Чем измеряется интенсивность теплового излучения. Нормирование теплового излучения. Расчет интенсивности теплового излучения

1. За счет каких процессов образуется тепло в организме человека? Каким путем организм теряет большую часть тепла?

Образование тепла в организме человека происходит за счет окислительных реакций и сокращения мышц, а также поглощения тепла получаемого извне от оборудования, нагретых веществ, ламп накаливания и др.

Большую часть тепла организм теряет за счёт теплового излучения (до 60%).

2. Какими способами происходит отдача тепла организмом человека?

Отдача тепла организмом в окружающую среду осуществляется путем конвекции в результате нагревания воздуха, омывающего поверхность тела, (примерно 30 %), испарения влаги (пота) с поверхности кожи (в среднем 20 – 29 %), теплового излучения на окружающие предметы, имеющие более низкую чем кожа температуру поверхности (до 60 %).

3. От каких параметров зависит величина интенсивности теплового излучения на рабочем месте? Указать единицу измерения интенсивности.

Интенсивность теплового излучения Q (Вт/м2) на рабочем месте можно рассчитать по формуле: , где F – площадь излучающей поверхности источника, м2; T ° – температура излучающей поверхности, К; l – расстояние от излучающей поверхности до работающего, м. Единица измерения – Вт/м².

4. От какого параметра излучения зависит глубина его проникновения в живую ткань? Воздействие излучения на какие органы наиболее опасно?

Зависит от длины волны. Лучи длинноволнового диапазона ИК – излучения (от 3 мкм до 1 мм) задерживаются в поверхностных слоях кожи уже на глубине 0,1 – 0,2 мм. Лучи коротковолнового диапазона ИК – излучения (от 0,78 до 1,4 мкм) обладают способностью проникать в ткани организма на несколько сантиметров.

Клетки головного мозга, лёгкие, почки, мышцы.

5. Какой диапазон ИК-излучения при облучении вызывает более тяжелые последствия?

Лучи коротковолнового диапазона ИК – излучения (от 0,78 до 1,4 мкм) легко проникают через кожу и черепную коробку в мозговую ткань и могут воздействовать на клетки головного мозга, вызывая его тяжелые поражения.

6. Какое специфическое заболевание может вызвать нарушение терморегуляции? Каковы симптомы этого заболевания?

ИК-излучение может привести к специфическому заболеванию – тепловому удару , проявляющегося в головной боли, головокружении, учащении пульса, ускорении дыхания, падении сердечной деятельности, потере сознания и др.

7. Какое профессиональное заболевание может вызвать длительное тепловое облучение? Какой диапазон ИК-излучения при этом наиболее опасен?

При длительном облучении глаз у работников развивается профессиональное заболевание – катаракта (помутнение хрусталика). Лучи коротковолнового диапазона ИК – излучения (от 0,78 до 1,4 мкм) наиболее опасны.

8. Через величину какой характеристики оценивается действие теплового излучения на человека? Указать единицу ее измерения.

Действие теплового излучения на человека оценивается через величину, названную интенсивностью теплового облучения , Вт/м 2 .

9. От каких факторов зависит эффект воздействия теплового излучения?

Тепловой эффект воздействия облучения зависит от множества факторов:

1)температуры источника излучения, 2) интенсивности теплового излучения на рабочем месте, 3) спектра излучения, 4) площади излучающей поверхности, 5) расстояния между излучающей поверхностью и телом человека, 6) размера облучаемого участка тела, 7) длительности облучения, 8) одежды и т.п.

10. В каких случаях будет более тяжелым эффект воздействия теплового излучения?

Чем больше величина облучаемой поверхности, чем продолжительнее период облучения и чем ближе облучаемый участок организма к важным жизненным органам, тем тяжелее эффект воздействия.

11. Что такое терморегуляция? Какова функция данного механизма?

Регулирование теплообмена осуществляется путем изменения количества вырабатываемого в организме тепла и путем увеличения или уменьшения его передачи в окружающую среду за счет соответствующих реакций одного из основных механизмов приспособления – терморегуляции.

Терморегуляция – совокупность физиологических процессов, обеспечивающих постоянство температуры тела человека в допустимых физиологических границах 36,4 – 37,5 °С. Данный диапазон температур внутренних органов человека наиболее благоприятен для протекания в организме биохимических реакций и деятельности мозга.

12. При тепловом облучении допустимые значения какого параметра и в зависимости от какого фактора устанавливаются ГОСТ 12.1.005 – 88?

Допустимая интенсивность теплового облучения работающих в соответствии с санитарно-гигиеническими требованиями (ГОСТ 12.1.005 – 88) устанавливается в зависимости от площади облучаемой поверхности тела .

13. Какими способами обеспечивается защита работников от перегревания? Какой из способов является наиболее распространенным?

Способы обеспечения защиты работников от перегревания:

1) дистанционное управление ходом технологического процесса, 2) использование защитных экранов, 3) водяных и воздушных завес, 4) воздушное душирование, 5) применение спецодежды и средств индивидуальной защиты, 6) оборудование комнат или кабин для кратковременного отдыха с подачей в них кондиционированного воздуха.

