируемый срок реализации: первая - вторая четверть XXI века.

Институтом Молекулярного Производства (IMM) разработан предварительный дизайн наноманипулятора с атомарной точностью. Как только будет получена система "нанокомпьютер - наноманипулятор" (эксперты прогнозируют это в 2010-2020 гг.), можно будет программно произвести еще один такой же комплекс - он соберет свой аналог по заданной программе, без непосредственного вмешательства человека. Бактерии, используя репликативные свойства ДНК, способны развиваться за считанные часы от нескольких особей до миллионов. Таким образом, получение ассемблеров в массовом масштабе не потребует никаких затрат со стороны, кроме обеспечения их энергией и сырьем.

На основе системы "нанокомпьютер - наноманипулятор" можно будет организовать сборочные автоматизированные комплексы, способные собирать любые макроскопические объекты по заранее снятой либо разработанной трехмерной сетке расположения атомов. Компания Xerox в настоящее время ведет интенсивные исследования в области нанотехнологий, что наводит на мысль о ее стремлении создать в будущем дубликаторы материи. Комплекс роботов будет разбирать на атомы исходный объект, а другой комплекс будет создавать копию, идентичную, вплоть до отдельных атомов, оригиналу (эксперты прогнозируют это в 2020-2030 гг.). Это позволит упразднить имеющийся в настоящее время комплекс фабрик, производящих продукцию с помощью "объемной" технологии, достаточно будет спроектировать в компьютеризированной системе любой продукт - и он будет собран и размножен сборочным комплексом.

Станет возможным автоматическое строительство орбитальных систем, самособирающихся колоний на Луне и Марсе, любых строений в мировом океане, на поверхности земли и в воздухе (эксперты прогнозируют это в 2050 гг.). Возможность самосборки может привести к решению глобальных вопросов человечества: проблемы нехватки пищи, жилья и энергии. Благодаря нанотехнологиям существенно изменится конструирование машин и механизмов - многие части упростятся вследствие новых технологий сборки, многие станут ненужными. Это позволит конструировать машины и механизмы, ранее недоступные человеку из-за отсутствия технологий сборки и конструирования. Эти механизмы будут состоять, по сути дела, из одной очень сложной детали.

С помощью механоэлектрических нанопреобразователей можно будет преобразовывать любые виды энергии с большим КПД и создать эффективные устройства для получения электроэнергии из солнечного излучения с КПД около 90%. Утилизация отходов и глобальный контроль за системами типа "recycling" позволит существенно увеличить сырьевые запасы человечества. Станут возможными глобальный экологический контроль, погодный контроль благодаря системе взаимодействующих нанороботов, работающих синхронно.

Биотехнологии и компьютерная техника, вероятно, получат большее развитие благодаря нанотехнологиям. С развитием наномедицинских роботов станет возможным отдаление человеческой смерти на неопределенный срок. Также не будет проблем с перестройкой человеческого тела для качественного увеличения естественных способностей. Возможно также обеспечение организма энергией, независимо от того, употреблялось что-либо в пищу или нет.

Компьютерная техника трансформируется в единую глобальную информационную сеть огромной производительности, причем каждый человек будет иметь возможность быть терминалом - через непосредственный доступ к головному мозгу и органам чувств. Область материаловедения существенно изменится - появятся "умные" материалы, способные к мультимедиа-общению с пользователем. Также появятся материалы сверхпрочные, сверхлегкие и негорючие.

Что касается сырьевой проблемы, то для постройки большинства объектов нанороботы будут использовать несколько самых распространенных типов атомов: углерод, водород, кремний, азот, кислород, сера, и др. в меньшем количестве. С освоением человечеством других планет проблема сырьевого снабжения будет решена.

Таким образом, на основании прогнозов, нанотехнологии обещают радикальное преобразование как современного производства и связанных с ним технологий, так и человеческой жизни в целом. Нанотехнологии произведут такую же революцию в манипулировании материей, какую произвели компьютеры в манипулировании информацией. Они повлияют на мир больше, чем открытие электричества.

Отношение общества к нанотехнологиям

Прогресс в области нанотехнологий вызвал определенный общественный резонанс.

Отношение общества к нанотехнологиям изучалось ВЦИОМ и европейской службой «Евробарометр».

Ряд исследователей указывают на то, что негативное отношение к нанотехнологии у неспециалистов может быть связано с религиозностью, а также из-за опасений, связанных с токсичностью наноматериалов.

Реакция мирового сообщества на развитие нанотехнологий

C 2005 года функционирует организованная CRN международная рабочая группа, изучающая социальные последствия развития нанотехнологий.

В октябре 2006 года Международным Советом по нанотехнологиям выпущена обзорная статья, в которой, в частности, говорилось о необходимости ограничения распространения информации по нанотехнологическим исследованиям в целях безопасности.

Организация «Гринпис» требует полного запрета исследований в области нанотехнологий.

Тема последствий развития нанотехнологий становится объектом философских исследований. Так, о перспективах развития нанотехнологий говорилось на прошедшей в 2007 году международной футурологической конференции Transvision, организованной WTA.

Реакция российского общества на развитие нанотехнологий

26 апреля 2007 года бывший Президент России Владимир Путин в послании Федеральному Собранию назвал нанотехнологии «наиболее приоритетным направлением развития науки и техники».

По мнению Путина, для большинства россиян нанотехнологии сегодня - «некая абстракция вроде атомной энергии в 30-е годы».

О необходимости развития нанотехнологий заявляет ряд российских общественных организаций.

По сообщениям СМИ, представители Российского трансгуманистического движения акцентировали внимание на развитии нанотехнологического производства на круглом столе «Влияние науки на политическую ситуацию в России. Взгляд в будущее», состоявшегося 21 марта 2007 года в Государственной Думе РФ.

8 октября 2008 года было создано «Нанотехнологическое общество России», в задачи которого входит «просвещение российского общества в области нанотехнологий и формирование благоприятного общественного мнения в пользу нанотехнологического развития страны»

6 октября 2009 года президент Дмитрий Медведев на открытии Международного форума по нанотехнологиям в Москве заявил: «Главное, чтобы не произошло по известному сценарию - мировая экономика начинает расти, экспортный потенциал возрастает, и никакие нанотехнологии не нужны и можно дальше продавать энергоносители. Этот сценарий был бы для нашей страны просто губительным. Все мы должны сделать так, чтобы нанотехнологии стали одной из мощнейших отраслей экономики. Именно к такому сценарию развития я вас призываю», - подчеркнул Д.Медведев, обращаясь к участникам форума.

При этом президент особо отметил, что «пока эта (государственная) поддержка (бизнеса) носит безалаберный характер, пока мы не смогли ухватить суть этой работы, надо наладить эту работу». Д. Медведев также подчеркнул, что Роснано до 2015 года на эти цели будет выделено 318 млрд рублей.

Д. Медведев предложил Минобрнауки увеличить количество специальностей в связи с развитием потребности в квалифицированных кадров для нанотехнологий, а также создать госзаказ на инновации и открыть «зеленый коридор» для экспорта высокотехнологичных товаров.

Нанотехнологии в искусстве

Ряд произведений американской художницы Наташи Вита-Мор касается нанотехнологической тематики.

Нанороботам и их роли в социальном прогрессе посвящена композиция «Nanobots» российской группы Re-Zone.

Нанотехнологии в фантастике

В широко известном произведении русского писателя Н. Лескова «Левша» (1881 год) есть любопытный фрагмент: Если бы, - говорит, - был лучше мелкоскоп, который в пять миллионов увеличивает, так вы изволили бы, - говорит, - увидать, что на каждой подковинке мастерово имя выставлено: какой русский мастер ту подковку делал Н. Лесков «Левша»

Увеличение в 5 000 000 раз обеспечивают современные электронные и атомно-силовые микроскопы, считающиеся основными инструментами нанотехнологий. Таким образом, литературного героя Левшу можно считать первым в истории «нанотехнологом».

Изложенные Фейнманом в лекции 1959 г. «Там внизу много места» идеи о способах создания и применения наноманипуляторов совпадают практически текстуально с фантастическим рассказом известного советского писателя Бориса Житкова «Микроруки», опубликованным в 1931.

Некоторые отрицательные последствия неконтролируемого развития нанотехнологий описаны в произведениях М. Крайтона («Рой»), С. Лема («Осмотр на месте» и «Мир на Земле»), С. Лукьяненко («Нечего делить»), С. Кинг («Серая дрянь»).

Главный герой романа «Трансчеловек» Ю.Никитина - руководитель нанотехнологической корпорации и первый человек, испытавший на себе действие медицинских нанороботов.

В научно-фантастическом сериале «Звёздные врата: Атлантида» упоминается раса «репликаторов», возникшая в результате неудавшегося опыта Древних с использованием и описанием различных вариантов применения нанотехнологий.

