Производственный микроклимат и его гигиеническое значение. Микроклимат помещений и его гигиеническая оценка. Шумопоглощение и свет

На микроклимат производственных помещений большое влияние оказывает технологический процесс. Практически производственные помещения делят на холодные, имеющие нормальную температуру, и горячие. При пониженной температуре проводится работа в холодильниках, элеваторах, складских помещениях. К горячим помещениям относятся мартеновские, прокатные, литейные цехи и др.

Технологический процесс может оказывать влияние и на влажность воздуха производственных помещений. Источниками повышения влажности воздуха являются красильные и промывочные аппараты, гальванические ванны. Они могут повышать влажность воздуха до
80-90%.

Реже в производственных цехах приходится встречаться с пониженной влажностью (20-25%). Такой воздух вызывает неприятное чувство сухости слизистых оболочек верхних дыхательных путей.

Нагретые поверхности в горячих цехах могут явиться причиной возникновения воздушных потоков, направленных кверху, и притекания на их место более холодного воздуха. Такое движение воздуха может создавать сквозняки. В горячих цехах возможно также действие теплового излучения (инфракрасного).

Неблагоприятное действие производственного микроклимата прежде всего проявляется в нарушении процессов терморегуляции, функции различных органов и систем.

Несмотря на значительные колебания температуры, влажности и движения воздуха в производственных условиях, организм справляется с ними благодаря приспособляемости терморегуляционного аппарата.

Однако при длительном воздействии особо неблагоприятного микроклимата терморегуляторные способности организма оказываются недостаточными, нарушается тепловой баланс, возникают глубокие сдвиги в состоянии организма.

Высокая температура воздуха в сочетании с тепловым излучением и физической нагрузкой оказывает влияние и на сердечно-сосудистую систему, водно-солевой обмен, дыхание. Наблюдается падение артериального давления, сгущение крови. Вместе с потом организм теряет значительное количество соли.

К мероприятиям по борьбе с перегреванием организма относятся: механизация тяжелых работ, защита от источников излучения, вентиляция, личная профилактика. Механизация трудоемких работ, облегчая труд, уменьшает образование тепла в организме.

Для удаления нагретого воздуха применяют организованную аэрацию; для предупреждения перегревания организма устраивают воздушный душ - поток воздуха, направляемый непосредственно на рабочего (рис. 29). Уменьшение теплоизлучения достигается экранированием теплоизлучающих поверхностей различными теплоизоляционными материалами (асбестом, пеностеклом), применением водяных завес (рис. 30).

Рис. 29. Схема отдувающей вентиляции (воздушный душ) в литейном цехе.

Рис. 30. Водная завеса перед отверстием печи для защиты от облучения.

Для регуляции водно-солевого обмена применяют для питья подсоленную (0,5%) газированную воду.

К мерам личной профилактики относятся также кратковременные перерывы в работе, проводимые в кабинах с водяным охлаждением (рис. 31), применение рациональной спецодежды и обуви.


Рис. 31. Кабина с водяным охлаждением.

Для предупреждения переохлаждения организма используют устройство местного лучистого отопления на постоянных местах работы, специальные помещения для обогрева; работающих снабжают спецодеждой, обувью, рукавицами из малотеплопроводных материалов.

Микроклимат и его гигиеническое значение. Виды микроклимата и влияние дискомфортного микроклимата на теплообмен и здоровье человека

Микроклимат – комплекс физических свойств воздуха в определœенный момент времени и в конкретном помещении или на другой строго ограниченной территории. На формирование микроклимата влияют: технологический процесс, климат местности, сезон года и условия отопления и вентиляции. Показателями, характеризующими микроклимат в помещениях, являются: температура воздуха, температура поверхностей ограждающих конструкций, относительная влажность воздуха, скорость движения воздуха.

Следует отметить, что при небольших отклонениях физических факторов воздушной среды от зоны комфорта самочувствие здоровых людей может не измениться, тогда как у больных людей часто возникают, так называемые, метеотропные реакции. Особенно чувствительны к изменению метеорологических факторов внешней среды люди, страдающие сердечно-сосудистыми, нервно-психическими и простудными заболеваниями.

При гигиенической оценке влияния физических факторов воздушной среды на организм человека крайне важно учитывать весь комплекс их: атмосферное давление, температуру воздуха, влажность и скорость движения. Важно заметить, что для создания комфортных условий самочувствия людей рекомендуются следующие параметры факторов в помещениях (микроклимат помещений):

1) средняя температура воздуха 18-200 (для детей 20-220), в палатах для недоношенных детей - 250, в перевязочных и процедурных кабинœетах - 220, операционных - 210, родовых - 250. Перепады температуры воздуха в горизонтальном направлении от наружной стены до внутренней не должны превышать 20, в вертикальном - 2,50 на каждый метр высоты. В течение суток колебания температуры воздуха в помещении при центральном отоплении не должны превышать 30;

2) величина относительной влажности воздуха при указанных температурах может колебаться в пределах 40-60 % (зимой - 30- 50%);

3) скорость движения воздуха в помещениях должна быть 0,2 - 0,4 м/с, на выходе из приточных отверстий вентиляционных каналов больничных палат - не более 1 м/с, а в ванных, душевых, физиотерапевтических кабинœетах - 0,7 м/с. Особенно важно соблюдение этих условий в больницах.

Все жизненные процессы в организме сопровождаются непрерывным выделœением теплоты в окружающую среду. Стоит сказать, что для нормального протекания физиологических процессов крайне важно, чтобы выделяемая организмом теплота полностью отводилась в окружающую среду. Нарушение теплового баланса может привести к перегреву или переохлаждению.