14. Какие из исследуемых экранов являлись теплоотражающими? Из каких других материалов изготавливают такие экраны?

Теплоотражающие экраны имеют низкую степень черноты поверхностей, вследствие чего они значительную часть падающей на них лучистой энергии отражают в обратном направлении. В качестве теплоотражающих материалов в конструкции экранов используют альфоль (ал. фольга), листовой алюминий, оцинкованную сталь, алюминиевую краску.

15. Какие из исследуемых экранов являлись теплопоглощающими? Из каких других материалов изготавливают такие экраны?

Теплопоглощающие экраны изготавливают из материалов с высоким термическим сопротивлением (малым коэффициентом теплопроводности). В качестве теплопоглощающих материалов применяют огнеупорный и теплоизоляционный кирпич, асбест, брезент, шлаковату.

16. Что используют на производстве в качестве теплоотводящих экранов?

В качестве теплоотводящих экранов используются водяные завесы, свободно падающие в виде пленки или орошающие другую экранирующую поверхность, либо заключенные в специальный кожух из стекла или металла змеевики с принудительно циркулирующей в них холодной водой.

7.1. Включается источник теплового излучения. Интенсивность теплового излучения измеряется актинометром , для чего открывается крышка с тыльной стороны актинометра и направляется в сторону источника тепла. Замеры осуществляются при отсутствии защитного экрана, поочередно с одним, двумя, тремя рядами цепей и с экраном из оргстекла. Продолжительность каждого замера – не менее 30 секунд.

7.2. Результаты измерений записываются в 3-й столбец таблицы 2 отчета, в 4-й столбец таблицы записываются значения интенсивности теплового излучения, переведенные в Вт/м 2 (1 кал/см 2 мин = 70 Вт/м 2).

7.3. Согласно ГОСТ 12.1.005-88 допустимая величина интенсивности теплового излучения составляет:

35 Вт/м2 – при облучении поверхности тела 50% и более

70 Вт/м2 – при облучении поверхности тела от 25 до 50%

100 Вт/м2 – при облучении поверхности тела не более 25%

Интенсивность теплового облучения работающих от открытых источников (нагретый металл, стекло и др.) не должна превышать 140 Вт/м 2 , при этом облучению не должно подвергаться более 25 % поверхности тела и обязательным является использование средств индивидуальной защиты, в том числе средств защиты лица и глаз.

7.4.Делаются выводы:

    о необходимой защите (виде экрана) работника в соответствии с заданной долей площади поверхности облучения;

    об эффективности защитных экранов.

8.Общие теоретические сведения.

Метеорологические условия (микроклимат) являются важным фактором, оказывающим влияние на здоровье и работоспособность человека.

Нормируемые параметры микроклимата - это температура, относительная влажность, скорость движения воздуха и в некоторых производствах - интенсивность теплового излучения.

В цехах промышленных предприятий технологические процессы по выплавке и обработке металлов, по переработке и обработке лубяных волокон древесины, при обработке пряж и других материалов сопровождаются большими выделениями тепла, в результате чего значительно повышается температура воздуха рабочей зоны.

Нередко вблизи источников нагрева (нагревательные печи, сушилки и др.) рабочие подвергаются тепловому излучению.

Интенсивность теплового излучения - количество лучистого тепла (в калориях), падающего на 1 см 2 облучаемой поверхности за одну минуту (обозначается в кал/см 2 мин) или количество лучистого тепла (в килокалориях), падающего на 1 м 2 облучаемой - поверхности за 1час (обозначается в ккал/м 2 ч), которое также может оцениваться в Вт/м 2 .

Некоторые цеха (например, прядильные мокрого прядения, ткацкие, бельно-отделочные и др.) характеризуется высокой влажностью воздуха, причем в ткацких цехах она создается искусственно, для улучшения технологического процесса.

Повышенная подвижность воздуха иногда вызывает неприятные ощущения у рабочих, а сквозняки нередко являются причиной простудных заболеваний. Неблагоприятный микроклимат вызывает переутомление, понижение скорости реакции, скованность движений, что приводит к снижению сопротивляемости организма вредным воздействиям среды и к повышению опасности травмирования.

Благоприятные метеорологические условия являются важной предпосылкой для предупреждения заболеваемости, травматизма и способствуют повышению работоспособности, что приводит к росту производительности труда.

В связи с вышеизложенным, обеспечение оптимальных параметров микроклимата в рабочей зоне производственных помещений является важной задачей руководителей промышленных предприятий.

С физической точки зрения человек представляет собой «нагретое» до определенной температуры влажное тело. При усвоении продуктов питания в организме человека протекают биохимические процессы, сопровождающиеся выделением тепла. В состоянии покоя в теле человека образуется около 80 ккал/ч (93 Дж/с) тепла. При выполнении человеком работы (особенно физической) в зависимости от степени ее тяжести выделяется тепла 250-400 ккал/ч (290-464 Дж/с) и более.