Источники

ru.wikipedia.org Википедия – свободная энциклопедия

delftechnology.com Портал новейших нанотехнологий

popnano.ru Популярные нанотехнологии

price.od.ua Прайс Зона

nano.com.ua Украинский сайт нанотехнологий

enecsis.ru Нанотехнологии вчера, сегодня, завтра

gradusnik.ru Градусник.РУ

medlinks.ru Вся медицина в интернете

nanoforce.org.ua Портал о нанотехнологиях

orange.strf.ru Наука и технологии России

nanofab.asia Нанотехнологии в Казахстане

nanoveko.ru/ Нанотехнологии в экологии

transhumanism-russia.ru Российское трансгуманистическое движение

Видели ли вы когда-нибудь монитор, толщина которого меньше миллиметра? А несгораемую и непромокаемую бумагу? Или одежду, которую невозможно испачкать? Это не фантастика! Это то, что ожидает нас в недалеком будущем. Такие необычные предметы могут подарить человеку нанотехнологии . То, что технология - это способ производства какого-либо объекта, знает каждый. А вот что означает приставка «нано»? «Нано» - одна миллиардная доля чего-либо. Один нанометр – миллиардная доля метра. 1нм = 0,000000001 м. Попробуем представить себе объекты такого размера. Нанометр меньше метра примерно настолько, насколько грецкий орех меньше земного шара. Размеры в несколько нанометров имеют большие молекулы, например, белки. Атомы и обычные молекулы меньше, они измеряются десятыми долями нанометров. Нанотехнология - комплекс методов, который позволяет создавать объекты наноразмеров (от 1 до 100 нм). Такие объекты имеют особые свойства. Именно эти свойства наноматериалов позволят использовать их для новейших научных достижений. Уже сейчас нанотехнологии - наиболее перспективное и финансируемое направление в мировой науке.

На что способны нанотехнологии

Вот только некоторые области, в которых нанотехнологии обещают прорыв:

Медицина

Наносенсоры обеспечат прогресс в ранней диагностике заболеваний. Это увеличит шансы на выздоровление. Мы сможем победить рак и другие болезни. Старые лекарства от рака уничтожали не только больные клетки, но и здоровые. С помощью нанотехнологий лекарство будет доставляться непосредственно в больную клетку.

Строительство

Нанодатчики строительных конструкций будут следить за их прочностью, обнаруживать любые угрозы целостности. Объекты, построенные с использованием нанотехнологий, смогут прослужить в пять раз дольше, чем современные сооружения. Дома будут подстраиваться под потребности жильцов, обеспечивая им прохладу летом и сохраняя тепло зимой.

Энергетика

Мы меньше будем зависеть от нефти и газа. У современных солнечных батарей КПД около 20%. С применением нанотехнологий он может вырасти в 2-3 раза. Тонкие нанопленки на крыше и стенах смогут обеспечить энергией весь дом (если, конечно, солнца будет достаточно).

Машиностроение

Всю громоздкую технику заменят роботы – легко управляемые устройства. Они смогут создавать любые механизмы на уровне атомов и молекул. Для производства машин будут использоваться новые наноматериалы, которые способны снижать трение, защищать детали от повреждений, экономить энергию. Это далеко не все сферы, в которых могут (и будут!) применяться нанотехнологии. Ученые считают, что появление нанотехнологий – начало новой Научно-технической революции, которая сильно изменит мир уже в ХХI веке. Стоит, правда, заметить, что в реальную практику нанотехнологии входят не очень быстро. Не так много устройств (в основном электроника) работает "с нано". Отчасти это объясняется высокой ценой нанотехнологий и не слишком высокой отдачей от нанотехнологической продукции.



Добавить свою цену в базу

Комментарий

Нанотехнология – область фундаментальной и прикладной науки и техники, имеющая дело с совокупностью теоретического обоснования, практических методов исследования, анализа и синтеза, а также методов производства и применения продуктов с заданной атомной структурой путём контролируемого манипулирования отдельными атомами и молекулами.

История

Многие источники, в первую очередь англоязычные, первое упоминание методов, которые впоследствии будут названы нанотехнологией, связывают с известным выступлением Ричарда Фейнмана «Внизу полным-полно места» (англ. «There’s Plenty of Room at the Bottom»), сделанным им в 1959 году в Калифорнийском технологическом институте на ежегодной встрече Американского физического общества. Ричард Фейнман предположил, что возможно механически перемещать одиночные атомы при помощи манипулятора соответствующего размера, по крайней мере, такой процесс не противоречил бы известным на сегодняшний день физическим законам.

Этот манипулятор он предложил делать следующим способом. Необходимо построить механизм, создававший бы свою копию, только на порядок меньшую. Созданный меньший механизм должен опять создать свою копию, опять на порядок меньшую и так до тех пор, пока размеры механизма не будут соизмеримы с размерами порядка одного атома. При этом необходимо будет делать изменения в устройстве этого механизма, так как силы гравитации, действующие в макромире, будут оказывать все меньшее влияние, а силы межмолекулярных взаимодействий и Ван-дер-Ваальсовы силы будут все больше влиять на работу механизма.

Последний этап – полученный механизм соберёт свою копию из отдельных атомов. Принципиально число таких копий неограниченно, можно будет за короткое время создать произвольное число таких машин. Эти машины смогут таким же способом, поатомной сборкой, собирать макровещи. Это позволит сделать вещи на порядок дешевле – таким роботам (нанороботам) нужно будет дать только необходимое количество молекул и энергию, и написать программу для сборки необходимых предметов. До сих пор никто не смог опровергнуть эту возможность, но и никому пока не удалось создать такие механизмы. В ходе теоретического исследования данной возможности появились гипотетические сценарии конца света, которые предполагают, что нанороботы поглотят всю биомассу Земли, выполняя свою программу саморазмножения (так называемая «серая слизь» или «серая жижа»).

Первые предположения о возможности исследования объектов на атомном уровне можно встретить в книге «Opticks» Исаака Ньютона, вышедшей в 1704 году. В книге Ньютон выражает надежду, что микроскопы будущего когда-нибудь смогут исследовать «тайны корпускул».

Впервые термин «нанотехнология» употребил Норио Танигути в 1974 году. Он назвал этим термином производство изделий размером несколько нанометров. В 1980-х годах этот термин использовал Эрик К. Дрекслер в своих книгах: «Машины создания: Грядущая эра нанотехнологии» («Engines of Creation: The Coming Era of Nanotechnology») и «Nanosystems: Molecular Machinery, Manufacturing, and Computation».

На что способны нанотехнологии?

Вот только некоторые области, в которых нанотехнологии обещают прорыв:

Медицина

Наносенсоры обеспечат прогресс в ранней диагностике заболеваний. Это увеличит шансы на выздоровление. Мы сможем победить рак и другие болезни. Старые лекарства от рака уничтожали не только больные клетки, но и здоровые. С помощью нанотехнологий лекарство будет доставляться непосредственно в больную клетку.

ДНК‑нанотехнологии – используют специфические основы молекул ДНК и нуклеиновых кислот для создания на их основе четко заданных структур. Промышленный синтез молекул лекарств и фармакологических препаратов четко определенной формы (бис‑пептиды).

В начале 2000‑го года, благодаря быстрому прогрессу в технологии изготовления частиц наноразмеров, был дан толчок к развитию новой области нанотехнологии –наноплазмонике . Оказалось возможным передавать электромагнитное излучение вдоль цепочки металлических наночастиц с помощью возбуждения плазмонных колебаний.

Строительство

Нанодатчики строительных конструкций будут следить за их прочностью, обнаруживать любые угрозы целостности. Объекты, построенные с использованием нанотехнологий, смогут прослужить в пять раз дольше, чем современные сооружения. Дома будут подстраиваться под потребности жильцов, обеспечивая им прохладу летом и сохраняя тепло зимой.

Энергетика

Мы меньше будем зависеть от нефти и газа. У современных солнечных батарей КПД около 20%. С применением нанотехнологий он может вырасти в 2-3 раза. Тонкие нанопленки на крыше и стенах смогут обеспечить энергией весь дом (если, конечно, солнца будет достаточно).

Машиностроение

Всю громоздкую технику заменят роботы – легко управляемые устройства. Они смогут создавать любые механизмы на уровне атомов и молекул. Для производства машин будут использоваться новые наноматериалы, которые способны снижать трение, защищать детали от повреждений, экономить энергию. Это далеко не все сферы, в которых могут (и будут!) применяться нанотехнологии. Ученые считают, что появление нанотехнологий – начало новой Научно-технической революции, которая сильно изменит мир уже в ХХI веке. Стоит, правда, заметить, что в реальную практику нанотехнологии входят не очень быстро. Не так много устройств (в основном электроника) работает «с нано». Отчасти это объясняется высокой ценой нанотехнологий и не слишком высокой отдачей от нанотехнологической продукции.

Вероятно, уже в недалёком будущем с помощью нанотехнологий будут созданы высокотехнологичные, мобильные, легко управляемые устройства, которые успешно заменят пусть и автоматизированную, но сложную в управлении и громоздкую технику сегодняшнего дня. Так, например, со временем биороботы, управляемые посредством компьютера, смогут выполнять функции нынешних громоздких насосных станций.