Различают монотонный микроклимат, когда его параметры мало изменяются в течение рабочей смены (ткацкие, швейные цеха, обувное производство, машиностроение и т.п.), и динамичный - быстрое и значительное изменение параметров микроклимата (сталеплавильные, литейные цеха и т.п.).

Цель занятия: изучение влияния микроклиматических факторов на организм человека, измерение параметров микроклимата, гигие- ническая оценка отдельных показателей и микроклимата в целом.

При подготовке к занятию студенты должны проработать следу- ющие вопросы теории.

1. Погода, климат, микроклимат.

2. Физические свойства воздуха, их гигиеническое значение.

3. Комплексное влияние метеорологических факторов окружаю- щей среды на организм, его оценка. Теплообмен организма с окружающей средой. Индекс тепловой нагрузки (ТНС).

4. Гигиенические нормативы микроклимата помещений различ- ного назначения.

После освоения темы студент должен знать:

Методику определения и оценку микроклимата аптечных помещений;

Определение и оценку комплексного влияния метеорологичес- ких факторов окружающей среды на организм работающих;

уметь:

Оценить результаты исследований на соответствие гигиени- ческим нормативам;

Оценить условия труда персонала аптек по параметрам мик- роклимата;

Использовать основные нормативные документы и информа- ционные источники справочного характера для разработки гигиенических рекомендаций по оздоровлению микроклима- та аптечных помещений.

Учебный материал для выполнения задания

Атмосфера имеет многослойную структуру. К земной поверх- ности прилегает тропосфера - наиболее плотный слой воздуха размером от 8 до 18 км в разных широтах. Тропосфера отличается неустойчивостью физических свойств (колебаний температуры, влажности, атмосферного давления), наличием водяных паров, большого количества пыли, сажи, разнообразных токсических веществ, газов, микроорганизмов. В ней постоянно происходит перемещение воздушных масс в разных направлениях. Над тропосферой находится стратосфера - слой воздуха размером до 40- 60 км, характеризующийся разреженностью воздуха. Под влиянием космического и коротковолнового ультрафиолетового излучения Солнца в результате ионизации молекул газов воздуха, особенно кислорода, в стратосфере образуются молекулы озона, составляющие озоновый слой атмосферы. Озоновый слой задерживает коротковолновое УФ-излучение, которое, достигая поверхности Земли, может вызвать разнообразные негативные эффекты в биосфере, а в популяции человечества повысить уровень онкологической заболеваемости. Над стратосферой простирается еще более разреженный слой воздуха размером до 80 км - мезосфера, выше следует термосфера - слой атмосферы высотой до 300 км, температура в котором достигает 1500 ?С. За ней располагается ионосфера - слой ионизированного воздуха, размеры которого в зависимости от времени года и суток составляют 500- 1000 км. Еще выше последовательно размещаются экзосфера (до 3000 км), плотность которой почти не отличается от плотности безвоздушного космического пространства, и верхняя граница атмосферы Земли - магнитосфера (от 3000 до 50000 км), в состав которой входят пояса радиации.

В последние десятилетия была установлена биологическая активность постоянного геомагнитного поля (ГМП) Земли. Изменения (или пульсации) геомагнитного поля принято делить на регулярные, устойчивые, непрерывные (Pс - pulsations continues), которые регистрируются в утренние и дневные часы, и иррегулярные, шумоподобные, импульсивные (Pi - pulsations irregular), которые отмечаются в вечерние и ночные часы. Все виды иррегулярных пульсаций являются признаками геомагнитных возмущений, в то время как регулярные пульсации наблюдаются и в очень спокойных условиях. Геомагнитное поле Земли является существенным компонентом среды обитания человека. Если режим устойчивых коле-

баний является «привычным» для биосистем, то изоляция от него может иметь негативные последствия для организма. В результате проникновения в атмосферу потока летящих на огромной скорости от Солнца заряженных частиц (так называемого солнечного ветра), образующихся в периоды повышения солнечной активности, возникают возмущения ГМП, которые выражаются в глобальном возбуждении обычных пульсаций его напряженности (геомагнитные бури), регистрируемых по всему земному шару в течение десятков часов. В формирование естественного электромагнитного фона Земли входит мировая и локальная грозовая активность. Магниторецепторы у человека находятся в структурах головного мозга и в надпочечниках. Геомагнитные возмущения могут оказывать десинхронизирующее влияние на биологические ритмы и другие процессы в организме, способствовать росту числа инфарктов миокарда и инсультов, а также числу дорожно-транспортных происшествий и аварий самолетов. Однако длительное пребывание людей в экранированных помещениях в условиях дефицита естественного ГМП вызывает ухудшение их самочувствия и состояния здоровья. Дефицит ГМП влечет за собой нарушения со стороны центральной нервной системы: дисбаланс основных нервных процессов в виде преобладания торможения, ухудшение координации движений и снижение уровня внимания, уменьшение скорости двигательной реакции на световой и звуковой раздражители. Могут проявляться нарушения со стороны сердечно-сосудистой системы, иммунной и эндокринной систем. Человек попадает в гипогеомагнитные условия в жилых многоэтажных зданиях, построенных из железобетонных конструкций, в вагонах метро, салонах легковых автомобилей, в помещениях самолетов, морских судов, на подводных лодках, в банковских хранилищах.

С гигиенической точки зрения воздушная среда не однородна. Учитывая разнообразие физических свойств и вредных примесей, а также условия формирования и загрязнения воздуха, различаются несколько категорий воздушной среды: атмосферный воздух, воздух жилых и общественных зданий и воздух промышленных помещений.

Характеристика метеорологических факторов

Физические свойства атмосферного воздуха нестабильны и связаны с климатическими особенностями географического региона. Погода - это совокупность физических свойств околоземного слоя

атмосферы (барометрического давления, температуры, влажности, скорости и направления ветра, солнечной радиации) над конкретной территорией за определенный промежуток времени.