В связи с тем, что на полезную работу затрачивается в среднем 15-20 % тепла, то количество тепла, образующегося в теле человека во время физического труда, в несколько раз больше теплового эквивалента производимой им работы. Однако для человека является необходимым условием, чтобы величина теплообразования в теле всегда была равна величине теплоотдачи (этим и объясняется постоянство температуры человеческого тела). Способность человеческого организма сохранять температуру тела на почти постоянном уровне при довольно значительных колебаниях температуры окружающей среды носит название терморегуляции .

Если этот тепловой баланс нарушается, то в случае недостаточной теплоотдачи наступает перегрев человеческого тела, а в случае избыточной теплопотери - переохлаждение. И то и другое приводит к нарушению нормального самочувствия и к снижению работоспособности.

Воздействие высокой температуры воздуха на организм человека, особенно в сочетании с высокой влажностью или тепловым излучением, может вызвать нарушение деятельности сердечно-сосудистой системы за счет обеднения организма водой. Потеря жидкости может достичь 5-8 литров в смену. Кровь при этом сгущается, становится более вязкой, нарушается питание тканей и органов; в легких случаях ухудшается самочувствие, а в тяжелых - наступают острые болезненные расстройства, называемые тепловым ударом.

Кроме того, лучистое тепло, воздействуя на зрение, может вызывать серьезные заболевания глаз – катаракту.

Тепло, образующееся в теле человека, отдается в окружающую среду тремя путями: излучением, конвекцией и испарением пота.

Эффективность отдачи организмом тепла зависит от температуры, относительной влажности и скорости движения окружающего воздуха.

С физиологической точки зрения совокупность перечисленных параметров окружающей среды должна быть такой, чтобы достигнутое тепловое равновесие соответствовало зоне хорошего самочувствия человека, зоне комфорта , т.е. чтобы отдача избыточного тепла происходила с наименьшими затратами энергии.

Микроклимат считается комфортным, если параметры температуры, относительной влажности и скорости движения воздуха соответствуют оптимальным нормам.

Оптимальные (комфортные) метеорологические условия в цехах должны обеспечиваться системами кондиционирования воздуха.

В качестве мер борьбы против тепловой радиации применяется теплоизоляция, экранирование, устройство водяных завес и устройство воздушных душей.

Микроклимат

Микроклимат влияет на самочувствие и работоспособность. При увеличении температуры больше 30°С работоспособность уменьшается. Для человека определены максимальные температуры в зависимости от длительности их воздействия и использования средств зашиты.

Основными параметрами, характеризующими метеорологические условия производственной среды, являются:

температура воздуха t, °С;

относительная влажность  ,%;

скорость движения воздуха V, м/с;

барометрическое давление Р, мм. рт.ст.;

интенсивность теплового излучения Ie , Вт/м2.

Эти условия влияют на теплообмен организма человека с окружающей средой. Между организмом и окружающей средой происходит непрерывный процесс теплового обмена, состоящий в передаче вырабатываемого организмом тепла в окружающую среду.

Параметры микроклимата оказывают непосредственное влияние на самочувствие человека и его работоспособность.

При высокой температуре воздуха в помещении кровеносные сосуды кожи расширяются, при этом происходит повышенный приток крови к поверхности тела, и теплоотдача в окружающую среду значительно увеличивается, однако при температуре воздуха более 30° С отдача теплоты конвекцией и излучением в основном прекращается, часть теплоты отдается путем испарения с поверхности кожи. Вместе с влагой организм теряет и соли, играющие важную роль в жизнедеятельности организма. При неблагоприятных условиях потеря жидкости может достигать 8-10 литров за смену, а с ней до 40-50г NаСl (всего в организме около 140 г NаСl). Потеря 28-30 г его ведет к прекращению желудочной секреции, а - больших количеств- к мышечным спазмам и судорогам. При высокой температуре воздуха и дефиците воды в организме усиленно расходуются углеводы, жиры, разрушаются белки.

Для восстановления водяного баланса работающих в горячих цехах устанавливают пункты подпитки подсоленной (~ 0,5 % NаСl) газированной питьевой водой из расчета 4-5 л на человека в смену.

При понижении температуры окружающего воздуха реакция организма иная: кровеносные сосуды сужаются, приток крови к поверхности тела замедляется, усиливается теплопродукция и уменьшается отдача тепла. В суженных сосудах происходит периодическое сужение и расширение их просвета, возникают болевые ощущения. Теплопотери возрастают и усиливается возможность переохлаждения. Подвижность воздуха и повышенная влажность усиливают охлаждающие свойства организма.

Высокая относительная влажность неблагоприятно действует на организм и при высоких температурах воздуха, т.к. препятствует испарению пота и способствует перегреванию организма. Чем больше относительная влажность, тем меньше испаряется пота в единицу времени, тем быстрее наступает перегрев. Особенно неблагоприятное воздействие оказывает высокая влажность при температуре больше 31 °С, т.к. при этой температуре практически все тепло (выделяемое) отдается в окружающую среду при испарении пота. При увеличении влажности пот не испаряется, а стекает каплями.