  • ДНК‑компьютер – вычислительная система, использующая вычислительные возможности молекул ДНК. Биомолекулярные вычисления – это собирательное название для различных техник, так или иначе связанных с ДНК или РНК. При ДНК‑вычислениях данные представляются не в форме нулей и единиц, а в виде молекулярной структуры, построенной на основе спирали ДНК. Роль программного обеспечения для чтения, копирования и управления данными выполняют особые ферменты.
  • Атомно‑силовой микроскоп – сканирующий зондовый микроскоп высокого разрешения, основанный на взаимодействии иглы кантилевера (зонда) с поверхностью исследуемого образца. В отличие от сканирующего туннельного микроскопа (СТМ), может исследовать как проводящие, так и непроводящие поверхности даже через слой жидкости, что позволяет работать с органическими молекулами (ДНК). Пространственное разрешение атомно‑силового микроскопа зависит от размера кантилевера и кривизны его острия. Разрешение достигает атомарного по горизонтали и существенно превышает его по вертикали.
  • Антенна‑осциллятор – 9 февраля 2005 года в лаборатории Бостонского университета была получена антенна‑осциллятор размерами порядка 1 мкм. Это устройство насчитывает 5000 миллионов атомов и способно осциллировать с частотой 1,49 гигагерц, что позволяет передавать с ее помощью огромные объемы информации.

10 нанотехнологий с удивительным потенциалом

Попробуйте вспомнить какое-нибудь каноническое изобретение. Вероятно, кто-то сейчас представил себе колесо, кто-то самолет, а кто-то и «айпод». А многие ли из вас подумали об изобретении совсем нового поколения – нанотехнологиях? Этот мир малоизучен, но обладает невероятным потенциалом, способным подарить нам действительно фантастические вещи. Удивительная вещь: направление нанотехнологий не существовало до 1975 года, даже несмотря на то, что ученые начали работать в этой сфере гораздо раньше.

Невооруженный глаз человека способен распознать объекты размером до 0,1 миллиметра. Мы же сегодня поговорим о десяти изобретениях, которые в 100 000 раз меньше.

Электропроводимый жидкий металл

За счет электричества можно заставить простой сплав жидкого металла, состоящий из галлия, иридия и олова, образовывать сложные фигуры или же наматывать круги внутри чашки Петри. Можно с некоторой долей вероятности сказать, что это материал, из которого был создан знаменитый киборг серии T-1000, которого мы могли видеть «Терминаторе 2».

«Мягкий сплав ведет себя как умная форма, способная при необходимости самостоятельно деформироваться с учетом изменяющегося окружающего пространства, по которому он движется. Прямо как мог делать киборг из популярной научно-фантастической киноленты», – делится Джин Ли из университета Цинхуа, один из исследователей, занимавшихся данным проектом.

Этот металл биомиметический, то есть он имитирует биохимические реакции, хотя сам не является биологическим веществом.

Управлять этим металлом можно за счет электрических разрядов. Однако он и сам способен самостоятельно передвигаться, за счет появляющегося дисбаланса нагрузки, которое создается разностью в давлении между фронтальной и тыльной частью каждой капли этого металлического сплава. И хотя ученые считают, что этот процесс может являться ключом к конвертации химической энергии в механическую, молекулярный материал в ближайшем будущем не собираются использовать для строительства злых киборгов. Весь процесс «магии» может происходить только в растворе гидроксида натрия или соляном растворе.

Нанопластыри

Исследователи из Йоркского университета работают над созданием специальных пластырей, которые будут предназначаться для доставки всех необходимых лекарств внутрь организма без какого-либо использования иголок и шприцов. Пластыри вполне себе обычного размера приклеиваются к руке, доставляют определенную дозу наночастиц лекарственного средства (достаточно маленькие, чтобы проникнуть через волосяные фолликулы) внутрь вашего организма. Наночастицы (каждая размером менее 20 нанометров) сами найдут вредоносные клетки, убьют их и будут выведены из организма вместе с другими клетками в результате естественных процессов.

Ученые отмечают, что в будущем такие нанопластыри можно будет использовать при борьбе с одним из самых страшных заболеваний на Земле – раком. В отличие от химиотерапии, которая в таких случаях чаще всего является неотъемлемой частью лечения, нанопластыри смогут в индивидуальном порядке находить и уничтожать раковые клетки и оставлять при этом здоровые клетки нетронутыми. Проект нанопластыря получил название «NanJect». Его разработкой занимаются Атиф Сайед и Закария Хуссейн, которые в 2013 году, еще будучи студентами, получили необходимое спонсирование в рамках краудсорсинговой компании по привлечению средств.

Нанофильтр для воды

При использовании этой пленки в сочетании с тонкой сеткой из нержавеющей стали нефть отталкивается, и вода в этом месте становится первозданно чистой.

Что интересно, на создание нанопленки ученых вдохновила сама природа. Листья лотоса, также известного как водяная лилия, обладают свойствами, противоположными свойствам нанопленки: вместо нефти они отталкивают воду. Ученые уже не первый раз подглядывают у этих удивительных растений их не менее удивительные свойства. Результатом этого, например, стало создание супергидрофобных материалов в 2003 году. Что же касается нанопленки, исследователи стараются создать материал, имитирующий поверхность водяных лилий, и обогатить его молекулами специального очищающего средства. Само покрытие невидимо для человеческого глаза. Производство будет недорогим: примерно 1 доллар за квадратный фут.

Очиститель воздуха для подводных лодок

Вряд ли кто-то задумывался о том, каким воздухом приходится дышать экипажам подводных лодок, кроме самих членов экипажа. А между тем очистка воздуха от двуокиси углерода должна производиться немедленно, так как за одно плаванье через легкие команды подлодки одному и тому же воздуху приходится проходить сотни раз. Для очистки воздуха от углекислого газа используют амины, обладающие весьма неприятным запахом. Для решения этого вопроса была создана технология очистки, получившая название SAMMS (аббревиатура от Self-Assembled Monolayers on Mesoporous Supports). Она предлагает использование специальных наночастиц, помещенных внутрь керамических гранул. Вещество обладает пористой структурой, благодаря которой оно поглощает избыток углекислого газа. Различные типы очистки SAMMS взаимодействуют с различными молекулами в воздухе, воде и земле, однако все из этих вариантов очисток невероятно эффективны. Всего одной столовой ложки таких пористых керамических гранул хватит для очистки площади, равной одному футбольному полю.

Нанопроводники

Исследователи Северо-Западного университета (США) выяснили, как создать электрический проводник на наноуровне. Этот проводник представляет собой твердую и прочную наночастицу, которая может быть настроена на передачу электрического тока в различных противоположных направлениях. Исследование показывает, что каждая такая наночастица способна эмулировать работу «выпрямителя тока, переключателей и диодов». Каждая частица толщиной 5 нанометров покрыта положительно заряженным химическим веществом и окружена отрицательно заряженными атомами. Подача электрического разряда реконфигурирует отрицательно заряженные атомы вокруг наночастиц.

Потенциал у технологии, как сообщают ученые, небывалый. На ее основе можно создавать материалы, «способные самостоятельно изменяться под определенные компьютерные вычислительные задачи». Использование этого наноматериала позволит фактически «перепрограммировать» электронику будущего. Аппаратные обновления станут такими же легкими, как и программные.

Нанотехнологическое зарядное устройство

Когда эту штуку создадут, то вам больше не потребуется использовать никакие проводные зарядные устройства. Новая нанотехнология работает как губка, только впитывает не жидкость. Она высасывает из окружающей среды кинетическую энергию и направляет ее прямо в ваш смартфон. Основа технологии заключается в использовании пьезоэлектрического материала, который генерирует электричество, находясь в состоянии механического напряжения. Материал наделен наноскопическими порами, которые превращают его в гибкую губку.

Официальное название этого устройства – «наногенератор». Такие наногенераторы могут однажды стать частью каждого смартфона на планете или же частью приборной панели каждого автомобиля, а возможно, и частью каждого кармана одежды – гаджеты будут заряжаться прямо в нем. Кроме того, технология имеет потенциал использования на более масштабном уровне, например, в промышленном оборудовании. По крайней мере так считают исследователи из Висконсинского университета в Мадисоне, создавшие эту удивительную наногубку.

Искусственная сетчатка

Израильская компания Nano Retina разрабатывает интерфейс, который будет напрямую подключатся к нейронам глаза и передавать результат нейронного моделирования в мозг, заменяя сетчатку и возвращая людям зрение.

Эксперимент на слепой курице показал надежду на успешность проекта. Нанопленка позволила курице увидеть свет. Правда, до конечной стадии разработки искусственной сетчатки для возвращения людям зрения пока еще далеко, но наличие прогресса в этом направлении не может не радовать. Nano Retina – не единственная компания, которая занимается подобными разработками, однако именно их технология на данный момент видится наиболее перспективной, эффективной и адаптивной. Последний пункт наиболее важен, так как мы говорим о продукте, который будет интегрироваться в чьи-то глаза. Похожие разработки показали, что твердые материалы непригодны для использования в подобных целях.