Комплексная характеристика погоды называется типом погоды. С гигиенической точки зрения (влияния на здоровье человека) удоб- на клиническая классификация типов погоды.

1. Клинически оптимальный тип погоды оказывает благоприятное, щадящее действие на организм человека, вызывает бодрое настроение - это погода с относительно ровными метеорологичес- кими свойствами: умеренно влажная или сухая, тихая (скорость ветра не выше 3 м/с), ясная (солнечная), межсуточные колебания температуры воздуха не превышают 2?С, атмосферного давления - 3 мм рт.ст.

2. Клинически раздражающий тип погоды - погода с нарушением оптимального уровня одного или нескольких метеорологических параметров: это погода солнечная и пасмурная, сухая и влажная (не выше 90% относительной влажности), межсуточные колебания температуры воздуха не превышают 4 ?С, атмосферного давления - 6 мм рт.ст., скорость ветра не более 9 м/с.

3. Клинически острый тип погоды характеризуется резкими изменениями метеорологических параметров: это погода сырая (выше 90% относительной влажности), дождливая, пасмурная и очень ветреная (скорость ветра более 9 м/с), межсуточные колебания температуры воздуха превышают 4 ?С, атмосферного давления - более 6 мм рт.ст.

Изменения погоды могут происходить постепенно (периодически) или резко (апериодически) в течение определенного периода (сутки, недели). В отличие от периодических изменений погоды резкие колебания метеорологических раздражителей (передвижение воздушных масс, барометрическое давление, температура и др.) являются неожиданными для организма. Они создают повышенную нагрузку на регуляторный аппарат организма человека, вызывая перенапряжение физиологических механизмов адаптации, что приводит к различным нарушениям функций организма (гелиометеотропным реакциям) у метеочувствительных (или метеолабильных) людей. Часто это проявляется в снижении работоспособности, быстрой утомляемости и ухудшении самочувствия: нарушение сна, головные боли, головокружение, шум в ушах, боли в области сердца, ногах, руках, болевые ощущения в закрытых полостях тела (суставах,

полостях зубов). Гелиометеотропные реакции можно рассматривать как клинический синдром дезадаптации, т.е. метеоневрозы дезадаптационного происхождения. При этом снижается чувствительность к лекарственным препаратам, что может привести к их передозировке. В настоящее время доказано отрицательное влияние неблагоприятной погоды на течение заболеваний сердечно-сосудистой, дыхательной, пищеварительной и нервной систем, кожных и глазных болезней, а также рост травматизма, автокатастроф, случаи убийств и суицидов. Часто гелиометеотропные реакции наблюдаются у детей грудного возраста, затем в 5-6 и 11-14 лет, когда происходит физиологическая перестройка механизмов адаптации. Возрастает чувствительность у женщин в период беременности и родов, что выражается в утяжелении токсикозов беременности, увеличении числа угрожающих абортов, преждевременных родов. Профилактика гелиометеотропных реакций проводится с помощью закаливания, рациональной одежды и обуви, улучшения условий труда и отдыха, нормализации микроклимата помещений, применения специфических и неспецифических средств и медикаментов.

Климат - статистический многолетний режим погоды, характерный для конкретной местности в силу ее географического положения. По данным среднегодовых температур на земле различают 7 климатических поясов: тропический (0?13? географической широты; среднегодовая температура = +20...+24 ?С); жаркий (13-26? северной и южной широты и +16...+30 ?С); теплый (26-39? широты и +12...+16 ?С); умеренный (39-52? широты и +8...+12 ?С); холодный (52-65? широты и +4...+8 ?С); суровый (65-78? широты и 0.. -4 ?С); полярный (69-90? широты и -4 ?С и ниже).

В соответствии с упрощенной классификацией на территории России с учетом средних температур января и июля выделены 4 кли- матических района: 1-й - холодный с температурой января от -28 до -14 ?С и июля от 4 до 10 ?С, 2-й - умеренный с температурой января от -14 до -4 ?С и июля от 10 до 22 ?С, 3-й - теплый с температурой января от -4 до 0 ?С и июля от 22 до 28 ?С, 4-й - жаркий с температурой января выше -4 ?С и июля от 28 до 34 ?С. Кроме того, выделяются местные разновидности климата: морской, континентальный, степной, горный и другие.

В медицинской практике используется деление климата на щадящий и раздражающий. Щадящий климат характеризуется незначительными колебаниями метеорологических факторов и минималь-

ными требованиями к адаптационным физиологическим механизмам организма человека, раздражающий климат отличается значительными колебаниями метеорологических факторов, требующих большего напряжения адаптационного механизма организма. Примером щадящего являются лесной климат средней полосы России, климат Южного берега Крыма. Раздражающим является холодный климат Севера, высокогорный климат (выше 2000 м), жаркий климат степей и пустынь. Эта классификация используется и при гигиеническом нормировании некоторых вредных факторов среды.

Акклиматизация - это приспособление организма человека к новым климатическим условиям. Достигается акклиматизация путем выработки у людей динамического стереотипа, соответствующего изменившимся климатическим условиям, за счет использования особенностей устройства жилых и общественных зданий, одежды и обуви, питания и ритма жизни. При акклиматизации к низким температурам наблюдается повышение обмена веществ, увеличение теплопродукции, объема циркулирующей крови, снижение в крови витаминов С, В1, нарушение синтеза витамина Д. Адаптация к жаркому климату обычно происходит сложнее, чем к холодному; при этом отмечаются изменения со стороны сердечно-сосудистой системы (урежение пульса, снижение уровня АД и на 15- 25 мм рт.ст.), уменьшение частоты дыхания, увеличивается потовыделение, происходит снижение температуры тела и основного обмена на 10-15%.