Недостаточная влажность вызывает пересыхание слизистых оболочек дыхательных путей, их растрескивание.

Подвижность воздуха весьма эффективно способствует теплоотдаче, что является положительным явлением при высоких температурах воздуха, но отрицательным при низких температурах.

Барометрическое давление оказывает существенное влияние на такой жизненноважный момент, как процесс дыхания. Наличие кислорода во вдыхаемом воздухе является необходимым, но недостаточным условием для обеспечения жизнедеятельности организма. Интенсивность диффузии кислорода в кровь определяется парциальным давлением кислорода в альвеолярном воздухе (через стенки альвеол кислород посредством диффузии поступает в кровь), которое зависит от барометрического давления вдыхаемого воздуха. Удовлетворительное самочувствие человека сохраняется до высоты ~ 4км, а при дыхании чистым кислородом - до высоты ~ 12км. Выше 4км может наступить кислородное голодание - гипоксия из-за снижения диффузии кислорода из легких в кровь. При работе в условиях избыточного давления снижаются показатели вентиляции легких за счет некоторого урежения частоты дыхания и пульса.

Избыточное давление воздуха приводит к повышению парциального давления кислорода в альвеолярном воздухе и в то же время - к уменьшению объема легких и увеличению силы дыхательной мускулатуры. Для человека очень опасно быстрое изменение давления.

Тепловое излучение от нагретых поверхностей играет немаловажную роль в создании неблагоприятных микроклиматических условий в производственных помещениях. Наибольшую опасность возникновения лучистого тепла представляет расплавленный или нагретый до высоких температур металл.

При температуре до +500° С нагретой поверхностью излучаются инфракрасные лучи с длиной волны 0,76 - 740 мкм, а при более высокой температуре наряду с возрастанием инфракрасных лучей появляются видимые световые и ультрафиолетовые лучи. Инфракрасные лучи оказывают на организм человека в основном тепловое действие. Под влиянием теплового облучения в организме происходят биохимические сдвиги, уменьшается кислородная насыщенность крови, понижается венозное давление, замедляется кровопоток и, как следствие, нарушается деятельность сердечно-сосудистой и нервной систем; повышается температура глубоколежащих тканей, происходит помутнение хрусталика глаза (профессиональная катаракта).

Нормирование микроклимата

Нормы производственного микроклимата установлены системой стандартов безопасности труда ГОСТ 12.1.005-88.

Нормы производственного микроклимата установлены системой стандартов безопасности труда ГОСТ 12.1.005-88 “Воздух рабочей зоны” и строительными нормами СН 2.2.4.548-96. Они едины для всех производств и всех климатических зон с некоторыми незначительными отступлениями. В виде оптимальных и допустимых величин. Оптимальные - создают ощущения теплового комфорта, а допустимые - могут вызывать преходящие и быстро нормализующиеся изменения функционального и теплового состояния организма и напряжения реакции терморегуляции, не выходящие за пределы физиологических приспособительных возможностей. Нормы установлены для рабочей зоны - пространства высотой до 2 метров над уровнем пола или площадки, на которой находится рабочее место.

Оптимальная относительная влажность воздуха для всех периодов года - 40-60 %.

Интенсивность теплового облучения работающих от открытых источников (нагретый металл, стекло, “открытое” пламя и др.) не должна превышать 140 Вm/м 2 , при этом облучению не должно подвергаться более 25% поверхности тела и обязательным является использование средств индивидуальной защиты тела и глаз.

Допустимая интегральная интенсивность теплового облучения не должна превышать 350Вm/м 2 .

Интенсивность теплового облучения работающих от нагретых поверхностей технологического оборудования, осветительных приборов, инсоляции на постоянных и непостоянных рабочих местах не должна превышать 35Вm/м 2 при облучении 50% поверхности тела и более, 70 Вm/м 2 - при величине облучаемой поверхности от 25 до 50% и 100 Вm/м 2 - при облучении не более 25% поверхности тела.

Допустимая интенсивность теплового облучения в области ультрафиолетового спектра составляет 0,001 Bm/м 2 при длине волны до 0,28 мкм, 0,05 Bm/м 2 при длине волны 0,28-0,32мкм и 10 Bm/м 2 при длине волны 0,32-0,4 мкм.

Предельная температура вдыхаемого воздуха, при которой человек может дышать в течение нескольких минут без специальных средств защиты = 116°С.

Потоотделение мало зависит от недостатка или избытка воды в организме.

Допустимо обезвоживание организма на 2-3%. При 6% - нарушение умственной деятельности и уменьшение остроты зрения, при 15-20% - смерть.

При потоотделении уменьшается содержание солей (до 1%, в т.ч. NaCl 0,4-0,6%). При неблагоприятных условиях потеря жидкости = 8-10 л/смену и в ней до 60г. NaС1 (всего в организме NaCl около 140г.)

При потере соли кровь теряет способность удерживать воду и приводит к нарушению сердечно-сосудистой деятельности.