Так как технология разрабатывается на нанотехнологическом уровне, она позволяет исключить использование металла и проводов, а также избежать низкого разрешения моделируемой картинки.

Светящаяся одежда

Шанхайские ученые разработали светоотражающие нити, которые можно использовать при производстве одежды. Основой каждой нити является очень тонкая проволока из нержавеющей стали, которую покрывают специальными наночастицами, слоем электролюминесцентного полимера, а также защитной оболочкой из прозрачных нанотрубок. В результате получаются очень легкие и гибкие нитки, способные светиться под воздействием своей собственной электрохимической энергии. При этом работают они на гораздо меньшей мощности, по сравнению с обычными светодиодами.

Недостаток технологии заключается в том, что «запаса света» у ниток хватает пока всего лишь на нескольких часов. Однако разработчики материла оптимистично считают, что смогут увеличить «ресурс» своего продукта как минимум в тысячу раз. Даже если у них все получится, решение другого недостатка пока остается под вопросом. Стирать одежду на основе таких нанониток, скорее всего, будет нельзя.

Наноиглы для восстановления внутренних органов

Нанопластыри, о которых мы говорили выше, разработаны специально для замены игл. А что, если сами иглы были бы размером всего несколько нанометров? В таком случае они могли бы изменить наше представление о хирургии, или по крайней мере существенно ее улучшить.

Совсем недавно ученые провели успешные лабораторные испытания на мышах. С помощью крошечных игл исследователи смогли ввести в организмы грызунов нуклеиновые кислоты, способствующие регенерации органов и нервных клеток и тем самым восстанавливающие утерянную работоспособность. Когда иглы выполняют свою функцию, они остаются в организме и через несколько дней полностью в нем разлагаются. При этом никаких побочных эффектов во время операций по восстановлению кровеносных сосудов мышц спины грызунов с использованием этих специальных наноигл ученые не обнаружили.

Если брать в расчет человеческие случаи, то такие наноиглы могут использоваться для доставки необходимых средств в организм человека, например, при трансплантации органов. Специальные вещества подготовят окружающие ткани вокруг трансплантируемого органа к быстрому восстановлению и исключат возможность отторжения.

Трехмерная химическая печать

Химик Иллинойского университета Мартин Берк – настоящий Вилли Вонка из мира химии. Используя коллекцию молекул «строительного материала» самого разного назначения, он может создавать огромное число различных химических веществ, наделенных всевозможными «удивительными и при этом естественными свойствами». Например, одним из таких веществ является ратанин, который можно найти только в очень редком перуанском цветке.

Потенциал синтезирования веществ настолько огромен, что позволит производить молекулы, использующиеся в медицине, при создании LED-диодов, ячеек солнечных батарей и тех химических элементов, на синтезирование которых даже у самых лучших химиков планеты уходили годы.

Возможности нынешнего прототипа трехмерного химического принтера пока ограничены. Он способен создавать только новые лекарственные средства. Однако Берк надеется, что однажды он сможет создать потребительскую версию своего удивительного устройства, которая будет обладать куда большими возможностями. Вполне возможно, что в будущем такие принтеры будут выступать в роли своеобразных домашних фармацевтов.

Представляет ли нанотехнология угрозу здоровью человека или окружающей среде?

Информации о негативном воздействии наночасттиц не так уж и много. В 2003 г. в одном из исследований было показано, что углеродные нанотрубки могут повреждать легкие у мышей и крыс. Исследование 2004 г. показало, что фуллерены могут накапливаться и вызывать повреждения мозга у рыб. Но в обоих исследованиях были использованы большие порции вещества при необычных условиях. По словам одного из экспертов, химика Кристена Кулиновски (США), «было бы целесообразно ограничить воздействие этих наночастиц, невзирая на то, что в настоящее время информация об их угрозе человеческому здоровью отсутствует».

Некоторые комментаторы высказываются также относительно того, что широкое использование нанотехнологий может привести к рискам социального и этического плана. Так, к примеру, если использование нанотехнологий инициирует новую промышленную революцию, то это приведет к потере рабочих мест. Более того, нанотехнологии могут изменить представление о человеке, поскольку их использование поможет продлевать жизнь и существенно повышать устойчивость организма. «Никто не может отрицать, что широкое распространение мобильных телефонов и интернета привело к огромным изменениям в обществе», – говорит Кристен Кулиновски. – Кто возьмет на себя смелость сказать, что нанотехнологии не окажут более сильного воздействия на общество в ближайшие годы?»

Место России среди стран, разрабатывающих и производящих нанотехнологии

Мировыми лидерами по общему объему капиталовложений в сфере нанотехнологий являются страны ЕС, Япония и США. В последнее время значительно увеличили инвестиции в эту отрасль Россия, Китай, Бразилия и Индия. В России объем финансирования в рамках программы «Развитие инфраструктуры наноиндустрии в Российской Федерации на 2008 – 2010 годы» составит 27,7 млрд.руб.

В последнем (2008 год) отчете лондонской исследовательской фирмы Cientifica, который называется «Отчет о перспективах нанотехнологій», о российских вложениях написано дословно следующее: «Хотя ЕС по уровню вложений все еще занимает первое место, Китай и Россия уже обогнали США».

В нанотехнологиях существуют такие области, где российские ученые стали первыми в мире, получив результаты, положившие начало развитию новых научных течений.

Среди них можно выделить получение ультрадисперсных наноматериалов, проектирование одноэлектронных приборов, а также работы в области атомно‑силовой и сканирующей зондовой микроскопии. Только на специальной выставке, проводившейся в рамках XII Петербургского экономического форума (2008 год), было представлено сразу 80 конкретных разработок. В России уже производится целый ряд нанопродуктов, востребованных на рынке: наномембраны, нанопорошки, нанотрубки. Однако, по мнению экспертов, по комммерциализации нанотехнологических разработок Россия отстает от США и других развитых стран на десять лет.

Нанотехнологии в искусстве

Ряд произведений американской художницы Наташи Вита-Мор касается нанотехнологической тематики.

В современном искусстве возникло новое направление «наноарт» (наноискусство) – вид искусства, связанный с созданием художником скульптур (композиций) микро- и нано-размеров (10 −6 и 10 −9 м, соответственно) под действием химических или физических процессов обработки материалов, фотографированием полученных нано-образов с помощью электронного микроскопа и обработкой черно-белых фотографий в графическом редакторе.

В широко известном произведении русского писателя Н. Лескова «Левша» (1881 год) есть любопытный фрагмент: «Если бы, – говорит, – был лучше мелкоскоп, который в пять миллионов увеличивает, так вы изволили бы, – говорит, – увидать, что на каждой подковинке мастерово имя выставлено: какой русский мастер ту подковку делал». Увеличение в 5 000 000 раз обеспечивают современные электронные и атомно-силовые микроскопы, считающиеся основными инструментами нанотехнологий. Таким образом, литературного героя Левшу можно считать первым в истории «нанотехнологом».

Изложенные Фейнманом в лекции 1959 г. «Там внизу много места» идеи о способах создания и применения наноманипуляторов совпадают практически текстуально с фантастическим рассказом известного советского писателя Бориса Житкова «Микроруки», опубликованным в 1931 году. Некоторые отрицательные последствия неконтролируемого развития нанотехнологий описаны в произведениях М. Крайтона («Рой»), С. Лема («Осмотр на месте» и «Мир на Земле»), С. Лукьяненко («Нечего делить»).

Главный герой романа «Трансчеловек» Ю. Никитина – руководитель нанотехнологической корпорации и первый человек, испытавший на себе действие медицинских нанороботов.

В научно-фантастических сериалах «Звёздные врата: SG-1» и «Звёздные врата: Атлантида» одними из самых технически развитых рас являются две расы «репликаторов», возникших в результате неудачных опытов с использованием и описанием различных вариантов применения нанотехнологий. В фильме «День, когда Земля остановилась» с Киану Ривзом в главной роли, инопланетная цивилизация выносит человечеству смертный приговор и чуть было не уничтожает всё на планете при помощи самовоспроизводящихся нанорепликантов-жуков, пожирающих всё на своём пути.

Курникова Мария

Скачать:

Предварительный просмотр:

АДМИНИСТРАЦИЯ ГОРОДА НИЖНЕГО НОВГОРОДА

ДЕПАРТАМЕНТ ОБРАЗОВАНИЯ

МУНИЦИПАЛЬНОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ
ЦЕНТР ОБРАЗОВАНИЯ МОСКОВСКОГО РАЙОНА

603079, Московское шоссе, 161, т. (факс) 279-03-11

Научное общество учащихся

Нанотехнологии и их применение

Выполнила: Курникова Мария,

Ученица 10 «А» класса

Научный руководитель:

Климкова Татьяна Юрьевна

Учитель физики

Нижний Новгород

2013 год

Стр.