Выделяют три фазы акклиматизации: начальную, при которой в организме происходят физиологические приспособительные реак- ции; фазу перестройки динамического стереотипа, которая может развиваться благоприятно или неблагоприятно и тогда третья фаза не наступает; фазу устойчивой адаптации.

Микроклимат представляет собой комплекс физических свойств воздуха, оказывающих влияние на теплообмен человека с окружающей средой, на его тепловое состояние в ограниченном пространстве (в отдельных помещениях, городе, лесном массиве и т.п.) и определяющих его самочувствие, работоспособность, здоровье и производительность труда. Показателями микроклимата являются температура и влажность воздуха, скорость движения воздуха и тепловое излучение окружающих предметов и людей.

Состояние микроклиматических факторов обусловливает особенности терморегуляции организма человека, которая в свою очередь определяет тепловой баланс. Он достигается соотношением процессов

теплопродукции и теплоотдачи организма. Теплопродукция происходит при окислении пищевых веществ, а также при сокращении скелетной мускулатуры (Q прод.). Кроме того, тело человека может получать конвекционное и радиационное тепло от окружающего воздуха и нагретых предметов, если их температура выше температуры кожи открытых частей тела (Q внеш.). Основные механизмы отдачи тепла телом человека: кондукция в прилегающие к коже слои воздуха и менее теплые предметы (Q конд.) и последующая конвекция нагретого воздуха (Q конв.), излучение по направлению к менее нагретым предметам (Q изл.), испарение пота с кожи и влаги с поверхности дыхательных путей (Q исп.), нагревание до 37 ?С вдыхаемого воздуха Qнагр.). Тепловой баланс в общем виде может быть представлен уравнением:

Опрод. + Qвнеш. - (< >) Qконд. + Qконв. + Qизл. + Оисп. + -нагр.

Нормальная жизнедеятельность организма и высокая работоспособность возможны лишь в том случае, если сохраняется темпе- ратурное постоянство организма в определенных границах (36,1- 37,2 ?С), имеется тепловое равновесие его с окружающей средой, т.е. соответствие между процессами теплопродукции и теплоотдачи.

Неблагоприятное влияние микроклимата обусловлено комплексным воздействием физических факторов воздушной среды: повышением или понижением температуры, влажности или скорости движения воздуха. При повышенной температуре воздуха высокая влажность препятствует испарению пота и влаги и увеличивает опасность перегревания организма. Высокая влажность при низкой температуре увеличивает опасность переохлаждения, поскольку влажный воздух, заполняющий поры одежды, в отличие от сухого - хороший проводник тепла. Высокая скорость движения воздуха увеличивает теплоотдачу через конвекцию и испарение и способствует более быстрому охлаждению организма, если его температура ниже температуры кожи, и, наоборот, увеличивает тепловую нагрузку на организм при температуре, превышающей температуру кожи.

Для провизора сведения о микроклимате помещений необходимы для оценки условий труда в аптечных учреждениях, поскольку микроклимат оказывает влияние на терморегуляцию организма, для оценки эффективности вентиляции и особенностей производственной среды, в которой хранятся, изготавливаются и выдаются лекарственные средства. Сохранность многих лекарственных препаратов и

лекарственных форм, их биологическая активность зависят от микроклиматических условий, терморегуляции людей.

Гигиенической нормой микроклимата является тепловой комфорт, который определяется сочетанным действием всех микрокли- матических компонентов, обеспечивающих оптимальный уровень физиологических реакций организма и наименьшее напряжение терморегуляторной системы, т.е. оптимальное тепловое состояние человека. При нормировании микроклимата устанавливаются оптимальные величины его параметров и допустимые границы их колебаний, характеризующиеся незначительными общими или локальными дискомфортными теплоощущениями и умеренным напряжением механизма терморегуляции, т.е. включением приспособительных (адаптационных) реакций организма. В зависимости от состояния (перегревание или переохлаждение) эти реакции проявляются в умеренном расширении (или сужении) сосудов кожи, увеличении (или уменьшении) потоотделения, учащении (или урежении) пульса. В этих условиях возможно продолжительное пребывание человека без нарушения работоспособности и опасности для здоровья. В условиях, близких к комфорту, нормативы микроклимата помещений могут быть едиными для взрослых и детей; при установлении допустимых колебаний показателей микроклимата должен учитываться индивидуальный характер терморегуляции людей, обусловленный полом, возрастом, весом, степенью физиологических приспособительных возможностей. Нормируемые параметры микроклимата должны гарантировать сохранение здоровья и работоспособности даже человеку с пониженной индивидуальной переносимостью колебаний факторов окружающей среды.

Наиболее оптимальные величины параметров микроклимата для жилых помещений: температура 18-20 ?С, относительная влажность 40-60%, скорость движения воздуха 0,1-0,2 м/с.

Гигиенические параметры микроклимата в помещениях нормируются в зависимости от климата для теплого и холодного периода года. Оптимальной температурой для холодного климатического района считается 21-22 ?С, умеренной - 18-20 ?С, теплой - 18-19 ?С, жаркой - 17-18 ?С. Расчетные нормы температуры в помещениях дифференцируются в зависимости от их функционального назначения. Так, в большинстве аптечных помещений (ассис- тентская, асептическая, дефектарская, заготовочная, фасовочная, помещения для хранения лекарственного сырья и лекарственных

средств) наиболее благоприятная температура воздуха - 18 ?С; в помещениях лечебно-профилактических учреждений: в операцион- ной, предоперационной, реанимационном зале, палатах для детей, ожоговых больных, послеоперационных палатах, палатах интенсивной терапии, процедурной - 22 ?С, в палатах для взрослых, кабинетах врачей и других лечебно-вспомогательных помещениях - 20 ?С, в палатах для больных гипотиреозом - 24 ?С, в палатах для недоношенных и новорожденных - 25 ?С, в палатах для больных тиреотоксикозом - 15 ?С при относительной влажности - 30-60% и скорости движения воздуха - не более 0,15-0,25 м/с; в учебных помещениях: классах, аудиториях, кабинетах, лабораториях - 18 ?С, в спортивных залах, учебных мастерских - 15-17 ?С при относительной влажности в пределах 40-60% и скорости движения воздуха 0,1-0,2 м/с.