При высокой температуре и дефиците воды усиленно расходуются углеводы, жиры, разрушаются белки. Для восстановления водяною баланса:

1. Пить подсоленную газированную воду (около 0,5% NaС1) 4-5 л/смену (в горячих цехах).

2. Пить белково-витаминный напиток, холодную воду, чай.

Перегрев организма (гипертермия) - при длительном воздействии высокой температуры. Признаки: головная боль, головокружение, слабость, искажения цветового восприятия, сухость во рту, тошнота, рвота, обильное потовыделение, учащение пульса и дыхания, бледность, расширение зрачков.

Переохлаждение (гипотермия) - при уменьшении температуры, большой подвижности и влажности воздуха. Симптомы: в начале уменьшение частоты дыхания, увеличение объема вдоха, затем неритмичное дыхание, изменение углеводного обмена, мышечная дрожь и холодовая травма.

Для оценки характера одежды (теплоизоляции) и акклиматизации организма в разное время года введено понятие периода года. Различают теплый и холодный периоды года. Теплый период года характеризуется среднесуточной температурой наружного воздуха + 10° С и выше, холодный - ниже + 10° С.

При учете интенсивности труда все виды работ исходя из общих энергозатрат организма делятся натри категории: легкие, средней тяжести и тяжелые. Характеристику производственных помещений по категории выполняемых в них работ устанавливают по категории работ, выполняемых 50 % и более работающих в соответствующем помещении.

К легким работам (категория I) с затратой энергии до 174 Вт относятся работы, выполняемые сидя или стоя, не требующие систе­матического физического напряжения (работа контролеров, в процессах точного приборостроения, конторские работы и др.). Легкие работы подразделяют на категорию 1а (затраты энергии до 139 Вт) и категорию 16 (затраты энергии 140... 174 Вт).

К работам средней тяжести (категория II) относят работы с затратой энергии 175...232 Вт (категория 2а) и 233...290 Вт (категория 2б). В категорию 2а входят работы, связанные с постоянной ходьбой, выполняемые стоя или сидя, но не требующие перемещения тяжестей, в категорию 2б - работы, связанные с ходьбой и переноской небольших (до 10 кг) тяжестей (в механосборочных цехах, текстильном производстве, при обработке древесины и др.).

К тяжелым работам (категория III) с затратой энергии более 290 Вт относят работы, связанные с систематическим физическим напряжением, в частности с постоянным передвижением, с переноской значительных (более 10 кг) тяжестей (в механосборочных цехах, текстильном производстве, при обработке древесины и др.). К тяжелым работам (категория III) с затратой энергии более 290 Вт относят работы, связанные с систематическим физическим напряжением, в частности с постоянным передвижением, с переноской значительных (более 10 кг) тяжестей (в кузнечных, литейных цехах с ручными процессами и др.).

Интенсивность теплового облучения

Интенсивность теплового облучения работающих от нагретых поверхностей технологического оборудования, осветительных приборов, инсоляции на постоянных и непостоянных рабочих местах не должна превышать 35 Вт/м2 при облучении 50% поверхности тела и более, 70 Вт/м2 - при величине облучаемой поверхности от 25 до 50% и 100 Вт/м2 - при облучении не более 25% поверхности тела.

Интенсивность теплового облучения работающих от открытых источников (нагретый металл, стекло, “открытое” пламя и др.) не должна превышать 140 Вт/м2, при этом облучению не должно подвергаться более 25% поверхности тела и обязательным является использование средств индивидуальной защиты, в том числе средств защиты лица и глаз.

При наличии теплового облучения температура воздуха на постоянных рабочих местах не должна превышать указанные в табл. 1 верхние границы оптимальных значений для теплого периода года, на непостоянных рабочих местах - верхние границы допустимых значений для постоянных рабочих мест.

Освещенность

Основной задачей производственного освещения является поддержание на рабочем месте освещенности, соответствующей характеру зрительной работы. Увеличение освещенности рабочей поверхности улучшает видимость объектов за счет повышения их яркости, увеличивает скорость различения деталей, что сказывается на росте производительности труда.Так, при выполнении отдельных операций на главном конвейере сборки автомобилей при повышении освещенности с 30 до 75 лк производительность труда повысилась на 8 %. При дальнейшем повышении до 100 лк -- на 28 % (по данным проф. АЛ. Тарханова). Дальнейшее повышение освещенности не дает роста производительности.

При организации производственного освещения необходимо обеспечить равномерное распределение яркости на рабочей поверхности и окружающих предметах. Перевод взгляда с ярко освещенной на слабо освещенную поверхность вынуждает глаз переадаптироваться, что ведет к утомлению зрения и соответственно к снижению производительности труда. Для повышения равномерности естественного освещения больших цехов осуществляется комбинированное освещение. Светлая окраска потолка, стен и оборудования способствует равномерному распределению яркостей в поле зрения работающего.