Введение……………………………………………………………………….3

Глава 1. Понятие и развитие нанотехнологий………………………………5

1.1. Понятие нанотехнологий……………………………………………...5

1.2. История развития нанотехнологий…………………………………...8

1.3. Современный уровень развития нанотехнологий…………………..11

Глава 2. Применение нанотехнологий в различных отраслях…………….12

2.1. Наноэлектроника и нанофотоника……………………………………..13

2.2. Наноэнергетика………………………………………………………….14

2.3. Наномедицина…………………………………………………………...16

2.4. Нанобиотехнологии……………………………………………………..18

2.5. Нанокосметика…………………………………………………………..19

2.6. Нанотехнологии для легкой промышленности………………………..21

2.7. Нанотехнологии для обеспечения безопасности……………………...24

2.8. Нанотехнологии для сельского хозяйства и пищевой промышленности………………………………………………………………..26

Заключение…………………………………………………………………..27

Cписок использованных источников………………………………………28

Введение

В своей научной работе мы решили рассмотреть такую тему, как нанотехнологии и их применение. Выбранная тема не случайна: мы считаем, что проблема развития и внедрения нанотехнологий в производственный процесс различных отраслей хозяйства России является сейчас очень важной и актуальной.

За последние несколько лет короткое слово с большим потенциалом - «нано» быстро вошло в мировое сознание. Существует множество слухов и ошибочных мнений относительно нанотехнологии. «Нано»- это не только крошечные роботы, которые могут (или не могут) завоевать мир. По сути, это огромный шаг в науке.

Нанотехнология сейчас находится в начальной стадии развития, поскольку основные открытия, предсказываемые в этой области, пока не сделаны. Тем не менее, проводимые исследования уже дают практические результаты. Использование в нанотехнологии передовых научных результатов позволяет относить её к высоким технологиям.

Нанотехнология - следующий логический шаг развития электроники и других наукоёмких производств.

Цель научной работы заключается в комплексной характеристике нанотехнологий, с учетом специфики и всех особенностей данной области прикладной науки.

Объектом настоящего исследования является нанотехнология как область науки и техники, а предметом – особенности применения нанотехнологии в машиностроении.

К основным задачам работы относятся:

1. Определение понятия «нанотехнология».

2. Рассмотрение истории развития нанотехнологии в мире вообще и в России в частности.

3. Выяснение прикладного аспекта нанотехнологий, то есть особенностей применения в различных отраслях.

4. Анализ возможностей, способов и методов применения нанотехнологий в машиностроении (в мире и в России).

5. Выделение технологических особенностей применения нанотехнологий.

6. Указание и прогнозирование перспектив развития нанотехнологий в России.

В соответствии с поставленными задачами находится и структура научной работы. Материал изложен в двух основных главах:

Первая глава носит теоретический характер – то есть в целом знакомит с нанотехнологией: понятие, история развития, возможности применения.

Вторая глава посвящена вопросу применения нанотехнологий: значение, технологические особенности, приводится прогноз развития и выяснение перспектив нанотехнологий в России.

При подготовке работы для сбора необходимого материала (данных) были использованы различные информационные источники, но в основном это - экономические и научно-технические журналы, газеты, а также ресурсы сети Интернет.

В силу того, что нанотехнологии – сравнительная молодая область прикладной науки, учебной литературы по теме очень мало. Поэтому основной источник – материалы периодической печати и ресурсы глобальной информационной сети Интернет.

Глава 1. Понятие и развитие нанотехнологий

1.1. Понятие нанотехнологий

Любой материальный предмет - это всего лишь скопление атомов в пространстве. То, как эти атомы собраны в структуру, определяет, что это будет за предмет.

С. Лем

Английский термин «Nanotechnology» был предложен японским профессором Норио Танигучи в средине 70-х гг. прошлого века и использован в докладе «Об основных принципах нанотехнологии» (On the Basic Concept of Nanotechnology) на международной конференции в 1974 г., т. е. задолго до начала масштабных работ в этой области . По своему смыслу он заметно шире буквального русского перевода «нанотехнология», поскольку подразумевает большую совокупность знаний, подходов, приемов, конкретных процедур и их материализованные результаты – нанопродукцию.

Нанотехнология совокупность методов и приемов, обеспечивающих возможность контролируемым образом создавать и модифицировать объекты, включающие компоненты с размерами менее 100 нм, имеющие принципиально новые качества и позволяющие осуществлять их интеграцию в полноценно функционирующие системы большего масштаба. Данная технология подразумевает умение работать с такими объектами и создавать из них более крупные структуры, обладающие принципиально новой молекулярной организацией. В связи с этим возникли понятия нанонауки, нанотехнологии и наноинженериии (нанонаука занимается фундаментальными исследованиями свойств наноматериалов и явлений в нанометровом масштабе, нанотехнология – созданием наноструктур, наноинженерия – поиском эффективных методов их использования) (см. рис. 1).

Рисунок 1. Научные основы и объекты нанонауки и нанотехнологии

Наноматериалы материалы, содержащие структурные элементы, геометрические размеры которых хотя бы в одном измерении не превышают 100 нм, и обладающие качественно новыми свойствами, функциональными и эксплуатационными характеристиками;

Когда речь идет о развитии нанотехнологий, имеются в виду три направления:

· изготовление электронных схем (в том числе и объемных) с активными элементами, размерами сравнимыми с размерами молекул и атомов;

· разработка и изготовление наномашин, т.е. механизмов и роботов размером с молекулу;

· непосредственная манипуляция атомами и молекулами и сборка из них всего существующего.

Сегодня львиная доля производственных затрат человека идут, как это ни парадоксально, на производство отходов и загрязнение окружающей среды. Если же мы будем целенаправленно создавать необходимые нам материальные объекты, конструируя их из атомов и молекул, с помощью нанотехнологий, это приведет радикальному снижению материальных и энергетических затрат общества в целом.

Таким образом, нанотехнологии - это, во-первых, технологии атомарного конструирования, во-вторых, - принципиальный вызов существующей системе организации научных исследований, и, в-третьих, - философское понятие, возвращающее нас к целостному восприятию мира на новом уровне знаний.

1.2. История развития нанотехнологии

Отцом нанотехнологии можно считать греческого философа Демокрита. Примерно в 400 г. до н.э. он впервые использовал слово «атом», что в переводе с греческого означает «нераскалываемый», для описания самой малой частицы вещества.

Примером первого использования нанотехнологий можно назвать – изобретение в 1883 году фотопленки Джорджем Истмэном, который впоследствии основал известную компанию Kodak.

1932 г. Голландский профессор Фриц Цернике, Нобелевский лауреат 1953 г., изобрел фазово-контрастный микроскоп - вариант оптического микроскопа, улучшавший качество показа деталей изображения, и исследовал с его помощью живые клетки (ранее для этого приходилось применять красители, убивавшие живые ткани).

1939 г. Компания Siemens, в которой работал Руска, выпустила первый коммерческий электронный микроскоп с разрешающей способностью 10 нм.

Днем рождения нанотехнологий считается 29 декабря 1959 г. Профессор Калифорнийского технологического института Ричард Фейман выступил с лекцией на ежегодной встрече Американского физического общества в Калифорнийском технологическом институте. В этом докладе, названном «На дне много места», он выразил идею «управления и контроля материалов на микроскопическом уровне», подчеркивая, что речь идет не только о миниатюризации, но и о таких возможностях, как размещение всей Британской Энциклопедии на кончике булавки. По мнению Ричарда, достигнуть этого можно уменьшая обычные размеры в 25 000 раз без потери разрешения. Он предполагал, что используя подобные технологии, можно уместить все мировое собрание книг в одну брошюру. «Такое возможно, - сказал Фейман, - в силу сохранения объектами свойства размерности, несмотря на то, что речь идет об атомном уровне».

1966 г. Американский физик Рассел Янг, работавший в Национальном бюро стандартов, придумал пьезодвигатель, применяемый сегодня в сканирующих туннельных микроскопах и для позиционирования наноинструментов с точностью до 0,01 ангстрем (1 нм = 10 A°).

1968 г. Исполнительный вице-президент компании Bell Альфред Чо и сотрудник ее отделения по исследованиям полупроводников Джон Артур обосновали теоретическую возможность использования нанотехнологий в решении задач обработки поверхностей и достижения атомной точности при создании электронных приборов.

1982 г. В Цюрихском исследовательском центре IBM физики Герд Бинниг и Генрих Рорер (Нобелевские лауреаты 1986 г. вместе с Эрнстом Руской) создали сканирующий туннельный микроскоп (СТМ), позволяющий строить трехмерную картину расположения атомов на поверхностях проводящих материалов.

1985 г. Трое американских химиков: профессор Райсского университета Ричард Смэлли, а также Роберт Карл и Хэрольд Крото (Нобелевские лауреаты 1996 г.) открыли фуллерены - молекулы, состоящие из 60 атомов углерода, расположенных в форме сферы. Эти ученые также впервые сумели измерить объект размером 1 нм.

1986 г. Герд Бинниг разработал сканирующий атомно-силовой зондовый микроскоп, позволивший наконец визуализировать атомы любых материалов (не только проводящих), а также манипулировать ими.