Микроклимат помещений оценивается по температурному режиму, т.е. перепадам температуры воздуха по горизонтали и вертикали в различных местах помещения. Для обеспечения теплового комфорта температура воздуха в помещениях должна быть относительно равномерной. Изменение температуры по горизонтали от наружной стены к внутренней не должно превышать 2 ?С, а по вертикали - 2,5 ?С на каждый метр высоты. Колебание температуры в помещении в течение суток не должно превышать 3 ?С.

Для интегральной оценке микроклимата используется индекс тепловой нагрузки среды (ТНС-индекс), характеризующий сочетанное действие на организм человека температуры, влажности, скорости движения воздуха и теплового излучения от окружающих поверхностей. Этот показатель рекомендуется использовать при скорости движения воздуха менее 0,6 м/с и интенсивности теплового облучения менее 1000 Вт/м 2 .

Нормирование микроклиматических условий в производственных помещениях осуществляется применительно к теплому и холод- ному периодам года с учетом категории работ и соответствующих энерготрат организма (табл. 1).

Для работников аптечных учреждений, относящихся по уровню энерготрат (до 139 Вт) к категории 1а, оптимальные величины показателей микроклимата регламентированы: в холодный период года температура на уровне 22-24 ?С, относительная влажность 40-60%, скорость движения воздуха 0,1 м/с; в теплый период года температура составляет 23-25 ?С, относительная влажность 40-60%, скорость движения воздуха 0,1 м/с.

Таблица 1. Оптимальные величины параметров микроклимата для производственных помещений (СанПиН 2.2.4.548-96)

Период года

(по уровню энерготрат), Вт

Температура воздуха, ?С

Температура поверхностей, ?С

Относительная влажность воздуха,%

Скорость движения воздуха, м/с

1а (< 139)

22-24

21-25

40-60

16 (140-174)

21-23

20-24

40-60

Холодный

11а (175-232)

19-21

18-22

40-60

116 (233-290)

17-19

16-20

40-60

111 (> 290)

16-18

15-19

40-60

1а (< 139)

23-25

22-26

40-60

16 (140-174)

22-24

21-25

40-60

Теплый

11а (175-232)

20-22

19-23

40-60

116 (233-290)

19-21

18-22

40-60

111 (> 290)

18-20

17-21

40-60

Лабораторная работа «Определение и гигиеническая оценка микроклимата помещения»

Задания студенту

1. Ознакомиться с устройством и принципом работы приборов для определения параметров микроклимата и его оценки.

2. Определить с помощью барометра-анероида атмосферное давление.

3. Определить температуры воздуха в 4 точках комнаты, рассчитать среднюю температуру помещения, перепады температуры по горизонтали и вертикали на 1 м высоты, оценить температурный режим.

4. Определить с помощью аспирационного психрометра и рассчитать абсолютную влажность воздуха в учебной комнате, с помощью таблицы максимальных влажностей воздуха рассчитать относительную влажность.

5. Кататермометром определить охлаждающую способность воздуха и рассчитать скорость движения воздуха в учебной комнате.

6. Исследовать электротермометром температуру кожи 2-3 студентов и сделать пробу на потоотделение. Субъективно оценить собственное теплоощущение.

7. Оценить параметры микроклимата помещения, сопоставив их с гигиеническими нормативами, и дать комплексную гигиеническую оценку микроклимата учебной комнаты, учитывая объективные и субъективные реакции организма на микроклиматические факторы.

Методика работы

1. Определение атмосферного давления производится с помощью барометра-анероида. Атмосферное давление измеряется в гектопаскалях (гПа) или мм рт.ст. 1 гПа = 1 г/см 2 = 0,75 мм рт.ст. Нормальное атмосферное давление в среднем колеблется в пределах 1013+26,5 гПа (760+ 20 мм рт.ст.).

Для непрерывной регистрации колебаний атмосферного давления используется самопишущий прибор - барограф (рис. 1). Он состоит из комплекта анероидных коробок, реагирующих на изменение давления воздуха, передающего механизма, стрелки с пером и барабана с часовым механизмом. Колебания стенок коробки передаются с помощью системы рычагов на перо самописца. Запись колебаний давления ведется на бумажной ленте, укрепленной на вращающемся барабане.

Рис. 1. Барограф

2. Определение температуры воздуха

Изолированное определение температуры воздуха может проводиться ртутными термометрами типа ТМ-6 (диапазон измерения от -30 до +50 ?С) или лабораторными спиртовыми термометрами со шкалой от 0 до +100 ?С. Для фиксации максимальной или минимальной температур применяются максимальный и минимальный термометры. Измерение температуры воздуха в производствен- ных помещениях обычно сочетают с определением его влажности и производят с помощью психрометра. При наличии источников инфракрасного излучения измерение температуры проводят по сухому термометру аспирационного психрометра, так как резервуары термометров надежно защищены от влияния теплового облучения двойными полированными и никелированными экранами.