Производственное освещение должно обеспечивать отсутствие в поле зрения работающего резких теней. Наличие резких теней искажает размеры и формы объектов различения и тем самым повышает утомляемость, снижает производительность труда. Особенно вредны движущиеся тени, которые могут привести к травмам. Тени необходимо смягчать, применяя, например, светильники со светорассеивающими, молочными стеклами, при естественном освещении, используя солнцезащитные устройства (жалюзи, козырьки и др.).

Для улучшения видимости объектов в поле зрения работающего должна отсутствовать прямая и отраженная блескость. Блескость-- это повышенная яркость светящихся поверхностей, вызывающая нарушение зрительных функций (ослепленность), т.е. ухудшение видимости объектов. Блескость ограничивают уменьшением яркости источника света, правильным выбором защитного угла светильника, увеличением высоты подвеса светильников, правильном направлением светового потока на рабочую поверхность, а также изменением угла наклона рабочей поверхности. Там, где это возможно, блестящие поверхности следует заменять матовыми.

Колебания освещенности на рабочем месте, вызванные, например, резким изменением напряжения в сети, обусловливают переадаптацию глаза, приводя к значительному утомлению. Постоянство освещенности во времени достигается стабилизацией плавающего напряжения, жестким креплением светильников, применением специальных схем включения газоразрядных ламп.

При организации производственного освещения следует выбирать необходимый спектральный состав светового потока. Это требование особенно существенно для обеспечения правильной цветопередачи, а в отдельных случаях для усиления цветовых контрастов. Оптимальный спектральный состав обеспечивает естественное освещение. Для создания правильной цветопередачи применяют монохроматический свет, усиливающий одни цвета и ослабляющий другие.

Осветительные установки должны быть удобны и просты в эксплуатации, долговечны, отвечать требованиям эстетики, электробезопасности, а также не должны быть причиной возникновения взрыва или пожара. Обеспечение указанных требований достигается применением защитного зануления или заземления, ограничением напряжения питания переносных и местных светильников, защитой элементов осветительных сетей от механических повреждений и т.п.

В кабинах, на пультах и постах управления технологическими процессами, в залах вычислительной техники и других производственных помещениях при выполнении работ операторского типа, связанных с нервно-эмоциональным напряжением, должны соблюдаться оптимальные величины температуры воздуха 22-24°С, его относительной влажности 60-40% и скорости движения (не более 0,1 м/с). Перечень других производственных помещений, в которых должны соблюдаться оптимальные нормы микроклимата, определяется отраслевыми документами, согласованными с органами санитарного надзора в установленном порядке.

При обеспечении оптимальных показателей микроклимата температура внутренних поверхностей конструкций, ограждающих рабочую зону (стен, пола, потолка и др.), или устройств (экранов и т.п.), а также температура наружных поверхностей технологического оборудования или ограждающих его устройств не должны выходить более чем на 2 °С за пределы оптимальных величин температуры воздуха, установленных в табл. 1 для отдельных категорий работ. При температуре поверхностей ограждающих конструкций ниже или выше оптимальных величин температуры воздуха рабочие места должны быть удалены от них на расстояние не менее 1 м. Температура воздуха в рабочей зоне, измеренная на разной высоте и в различных участках помещений, не должна выходить в течение смены за пределы оптимальных величин, указанных в табл. 1 для отдельных категорий работ.

Температуру, относительную влажность и скорость движения воздуха измеряют на высоте, 1,0 м от пола или рабочей площадки при работах, выполняемых сидя, и на высоте 1,5 м - при работах, выполняемых стоя. Измерения проводят как на постоянных, так и на непостоянных рабочих местах при их минимальном и максимальном удалении от источников локального тепловыделения, охлаждения или влаговыделения (нагретых агрегатов, окон, дверных проемов, ворот, открытых ванн и т. д.).

Каким образом можно усовершенствовать условия труда

Ведущая роль в профилактике вредного влияния высоких температур, инфракрасного излучения принадлежит технологическим мероприятиям: замена старых и внедрение новых технологических процессов и оборудования, способствующих оздоровлению неблагоприятных условий труда.

К группе санитарно-технических мероприятий относится применение коллективных средств защиты: локализация тепловыделений, теплоизоляция горячих поверхностей, экранирование источников рабочих мест; воздушное душирование, радиационное охлаждение, распыление воды; общеобменная вентиляция или кондиционирование воздуха.

Уменьшению поступления теплоты в цех способствуют мероприятия, обеспечивающие герметичность оборудования.

Следует ограничивать прямую блесткость от источников освещения, при этом яркость светящихся поверхностей (окна, светильники и др.), находящихся в поле зрения, должна быть не более 200 кд/м.

Следует ограничивать отраженную блесткость на рабочих поверхностях (экран, стол, клавиатура и др.) за счет правильного выбора типов светильников и расположения рабочих мест по отношению к источникам естественного и искусственного освещения, при этом яркость бликов на экране ПЭВМ не должна превышать 40 кд/м2 и яркость потолка не должна превышать 200 кд/м2.