1989 г. Ученые Дональд Эйглер и Эрхард Швецер из Калифорнийского научного центра IBM сумели выложить 35 атомами ксенона на кристалле никеля название своей компании.

1991 г. Японский профессор Сумио Лиджима, работавший в компании NEC, использовал фуллерены для создания углеродных трубок (или нанотрубок) диаметром 0,8 нм. На их основе в наше время выпускаются материалы в сто раз прочнее стали.

1991 г. В США заработала первая нанотехнологическая программа Национального научного фонда. Аналогичной деятельностью озаботилось и правительство Японии. А вот в Европе серьезная поддержка таких исследований на государственном уровне началась только с 1997 г.

1997 г. Эрик Дрекслер объявил, что к 2020 г. станет возможной промышленная сборка наноустройств из отдельных атомов. До сего времени почти все его прогнозы сбывались с опережением.

1999 г. Американские ученые - профессор физики Марк Рид (Йельский университет) и профессор химии Джеймс Тур (Райсский университет) - разработали единые принципы манипуляции как одной молекулой, так и их цепочкой.

2000 г. Немецкий физик Франц Гиссибл разглядел в кремнии субатомные частицы.

2001 г. Реальное финансирование NNI превысило запланированное (422 млн. долл.) на 42 млн.

2002 г. Сиз Деккер соединил углеродную трубку с ДНК, получив единый наномеханизм. Финансирование NNI составило 697 млн. долл. (на 97 млн. больше плана).

2003 г. Профессор Фенг Лью из университета Юты, используя наработки Франца Гиссибла, с помощью атомного микроскопа построил образы орбит электронов путем анализа их возмущения при движении вокруг ядра.

1.3 Современный уровень развития нанотехнологий

В настоящее время наноматериалы используют для изготовления защитных и светопоглощающих покрытий, спортивного оборудования, транзисторов, светоиспускающих диодов, топливных элементов, лекарств и медицинской аппаратуры, материалов для упаковки продуктов питания, косметики и одежды. Нанопримеси на основе оксида церия уже сейчас добавляют в дизельное топливо, что позволяет на 4-5% повысить КПД двигателя и снизить степень загрязнения выхлопных газов.

Общемировые затраты на нанотехнологические проекты превышают $9 млрд. в год. На долю США приходится примерно треть всех мировых инвестиций в нанотехнологии. Другие главные игроки на этом поле - Европейский Союз и Япония. Исследования в этой сфере активно ведутся также в странах бывшего СССР, Австралии, Канаде, Китае, Южной Корее, Израиле, Сингапуре, Бразилии и Тайване. Прогнозы показывают, что к 2015 году общая численность персонала различных отраслей нанотехнологической промышленности может дойти до 2 млн. человек, а суммарная стоимость товаров, производимых с использованием наноматериалов, составит, как минимум, несколько сотен миллиардов долларов и, возможно, приблизится к $1 трлн. В общей сложности американская промышленность и индустрия других развитых стран сейчас применяют нанотехнологии в процессе производства, как минимум, 80 групп потребительских товаров и свыше 600 видов сырьевых материалов, комплектующих изделий и промышленного оборудования.

Глава 2. Применение нанотехнологий.

2.1. Наноэлектроника и нанофотоника

Существуют следующие основные направления наноэлектроники:

1. Кремниевая электроника.

2. Электроника на механотранзисторах.

3. Электроника на нанотрубках.

4. Молекулярная электроника.

5. Одноэлектроника.

6. Спинтроника.

7. Квантовая электроника.

8. Многозондовые системы.

9. Гибкая электроника.

Электроника на механотранзисторах. По своим размерам современные транзисторы могут быть всего в несколько раз больше молекулы. Однако даже эти компоненты намного больше, чем новое поколение наноэлементов, в которых вместо кремния будут использоваться органические соединения и углеродные нанотрубки. Нанотехнологии позволят не только уменьшить размеры микросхем, но и увеличить количество транзисторов в них, что значительно повысит производительность.

Электроника на нанотрубках. Размеры углеродных нанотрубок сопоставимы с размерами молекул. Средний диаметр однослойной углеродной нанотрубки составляет около 1 нанометра. Если же удастся «заставить» одну нанотрубку хранить один бит информации, то память на их основе будет хранить колоссальные объемы информации, ведь современные ячейки flash-памяти, хранящие один бит информации, имеют размеры от 50 до 90 нанометров.

Одной из перспективнейших отраслей применения нанотехнологий является компьютерная техника. Несмотря на значительную миниатюризацию и оптимизацию современных устройств, имеющихся на рынке, нанотехнологии смогут совершить в этой сфере настоящую революцию. В этом случаи размеры действующих элементов микропроцессоров и устройств памяти приближаются к квантовым пределам, то есть границам мельчайших единиц материи и энергии - когда работает один электрон, один спин, квант магнитного потока, энергии и т.д. Это сулит быстродействие порядка ТГц (~1012 операций в секунду), плотность записи информации ~103 Тбит/см2, что намного порядков выше, чем достигнутые сегодня, а энергопотребление - на несколько порядков ниже. При такой плотности записи в жестком диске - размерами с наручные часы - можно было бы разместить громадную библиотеку национального масштаба или фотографии, отпечатки пальцев, медицинские карты и биографии всех жителей Земли.

Нанофотоника. Компании, занимающиеся нанофотоникой, разрабатывают высокоинтегрированные компоненты оптических коммуникаций с применением технологий нанооптики и нанопроизводства. Такой подход к изготовлению оптических компонентов позволяет ускорить получение их прототипов, улучшить технические характеристики, уменьшить размеры и снизить стоимость.

2.2. Наноэнергетика

Наоэнергетика включает в себя:

1. Энергетические системы

2. Генерация энергии: солнечные батареи, термоэлектрические элементы, микрожидкостные генераторы, ядерные установки, термоядерные установки, батарейки и аккумуляторы.

3. Топливные элементы: водородные элементы, передача энергии (высокотемпературные сверхпроводники, формирование градиента температур)

Солнечные батареи. Солнечную батарею толщиной в бумажный лист, которую можно гнуть и сворачивать, создала японская электротехническая компания Sharp. Как сообщает сегодня токийская печать, батарея в виде пленки имеет толщину от 1 до 3 микрометров - то есть, от одной до трех тысячных миллиметра. Это меньше современных аналогов примерно в сто раз. Компания собирается начать промышленное производство новики уже в этом году. Слоями солнечных батарей планируется покрывать мобильные телефоны, автомобили и даже специальную одежду. Пленка площадью в две визитные карточки весит всего один грамм и обладает мощностью в 2,6 ватт. По словам разработчиков, этого уже достаточно, чтобы обеспечить электропитанием велосипедный фонарь.

Батарейки и аккумуляторы. Компания Toshiba разработала литиево-ионную батарею на основе наноматериалов, которая заряжается примерно в 60 раз быстрее обычной. За одну минуту её можно заправить на 80%, а полная ёмкость аккумулятора (у первого образца она была равна 600 миллиампер-часов) заполняется через несколько минут (см. рис. 2).

Рисунок 2. Нанобатарейка (3,8х62х35 мм)

Создать нанобатрейку удалось благодаря новой технологии, основанной на использовании наночастиц, находящихся в составе материала отрицательного электрода батареи. При зарядке батареи, наночастицы быстро собирают и хранят ионы лития. На рынке скоростная батарейка появилась в 2006 году.

2.3. Наномедицина

Современная технология – нанотехнология - позволяет работать с веществом в масштабах, еще недавно казавшихся фантастическими - микрометровых, и даже нанометровых. Именно такие размеры характерны для основных биологических структур - клеток, их составных частей (органелл) и молекул.

Современные приложения нанотехнологий в медицине можно разделить на несколько групп:

1. Наноструктурированные материалы, в т. ч., поверхности с нанорельефом, мембраны с наноотверстиями. В настоящее время достигнуты успехи в изготовлении наноматериала, имитирующего естественную костную ткань.

2. Наночастицы (в т. ч., фуллерены и дендримеры). Спектр возможных применений чрезвычайно широк. Он включает борьбу с вирусными заболеваниями такими, как грипп и ВИЧ, онкологическими и нейродегенеративными заболеваниями, остеопорозом, заболеваниями сосудов. Наносферы могут использоваться и в диагностике, например, как рентгеноконтрастное вещество, прикрепляющееся к поверхности определённых клеток и показывающее их расположение в организме.

3. Микро- и нанокапсулы. Миниатюрные (~1 мк) капсулы с нанопорами могут быть использованы для доставки лекарственных средств в нужное место организма. Уже испытываются подобные микрокапсулы для доставки и физиологически регулируемого выделения инсулина при диабете 1-го типа.

4. Нанотехнологические сенсоры и анализаторы. Использование микро- и нанотехнологий позволяет многократно повысить возможности по обнаружению и анализу сверхмалых количеств различных веществ. Одним из вариантов такого рода устройства является «лаборатория на чипе» (lab on a chip). Это пластинка, на поверхности которой упорядоченно размещены рецепторы к нужным веществам, например, антитела. Такое устройство, способное обнаруживать буквально отдельные молекулы может быть использовано при определении последовательности оснований ДНК или аминокислот, обнаружения возбудителей инфекционных заболеваний, токсических веществ.