С помощью спиртовых термометров, укрепленных на переносном штативе на высоте 1,5 м и 0,5 м от пола, в течение 7-10 мин в каждой точке измерить температуру воздуха в следующих 4 точках:

В центре помещения на высоте 0,5 м (Т1) и 1,5 м от пола (Т2);

На высоте 1,5 м на расстоянии 5- 10 см от наружной стены (оконного стекла в помещении) (Т3) и от противоположной внутренней стены (Т4);

Для изучения динамики температуры, когда возникает необходимость определения колебаний температуры в помещении, используются самопишущие приборы - термографы (суточные или недельные) типа М-16 (диапазон измерения от -20 до +50 ?С) (рис. 2).

Рис. 2. Термограф

Датчиком термографа является биметаллическая изогнутая пластинка, внутренняя поверхность которой состоит из сплава инвар, практически не расширяющегося при нагревании, а наружная - из константана, имеющего относительно большой коэффициент теплового расширения. С повышением или понижением температуры кривизна биметаллической пластинки изменяется. Колебания пластинки через систему рычагов передаются на перо с чернилами, которое регистрирует температурную кривую на ленте, закрепленной на вращающемся с определенной скоростью барабане.

3. Определение тепловой радиации проводится, если в помещении есть нагревательные приборы или нагретое оборудование. Тепловая радиация - это инфракрасное излучение с длиной волны от 760 до 15000 нм. Для измерения тепловой радиации используется актинометр. Датчик актинометра (рис. 3) представляет собой термобатарею и состоит из чередующихся черных и серебристо-белых метал- лических пластин, присоединенных к разным концам электрической

цепи. При разности температур на концах электрической цепи из-за нагревания черных пластин в результате поглощения инфракрасных лучей возникает термоэлектрический ток, который регистрируется гальванометром, отградуированным в единицах тепловой радиации, - кал/см 2. мин или Вт/м 2 . Предельно допустимый уровень тепловой радиации на рабочем месте = 20 кал/см 2. мин.

Рис. 3. Актинометр

Перед началом измерения стрелку на шкале гальванометра необходимо поставить в нулевое положение, затем открыть крышку на задней поверхности актинометра. Показания гальванометра списываются через 3 сунды после установки термоприемника (датчика) актинометра в сторону источника теплового излучения.

4. Определение влажности воздуха.

Влажность воздуха зависит от содержания в нем водяных паров. Для характеристики влажности различают следующие понятия: абсолютная, максимальная, относительная влажность, дефицит насыщения, физиологический дефицит насыщения, точка росы.

Абсолютная влажность - упругость (парциальное давление) водяных паров в воздухе в момент измерения (в г/м 3 или мм рт.ст.). Максимальная влажность - упругость водяных паров при полном насыщении влагой воздуха определенной температуры (в г/м 3 или мм рт.ст.). Относительная влажность - отношение абсолютной влажности к максимальной, выраженное в процентах. Дефицит насыщения - разность между максимальной и абсолютной влаж-

ностью (в мм рт.ст.). Точка росы - температура, при которой воздух максимально насыщен водяными парами. Нормируется только относительная влажность, которая считается нормальной в диапазоне 40-60%.

Измерение влажности воздуха может проводиться с помощью различных приборов. Абсолютная влажность может быть определена с помощью психрометров. Существует 2 его вида: аспирационный психрометр Ассмана и станционный психрометр Августа (рис. 4). Психрометр состоит из двух одинаковых термометров, резервуар одного из которых обернут легкой гигроскопичной тканью, увлажняемой дистиллированной водой перед измерением, а второй остается сухим.

Рис. 4. Психрометры: а) аспирационный; б) станционный

Станционный психрометр Августа используется в стационарных условиях, исключающих воздействие на него ветра и лучистого тепла. Он состоит из двух спиртовых термометров. На основании их показаний абсолютная влажность определяется по таблицам или по формуле:

K = f - а (tс--tв) B,

где: K - абсолютная влажность воздуха при данной температуре, мм рт.ст.;

f - максимальная влажность воздуха при температуре влажного термометра, мм рт.ст. (см. табл. 2);

а - психрометрический коэффициент, равный при несильном движении воздуха 0,001;

tc и tВ - температура сухого и влажного термометров, ?С; В - атмосферное давление в момент измерения, мм рт.ст.

Наиболее широко в гигиенической практике для измерения абсолютной влажности как в помещении, так и вне его используются переносные аспирационные психрометры Ассмана, имеющие защиту от ветра и тепловой радиации. Психрометр состоит из двух ртутных термометров (имеющих шкалу от -30 до +50 ?С), которые заключены в общую оправу, а их резервуары - в двойные никелированные металлические трубки защиты от лучистого тепла. Вмонтированный в головку прибора вентилятор с часовым механизмом просасывает воздух вдоль термометров с постоянной скоростью 2 м/с.

Перед началом измерений при помощи пипетки нужно увлажнить ткань на резервуаре влажного термометра, завести ключом меха- низм прибора до отказа и подвесить его вертикально на кронштейне в исследуемой точке, обычно в центре помещения, а затем через 3- 5 мин записать показания сухого и влажного термометров.

Абсолютная влажность воздуха в этом случае вычисляется по формуле:

K = / 755.

Относительная влажность воздуха (в %) рассчитывается по формуле:

P = K . 100 / F,

где: P - относительная влажность, %,

F - максимальная влажность воздуха при температуре сухого термометра, мм рт.ст. (см. табл. 2).

Таблица 2. Максимальная влажность воздуха при разных температурах

Температура воздуха, +?С

Температура воздуха, +?С

Максимальная влажность, мм рт.ст.