Показатель ослепленности для источников общего искусственного освещения в производственных помещениях должен быть не более 20. Показатель дискомфорта в административно-общественных помещениях - не более 40, в дошкольных и учебных помещениях - не более 15.

Следует ограничивать неравномерность распределения яркости в поле зрения пользователя ПЭВМ, при этом соотношение яркости между рабочими поверхностями не должно превышать 3:1 - 5:1, а между рабочими поверхностями и поверхностями стен и оборудования - 10:1.

В качестве источников света при искусственном освещении следует применять преимущественно люминесцентные лампы типа ЛБ и компактные люминесцентные лампы (КЛЛ).

Применение светильников без рассеивателей и экранирующих решеток не допускается.

Общее освещение при использовании люминесцентных светильников следует выполнять в виде сплошных или прерывистых линий светильников, расположенных сбоку от рабочих мест, параллельно линии зрения пользователя при рядном расположении видео дисплейных терминалов. При периметральном расположении компьютеров линии светильников должны располагаться локализовано над рабочим столом ближе к его переднему краю, обращенному к оператору.

Для обеспечения нормируемых значений освещенности в помещениях для использования ПЭВМ следует проводить чистку стекол оконных рам и светильников не реже двух раз в год и проводить своевременную замену перегоревших ламп.

В основу по нормированию ионизирующих излучений входят положения: не дозового предела; исключения необоснованного облучения людей.

К основным мерам защиты относятся:

· использование источников с минимальным выходом излучения (защита количеством);

· ограничение времени работы (защита временем);

· удаление рабочих мест от источников (защита расстоянием);

· экранирование источников или рабочих мест.

Различают защиту: от внешнего облучения, возникающего при работе с закрытыми источниками; от внутреннего облучения, возникающего при работе с открытыми источниками. Закрытые источники - устройства, которые исключают попадание радиоактивных веществ в среду. При расчёте защитного экрана определяют характеристики источника и предельно допустимые уровни излучения. Проектирование защиты выполнятся с учётом назначения помещения, категории облучаемых лиц, длительности облучения. При этом определяется кратность ослабления облучения. Ро - замеренная на рабочем месте мощность дозы; Рх - предельно допустимая мощность дозы.

Толщина экрана рассчитывается в зависимости от энергии излучения и кратности ослабления с учётом плотности материала. В зависимости от материала и конструкции защита бывает: водяной; сухой; смешанной.

Проанализируйте условия труда на вашем рабочем месте и предложите рекомендации по их улучшению

При изучении операторской деятельности особое внимание следует уделить выявлению различных факторов, влияющих на ее эффективность .

Согласно современным представлениям, физиологические основы трудовой деятельности базируются на деятельности центральной нервной системы (ЦНС), обеспечивающей координацию всех органов, которая осуществляется с помощью процессов возбуждения и торможения. С помощью импульсов возбуждения ЦНС и осуществляет свою функцию высшего распорядителя и организатора всей деятельности организма. Энергетическое обеспечение процессов возбуждения ограничено некоторыми рамками, которые определяют предел работоспособности. Этот предел, даже для одного человека является величиной переменной и может меняться в зависимости от конкретных условий труда специалиста.

Процесс торможения находится под контролем сознания. Во время трудовой деятельности волевым усилием можно продолжить выполнение работы, несмотря на усталость, однако продолжение работы требует энергетического обеспечения, поэтому человеческий организм начинает использовать энергетические вещества, предназначенные для других целей, отсюда нейрофизиологические конфликты, которые меняют характер многих физиологических процессов.

Работоспособность на протяжении рабочего времени проходит в три периода. Первый период (0.5 - 1.5 ч) - период вырабатывания, для него характерны низкие показатели работоспособности, который может продолжаться от нескольких минут до часа, характеризуется постоянным повышением всех показателей работы. Второй период (2.5 - 3 ч) - оптимальная работоспособность (80%), характеризующаяся относительно стабильными, наилучшими для данных условий результатами работы оператора. Третий период (0.5 ч) - снижение работоспособности в результате утомления. Большое влияние на работоспособность специалиста оказывает четкий ритм процесса работы. Когда активная работа прерывается, то период врабатываемости повторяется каждый раз. Умение равномерно расходовать психо-физиологические ресурсы организма является одним из признаков профессиональной выносливости, а следовательно, более эффективной работы.

Кратковременные перерывы в работе, производимые в строго определенное время, являются одним из способов борьбы с утомлением.

Теперь остановимся на вопросах микроклимата рабочего помещения. Оптимальные значения температуры воздуха в помещении (наиболее комфортные для человека) составляют 19-23 °С. Относительная влажность воздуха 55%. Скорость движения воздуха не превышает на уровне лица 0,1 м/с. При ощутимом нагреве поверхностей (более 45 °С), контактирующих с человеком, следует предусмотреть средства охлаждения или изоляцию поверхностей. В общем же, для обеспечения данных требований к состоянию воздушной среды, рекомендуется применение средств кондиционирования воздуха, рациональное размещение рабочих мест по площади помещения или как наиболее простой способ: периодическое в течение дня проветривание помещения (желательно во время рабочих перерывов, что бы избежать влияния сквозняков на здоровье операторов. Данные параметры удовлетворяют требованиям ГОСТов.