5. Медицинские применения сканирующих зондовых микроскопов. Сканирующие микроскопы представляют собой группу уникальных по своим возможностям приборов. Они позволяют достигать увеличения достаточного, чтобы рассмотреть отдельные молекулы и атомы.

6. Наноинструменты и наноманипуляторы. Наноманипуляторами можно назвать устройства, предназначенные для манипуляций с нанообъектами - наночастицами, молекулами и отдельными атомами. Примером могут служить сканирующие зондовые микроскопы, которые позволяют перемещать любые объекты вплоть до атомов.

7. Микро- и наноустройства различной степени автономности. В настоящее время всё большее распространение получают миниатюрные устройства, которые могут быть помещены внутрь организма для диагностических, а возможно, и лечебных целей. Современное устройство, предназначенное для исследования желудочно-кишечного тракта, имеет размер несколько миллиметров, несёт на борту миниатюрную видеокамеру и систему освещения. Полученные кадры передаются наружу.

2.4. Нанобиотехнологии

Особое место в нанотехнологиях занимает область нанобиотехнологий. Речь идет о создании устройств с использованием биологических макромолекул в целях изучения или управления биологическими системами.

Нанобиотехнология объединяет достижения нанотехнологии и молекулярной биологии. В ней широко используется способность биомолекул к самосборке в наноструктуры. Так, например, липиды способны спонтанно объединяться и формировать жидкие кристаллы. ДНК используется не только для создания наноструктур, но и в качестве важного компонента наномеханизмов. Предполагается, например, что вместо того, чтобы создавать кремниевую основу микросхем, нанотехнологи смогут использовать двухцепочечную молекулу ДНК, особенности которой позволяют объединять атомы в предсказуемой последовательности.

По мнению ряда ученых, нанобиотехнологии существенно упрощают и ускоряют решение традиционных проблем генетики сельскохозяйственных видов. Таких, к примеру, как контроль происхождения, выявление носителей неблагоприятных мутаций или инфекций, а также генов, связанных с желательными хозяйственно ценными признаками, включая устойчивость к неблагоприятным факторам окружающей среды.

2.5. Нанокосметика

Использование нанотехнологий в косметике началось сравнительно недавно.

L"Oreal, мировой лидер по производству косметики, вкладывает миллионы в исследования нанотехнологии. Компания верит в то, что будущее именно за нанокосметикой - когда-нибудь она поможет замедлить старение кожи, предотвратить появление седых волос и даже облысение.

Несколько лет назад L"Oreal выпустила на рынок знаменитый крем Revitalift, содержащий наносомы Про-Ретинола А, и, по заверению компании, этот крем впитывается в кожу куда лучше, чем кремы других марок, за счет особых микрочастиц (см. рис. 3).Традиционные кремы лишь образовывали барьер, защищающий кожу от потери влаги, тогда как лореалевская новинка с помощью микрочастиц действовала на более глубокие слои кожи и стимулировала обновление клеток.

Рисунок 3. Крем компании L"Oreal

Dior «выступил» на рынок с «липосомами», которые по своей функции похожи на лореалевские «наносомы». Estee и Johnson & Johnson также стали производить продукцию с использованием нанотехнологий.

Большинство обычных кремов из числа так называемой «поверхностной косметики» не достигают глубоких слоев кожи, оставаясь на поверхности. Такие кремы могут хорошо защищать кожу и не более того. Нанокосметика действует на уровне атомов, доставляя увлажняющие компоненты и антиоксиданты в так называемых «наносферах» или «наносомах» - маленьких капельках, которые в миллионы раз меньше частицы песка. В теории, эти наносомы проникают очень глубоко в кожу, принося с собой увлажняющие компоненты и удаляя мертвые клетки глубоко под поверхностным слоем кожи.

Однако косметологи не остановились на наносомах и предложили потребителям так называемые «нанокомплексы», объединяющие активные вещества, измельченные до размера «нано», в системы. Нанокомплексы могут быть заранее «запрограммированы» под определенную проблему и высвобождать активные вещества именно там, где это необходимо.

У бренда лечебной косметики для волос Kerastase, принадлежащего компании L’Oreal, есть несколько продуктов для волос, созданных с использованием нанотехнологий.

Нанотехнологии используются не только при производстве увлажняющих кремов, но и солнцезащитных средств. Оказывается, солнцезащитный крем может быть практически неощутимым, но, в то же время, способным защитить от вредного солнечного излучения на самом высоком уровне.

2.6. Нанотехнологии для легкой промышленности

Наноматериалы в текстиле. Текстиль на основе наноматериалов приобретает уникальные по своим показателям водонепроницаемость, грязеотталкивание, теплопроводность, способность проводить электричество и другие свойства.

Наноматериалы могут иметь в своем составе наночастицы, нановолокна и другие добавки. Например, компания Nano-Tex успешно производит ткани, улучшенные с помощью нанотехнологий. Одна из таких тканей обеспечивает абсолютную водонепроницаемость: благодаря изменению молекулярной структуры волокон, капли воды полностью скатываются с полотна, которое при этом «дышит».

А американская компания NanoSoni c разработала уникальную технологию, позволяющую создавать материалы с невозможными в природе свойствами, в частности, листы полимера, гибкие и упругие, как резина, и проводящие ток, как металл. Новый продукт назвали Metall Rubber - металлизированная резина.

Из «горячих новинок» текстильного нанорынка следует отметить утеплительный материал Aspen"s Pyrogel AR5401 , изготовленный на основе полимерного материала с нанопорами. Благодаря им материал ведет себя как хороший теплоизолятор. Компания Aspen Aerogels в марте 2004 г. начала производство из нового материала утепляющих стелек для обуви. Эти стельки заказывали: команда, выигравшая в 2004 г. марафон к Северному полюсу, одна из канадских лыжных команд и элитное спецподразделение армии США. Отзывы заказчиков о продукте были схожими: это универсальное решение для работы в экстремальных условиях. Нанопокрытия. Нанотехнологии также применяются для улучшения свойств традиционного текстиля и изделий из него. В этом случае на текстиль наносятся покрытия, модифицирующие его в микронном и субмикронном размерных диапазонах. Энергосберегающая технология фотокатализа очищает поверхность текстиля без применения химикатов и энергии, исключительно под воздействием нанокатализаторов, нанесенных с использованием традиционного текстильного оборудования, солнечного света и воды. Гонконгские ученые создали покрытие на основе наночастиц, которое предотвращает загрязнение ткани, а также способствует ее обеззараживанию. Некоторые нанопокрытия доступны и на российском рынке. Это обеззараживающие покрытия на основе наночастиц серебра и оксида цинка а также покрытия, создающие устойчивый слой, который не пропускает ультрафиолет. Электроника и микроэлектромеханические системы (МЭМС). Интеграция в текстиль микро- и наноэлектроники, а также МЭМС существенно расширяет возможности повседневной одежды, которую можно использовать в качестве средства связи и даже персонального компьютера. А изготовление текстиля со встроенными датчиками позволит производить мониторинг состояния тела человека. Это, безусловно, откроет новые возможности в медицинской практике, спорте и жизнеобеспечении в экстремальных условиях (см. рис. 4).

Рисунок 4. «Умная» одежда с использованием нанотехнологий

Исследователи из университета штата Аризона под руководством профессора Фредерика Ценгаусерна пытаются создать биометрическую одежду, интегрировав в обычное трико, которым часто пользуются спортсмены, гибкий дисплей, набор сенсоров для детекции вредных веществ, микроскопический топливный элемент, микронасосы и т.д. Не удивительно, что такой «навороченный» костюм предназначается для военного применения, но может использоваться и в мирных отраслях, например, в медицине, где он сам проверит состояние больного (например, диабетика) и сам вовремя сделает необходимые инъекции.

Что касается России, то сегодня более 90% швейных предприятий страны применяют разработанные институтом технологии изготовления одежды. Но не один только ЦНИИШП занимается внедрением нанотехнологий в лёгкую промышленность. В России существует Центральный научно-исследовательский институт хлопчатобумажной промышленности (ЦНИИХБП), институт пластмасс, учебные и текстильные институты.

2.7. Нанотехнологии для обеспечения безопасности

Современные достижения в области наноматериалов и нанотехнологий открывают новые возможности для повышения в десятки раз тактико-технических характеристик систем безопасности и являются по своей сути инновационными, поскольку направлены на создание, главным образом, новой продукции, востребованной рынком систем безопасности. В ближайшие 3–10 лет наиболее перспективны следующие направления использования нанотехнологий в системах безопасности:

1. Новые средства и методы контроля и защиты документов от подделки, например на основе наноматериалов, микропечати, тонких электронных схем, бумаги с добавлением наночастиц, компактных устройств считывания данных.

2. Системы контроля доступа в помещения на основе наносенсоров, например считыватели отпечатков пальца, теплового рисунка вен руки или головы, геометрической формы руки в динамике.