10,5

30,04

11,23

31,84

11,99

33,69

12,73

35,66

13,63

37,73

14,53

39,90

15,48

42,17

16,48

44,16

17,73

46,65

18,65

49,26

19,83

52,00

21,07

55,32

22,38

58,34

23,76

61,50

25,20

64,80

26,74

68,26

28,34

71,88

Непосредственно относительная влажность может быть измерена гигрометром (рис. 5). Обезжиренный человеческий волос в гигрометре натянут вдоль рамы прибора и прикреплен к стрелке. Используется свойство волоса изменять свою длину в зависимости от влажности. При изменении степени его натяжения стрелка перемещается по шкале, отградуированной в процентах. Относительная влажность измеряется обычно в центре помещения.

Для непрерывной графической регистрации относительной влажности воздуха за определенный период времени используются самопишущие приборы - гигрографы (суточный или недельный) типа М-21 (диапазон измерений от 30 до 100% при температурах от -30 до +45 ?С), в которых датчиком служит натянутый в рамке пучок обезжиренных человеческих волос (рис. 6).

Рис. 5. Гигрометр

Рис. 6. Гигрограф

5. Определение скорости движения воздуха

Перемещение воздуха в атмосфере характеризуется направлением движения и скоростью. Направление определяется стороной

света, откуда дует ветер, а скорость - расстоянием, проходимым массой воздуха в единицу времени (м/с). Преобладающее направление ветра в конкретной местности необходимо учитывать при планировке и строительстве населенных мест, размещении на их территории жилых зданий, аптечных организаций, детских садов, школ, больниц и других учреждений, которые должны располагаться с наветренной стороны по отношению к источникам загрязнения атмосферного воздуха и других объектов окружающей среды (промышленных предприятий, ТЭЦ и др.).

Господствующее для данного места направление ветра определяется по розе ветров. Роза ветров представляет собой графическое изображение частоты (повторяемости) ветров по румбам (направ- лениям), наблюдающихся в данной местности в течение года. Для обозначения румбов используются начальные буквы наименований сторон света. Для построения розы ветров от центра графика на основных (N, S, O, W) и промежуточных (N-O, N-W, S-O, S-W) румбах откладывают отрезки в определенном масштабе, соответствующие числу дней в году с данным направлением ветра. Затем концы отрезков по румбам соединяют прямыми линиями. Штиль (отсутствие ветра) обозначают окружностью из центра графика с радиусом, соответствующим числу дней штиля.

Рис. 7. Роза ветров

На рис. 7 роза ветров указывает на господствующее северо-восточное направление ветров в исследуемой местности в течение года, поэтому жилые дома, аптеки, больницы и детские учреждения сле- дует размещать с наветренной стороны (в северо-восточном направлении), а промышленные предприятия и другие источники загрязнения - с подветренной стороны (в юго-западном направлении). Промышленные предприятия и другие источники негативного влияния на среду обитания и здоровье человека необходимо отделять от жилой застройки санитарно-защитными зонами (СЗЗ). Ширина санитарно-защитной зоны устанавливается в соответствии с санитарной классификацией промышленных предприятий, сооружений и иных объектов в зависимости от степени вредности производства, его мощности, характера и количества выделяемых в окружающую среду загрязняющих веществ, создаваемого шума, вибрации и других вредных физических факторов (Санитарно-защитные зоны и санитарная классификация предприятий, сооружений и иных объектов. СанПиН2.2.1/2.1.1.1200-03). По этим признакам промышленные предприятия разделены на 5 классов, для каждого установлен размер СЗЗ: для предприятий 1-го класса - 1000 м с не менее 40% озеленения, для 2-го - 500 м, 3-го - 300 м с не менее 50% озеленения, для 4-го - 100 м и 5-го - 50 м с не менее 60% озеленения.

Рис. 8. Анемометры (слева - чашечный, справа - крыльчатый)

Измерение сравнительно больших скоростей движения воздуха производится анемометрами различных конструкций. Выбор типа анемометра определяется величиной измеряемой скорости движения воздуха. Чашечный анемометр МС-13 измеряет скорости от 1 до 30 м/с. Его чаще всего используют в метеорологической практике. Крыльчатый анемометр АСО-3 используется в производственных помещениях для измерения скоростей движения воздуха в диапазоне 0,3-5,0 м/с (рис. 8).

Принцип работы приборов основан на передаче вращения лопастей, укрепленных на оси, счетному механизму, фиксирующему число оборотов. Для определения скорости воздушной среды разность между показаниями анемометра после его нахождения в струе воздуха в течение 3 мин и первоначальными показаниями прибора делят на число сунд измерения. Число оборотов в сунду соответствует скорости движения воздуха в м/с.

Для измерения малых скоростей воздуха в помещении используются стеклянные шаровые или цилиндрические кататермометры, которые позволяют измерить скорость в диапазоне 0,05-2,0 м/с (рис. 9).

Рис. 9. Кататермометр шаровой

Шкала шарового кататермометра состоит из 7? (от 33 до 40?), шкала цилиндрического - из 3? (от 35 до 38?). Определение основано на оценке интенсивности охлаждения нагретого прибора за счет охлаждающей способности воздуха. Охлаждающую способность воздуха «Н» определяют по фактору кататермометра (F) и времени охлаждения его резервуара (t) в сундах с 38? до 35 ?С или с 40? до 33?С шкалы прибора. Величина F указана в верхней части кататермометра, она соответствует количеству тепла в милликалориях, теряемого с 1 см 2 поверхности прибора при его охлаждении с 40? до 33 ?С или от 38? до 35 ?С. Прибор нагревают в стакане с горячей водой с температурой 66-75 ?С для того, чтобы спирт поднялся немного выше верхней отметки шкалы прибора, вытирают прибор насухо и, подвесив его в центре помещения, отмечают время, требующееся для охлаждения спирта с 40? до 33 ?С или с 38? до 35 ?С. Охлаждающую способность воздуха «Н» находят по формуле:

H = [(F/3) (40-33)] / t, мкал /см 2 .