Рабочие столы размещены таким образом, что видео дисплейные терминалы ориентированы боковой стороной к световым проемам, чтобы естественный свет падал преимущественно слева.

Искусственное освещение в помещениях для эксплуатации ПЭВМ осуществляется системой общего равномерного освещения. В производственных и административно-общественных помещениях, в случаях преимущественной работы с документами, следует применять системы комбинированного освещения (к общему освещению дополнительно устанавливаются светильники местного освещения, предназначенные для освещения зоны расположения документов).

Освещенность на поверхности стола в зоне размещения рабочего документа составляет 300 - 500 лк. Все нормы у предприятия выполнены поэтому в качестве усовершенствования можно было бы предложить только более тщательно следить за условиями труда рабочих и по мере возможности устранять появляющиеся недочеты.

Тепловое излучение - этоэлектромагнитное излучение, испускаемое веществом и возникающее за счёт его внутренней энергии.

Оно обуславливается возбуждением частиц вещества при соударениях в процессе теплового движения колеблющихся ионов.

Интенсивность излучения и его спектральный состав зависят от температуры тела, поэтому тепловое излучение не всегда воспринимается глазом.

Тело. Нагретое до высокой температуры значительную часть энергии испускает в видимом диапазоне, а при комнатной температуры- энергия испускается в инфракрасной части спектра.

По международным стандартам различают 3 области инфракрасного излучения:

1. Инфракрасная область А

λ от 780 до 1400 нм

2. Инфракрасная область В

λ от 1400 до 3000 нм

3. Инфракрасная область С

λ от 3000 до 1000000 нм.

Особенности теплового излучения.

1. Тепловое излучение- это универсальное явление присущее всем телам и происходящее при температуре отличной от абсолютного нуля (- 273 К).

2. Интенсивность теплового излучения и спектральный состав зависят от природы и температуры тел.

3. Тепловое излучение является равновесным, т.е. в изолированной системе при постоянной температуре тела излучают за единицу времени с единицы площади столько энергии, сколько получают извне.

4. Наряду с тепловым излучением все тела обладают способностью поглащать тепловую энергию извне.

2 . Основные характеристики поглощения .

1. Лучистая энергия W (Дж)

2. Лучистый поток Р = W/t (Вт)

(Поток излучения)

3. Излучательная способность (энергитическая светимость)- это энергия электромагнитного излучения, излучаемая по всем возможным направлениям за единицу времени с единицы площади при данной температуре

RT= W/St (Вт/м2)

4. Поглощательная способность (коэффициент поглощения) равен отношению лучистого потока, поглощенного данного тела к лучистому потоку, упавшему на тело при данной температуре.

αт = Рпогл / Рпад.

3. Тепловые излучатели и их характеристика.

Понятие абсолютно чёрного тела.

Тепловые излучатели- это технические устройства для получения теплового лучистого потока. Каждый тепловой источник характеризуется излучательной способностью, поглащательной способностью, температурой излучательного тела, спектральным составом излучения.

В качестве стандарта введено понятие абсолютно чёрного тела (а.ч.т.)

При прохождении света через вещество, лучистый поток частично отражается, частично поглащается, рассеивается и частично проходит через вещество.

Если тело полностью поглощает падающий на него световой поток, то его называют абсолютно чёрное тело.

Для всех длин волн и при любых температурах коэффициент поглощения α=1. Абсолютно чёрного тела в природе нет, но можно указывать на тело близкое к нему по своим свойствам.

Модельно а.ч.т. является полость с очень малым отверстием стенки которого зачернены. Луч, попавший в отверстие после многократных отражений от стенок, будет поглощён практически полностью.

Если нагреть такую модель до высокой температуры, то отверстие будет светиться, такое излучение называется чёрным излучением. К а.ч.т. близки поглощательные свойства чёрного бархата.

α для сажи = 0,952

α для чёрного бархата = 0,96

Примером служит зрачок глаза, глубокий колодец и т.д.

Если α=0, то это обсолютно зеркальная поверхность. Чаще α находится в пределах от 0 до 1, такие тела называются серыми.

У серых тел коэффициент поглощения зависит от длины волны, падающего излучения и в значительной степени от температуры.

4. Законы теплового излучения и их характеристика

1. Закон Киркгофа :

отношение излучательной способности тела к поглощательной способности тела при одинаковой температуре и при одинаковой длине волны есть величина постоянная.

2. Закон Стефана-Больцмана :

излучательная способность а.ч.т. пропорциональначетвёртой степени его абсолютной температуры.

δ- постоянная Стефана-Больцмана.

δ=5,669*10-8 (Вт/ м2*К4)

W=Pt=RTSt= δStT4

Т-температура

При увеличении температуры (Т) мощность излучения растёт очень быстро.

При увеличении времени (t) до 800 мощность излучения увеличится в 81 раз.



Просмотров