3. Многофункциональные сенсоры «электронный нос» для обнаружения и идентификации сверхмалых количеств взрывчатых, наркотических и опасных веществ.

4. Более компактные, чуткие и информативные портативные и стационарные металлоискатели и детекторы движения на основе наносенсоров.

5. Распределенные массивы наносенсоров типа «умная пыль» для охраны границ и периметров объектов.

6. Магниторезонансные установки для точного анализа объемного содержания закрытых емкостей и грузов в аэропортах, на проходных, на таможне.

Примеры создания перспективных технических средств и систем безопасности на базе нанотехнологий и наноматериалов, имеющие высокую степень завершенности исследований:

1. Антитеррористические средства, в т.ч. гиперспектральные наноанализаторы сверхнизких концентраций взрывчатых, наркотических и других запрещенных к распространению веществ.

2. Системы контроля и управления доступа, паспортного и миграционного контроля, в т.ч.:

Идентификационные документы и системы контроля и управления доступа на базе нанометок и нанопамяти, включая системы для идентификации лиц на основе получения, записи на защищенный носитель (нанопамять) и цифровой обработки трехмерного видеоизображения;

Замковые устройства для режимных помещений с уникальными электронными ключами – нанометками;

Электронные заграничные паспорта второго поколения и миграционные удостоверения с нанопамятью 1–10 Гбайт.

В настоящее время в нашей стране сформированы кооперации соисполнителей, способные в кратчайшие сроки реализовать проекты по созданию перспективных систем безопасности. Дело за инвестированием инновационных проектов. И здесь роль государства, как никогда, велика.

2.8. Нанотехнологии для сельского хозяйства и пищевой промышленности

Направления использования нанотехнологий в сельском хозяйстве связаны с воспроизводством сельскохозяйственных видов, переработкой конечной продукции и улучшением ее качества. Нанотехнологии уже используют для обеззараживания воздуха и различных материалов, в том числе кормов и конечной продукции животноводства; обработки семян и урожая в целях его сохранения. Их применяют при стимуляции роста растений; лечении животных; улучшении качества кормов. Есть опыт внедрения этих технологий для уменьшения энергоемкости производства, оптимизации методов обработки сырья и увеличения выхода конечной продукции; разработки новых упаковочных материалов, позволяющих долго сохранять конечную продукцию.

Под эгидой ФАО создана база данных о 160 проектах использования нанотехнологий в сельском хозяйстве, которые финансировались и разрабатывались на 2006 г. Большинство из них связано с пищевой промышленностью, с использованием наноматериалов для упаковки пищи или определения и, в отдельных случаях, нейтрализации опасных токсинов, аллергенов или патогенов. Развиваются проекты по созданию и улучшению пищевых добавок, получению растительного масла с нанодобавками, которые препятствуют поступлению холестерина в кровь млекопитающих.

Таким образом, преимущества и возможности использование нанотехнологий и наноматериалов очевидны. Поэтому вполне объясним повышенный интерес к этой теме в современном мире, т.к. она является источником новых подходов к повышению качества жизни и решению многих социальных проблем в высокоиндустриальном обществе.

Заключение

Ключевые технологии и материалы всегда играли большую роль в истории цивилизации, выполняя не только узко производственные функции, но и социальные. Достаточно вспомнить, как сильно отличались каменный и бронзовый века, век пара и век электричества, атомной энергии и компьютеров. По мнению многих экспертов, XXI в. будет веком нанонауки и нанотехнологий, которые и определят его лицо. Воздействие нанотехнологий на жизнь обещает иметь всеобщий характер, изменить экономику и затронуть все стороны быта, работы, социальных отношений. С помощью нанотехнологий мы сможем экономить время, получать больше благ за меньшую цену, постоянно повышать уровень и качество жизни.

Главная надежда нанотехнологий связана с тем, что удастся двигаться не «сверху вниз», а «снизу вверх», т.е. выращивать наноструктуры, наноматериалы, нанообъекты. Нанотехнологии требуют больших объемов материалов и собирать их атом за атомом невозможно. Поэтому есть два основных ключа к нанотехнологиям:

1. Нужно организовать процессы так, чтобы наноструктуры собирались сами, образуя то, чего бы нам хотелось. Другими словами, это процессы самоорганизации, самоформирования и самосборки.

2. Решение многих проблем нанотехнологий требует совместной деятельности физиков, химиков, математиков, биологов - общего языка, понятий и моделей - междисциплинарного подхода. Кроме того, именно широкий междисциплинарный взгляд дает понимание того, чего в принципе возможно достичь, чего хотелось бы достичь и - главное - чего хотелось бы избежать. Здесь первостепенное значение приобретает проектирование будущего, в котором технологические, экономические, политические, военные и социальные проблемы оказываются значительно более взаимосвязаны, чем ныне. Это обусловлено совершенно новыми технологическими возможностями.

В самом деле, чтобы нанотехнологии не остались научной фантастикой, они должны найти свое место в экономике, включиться в существующие экономические циклы или создать новые. Это требует активного мониторинга и сопровождения на всех этапах от лаборатории до рынка. Это качественно новый уровень управления, позволяющий решать организационно-экономические проблемы невиданного уровня сложности.

В развитых странах осознание ключевой роли, которую уже в недалеком будущем будут играть результаты работ по нанотехнологиям, привело к разработке широкомасштабных программ по их развитию и государственной поддержке.

Из числа технологически продвинутых стран Россия - единственная - до настоящего времени не имеет программы развития нанотехнологий федерального масштаба. Исследования в этом направлении проводятся в рамках академических институтов, частично вузов, входят отдельными разделами в отраслевые программы, но, как правило, не завершаются практическим внедрением результатов. Более того, даже осуществить зарубежное патентование отечественных изобретений, как правило, не удается, так как государство в этом не заинтересовано и никакой финансовой поддержки авторам изобретений не оказывает. Растворение проблематики нанотехнологий в отдельных разделах федеральных и отраслевых программ не позволяет даже оценить, сколько средств выделяется государством на их развитие. По существующим оптимистическим оценкам - несколько десятков миллионов долларов США. При этом сотни высококлассных российских специалистов, которые могли бы составить цвет отечественной нанотехнологии, вынуждены работать за рубежом. Отсутствие Федеральной программы, четкой целевой установки на промышленное внедрение разработок, неготовность отраслей к восприятию достижений нанотехнологии, убогость финансирования - все это является следствием отсутствия государственной политики в этом стратегически важном направлении.

Список использованных источников:

Литературные источники

1. Глинк Б., Пастернак Дж. Молекулярная биотехнология. Принципы и применение: Пер. с англ. М.: Мир, 2002. С. 58-73.

2. Головин Ю.И. Введение в нанотехнику. М., 2006. С.32-45

3. Гусев А.И. Наноматериалы, наноструктуры, нанотехнологии. М., 2005.С. 51-55, 78-91.

4. Кобаяси Н. Введение в нанотехнологию. М., 2005. С. 10-17

5. Нанотехнологии. Ч. Пул, Ф. Оуэнс. Пер. с англ. - Москва: Техносфера, 2005. С.7-20.

6. Нанотехнология в ближайшем десятилетии. Прогноз направления развития // Под ред. М.К.Роко, Р.С.Уильямса и П.Аливисатоса: Пер. с англ. М.: Мир, 2002. С. 54-63.

7. Структура и свойства нанокристаллических материалов. Под ред. Г.Г. Талуда и Н.Н. Носковой. Екатеринбург: Изд-воУрО РАН, 1999. - С.123-140 .

8. Суздалев И.П. Нанотехнология: физико-химия нанокластеров, наноструктур и наноматериалов. М., 2006.

Периодическая печать:

9. Алферов Ж.И., Асеев А.Л., Гапонов С.В., Копьев П.С, Панов В.И., Полторацкий Э.А., Сибельдин Н.Н., Сурис Р.А. Наноматериалы и нанотехнологий // Микросистемная техника. 2003. №8. С. 3-13.

10. Артюхов И.В., Кеменов В.Н., Нестеров С.Б.. Биомедицинские технологии. Обзор состояния и направления работы. Материалы 9-й научно-технической конференции «Вакуумная наука и техника»-М.: МИЭМ, 2002, с. 244-247

11. Нестеров C.Б.. Нанотехнология. Современное состояние и перспективы. «Новые информационные технологии». Тезисы докладов XII Международной студенческой школы-семинара-М.: МГИЭМ, 2004, 421 с., с.21-22.

12. Основы политики Российской Федерации в области науки и технологий на период до 2010 года и дальнейшую перспективу // Поиск. 2002. № 16 (19 апреля).

Материалы с сайтов сети Интернет

13. http:// www.nanonewsnet.ru

14. http:// www.nanotube.ru

15. http:// www.nanorf.ru

16. http:// www.nanoware.ru

17. http:// www.pronano.ru

18. http://www.passion.ru

19. http://www.ifmachines.com

20. http://www.rosbaltvolga.ru

21. http:// www.chemworld.narod.ru

22. http://www.navy.ru



Просмотров