Для учета охлаждающего действия окружающего воздуха необходимо вычислить фактор Q, равный разности между средней температурой кататермометра (36,5 ?С) и температурой воздуха в помещении. Рассчитав H/Q, скорость движения воздуха в точке измерения находят по табл. 3.

Скорость движения воздуха может быть рассчитана и по эмпирической формуле: V = [(H/Q - 0,20)/0,40] 2 м/с. Летом благоприятны скорости движения атмосферного воздуха в пределах 1-4 м/с, а в помещении - 0,2-0,4 м/с.

Для измерения и контроля параметров воздушной среды в настоящее время используются специальные приборы метеометры типа МЭС-200, предназначенные для измерения атмосферного давления, относительной влажности воздуха, его температуры и скорости воздушного потока внутри помещения. В качестве датчиков для измерения параметров в приборе используются терморезисторы и сенсор влажности с блоком усилителя.

6. Исследование реакций организма на микроклимат

* Теплоощущение человека зависит от комплексного действия микроклиматических факторов, а также от интенсивности выполняемой работы, степени утомления, характера питания, одежды, эмоционального состояния, тренированности человека к холоду

Таблица 3. Скорость движения воздуха меньше 1 м/сек при различных диапазонах температуры воздуха в помещении

и других факторов. Оценку теплового самочувствия человек дает как «холодно», «прохладно», «нормально» (или «комфортно»), «тепло», «жарко». Более показательны объективные методы исследования теплового состояния организма.

Определение температуры кожи производится электротермометром в симметричных точках (3- 4 см от средней линии) на лбу, на груди, по середине плеча, на тыльной стороне кисти (между основаниями большого и указательного пальцев). Температура кожи лба и груди при нормальном теплоощущении человека = 31 ?- 34?, температура рук - не ниже 27?.

"Исследование потоотделения производится в условиях жаркого микроклимата или интенсивной физической работы и является

одним из показателей напряжения процессов терморегуляции. Йодокрахмальный метод Минора основан на цветной реакции крахмала с йодом при смачивании кожи потом. К участку кожи лба, припудренному крахмалом, прикладывают листочек фильтровальной бумаги, обработанный высохшей смесью 10% настойки йода, этилового спирта и касторового масла. При выделении пота бумажка окрашивается в темно-синий цвет. При комфортном микроклимате на ней могут быть лишь отдельные мелкие точки; крупные пятна свидетельствуют об усиленном потоотделении.

Санитарно-гигиеническое заключение основывается на сопоставлении результатов измерения микроклиматических параметров с их гигиеническими нормативами, а также с субъективными и объективными показателями терморегуляции присутствующих в помещении людей. Микроклимат может быть оценен как оптимальный (комфортный); допустимо прохладный или теплый; недопустимо холодный или жаркий.

Образец протокола для выполнения лабораторного задания «Определение и гигиеническая оценка микроклимата помещения»

H/Q

17,5?

20,0?

22,5?

25,0?

0,27

0,035

0,041

0,047

0,051

0,28

0,049

0,051

0,061

0,070

0,29

0,060

0,067

0,076

0,085

0,30

0,073

0,082

0,091

0,101

0,31

0,088

0,098

0,107

0,116

0,32

0,104

0,113

0,124

0,136

0,33

0,119

0,128

0,140

0,153

0,34

0,139

0,148

0,160

0,174

0,35

0,154

0,167

0,180

0,196

0,36

0,179

0,192

0,206

0,220

0,37

0,198

0,212

По вертикали, м

По горизонтали,?С

У наружной стены

В центре

У внутренней стены

Перепад

1,5 м от пола

Т з

Т 2

Т 4

Т 3 -Т 4

0,5 м от пола

Перепад,?С

Т 2 -Т 1

Расчет средней температуры воздуха в помещении:

Т ?ср =(Т1 + Т 2 + Т з + Т4) / 4 ... 3. Определение влажности воздуха:

Определение абсолютной влажности с помощью аспирационного психрометра Ассмана:

Показания сухого термометра. Показания влажного термометра. Расчет абсолютной влажности по формуле: Расчет относительной влажности по формуле: 4. Определение скорости движения воздуха в помещении с помощью шарового кататермометра: Время охлаждения прибора (t) ... Фактор прибора (F) ...

Охлаждающая способность воздуха: H = [(F/3) (40-33)] / t ...

Q (36,5? - Т ?ср) =..., H / Q = ..., V = ... Заключение (образец)

Микроклимат данного помещения обеспечивает комфортные условия (или недопустимо жаркий и вызывает значительное напряжение терморегуляции; несколько выше зоны комфорта - допустимо теплый и вызывает некоторое напряжение терморегуляции; ниже зоны комфорта - недопустимо холодный и вызывает ощущение холода и пр.). Для оздоровления микроклимата рекомендуется...

УЧЕБНЫЙ МАТЕРИАЛ ДЛЯ ВЫПОЛНЕНИЯ ЗАДАНИЯ

Микроклимат помещений характеризуется совокупностью таких факторов, как атмосферное давление, температура, влажность, скорость движения воздуха и тепловое излучение.

Влияние микроклимата на организм человека определя­ется характером отдачи тепла в окружающую среду. Отдача тепла человеком в комфортных условиях происходит за счет теплоизлучения (до 45%), теплопроведения - конвекции, кондукции (30%), испарения пота с поверхности кожи (25%). Наиболее часто неблагоприятное влияние микроклимата обусловлено повышением или понижением температуры, влажности или скорости движения воздуха.

Высокая температура воздуха в сочетании с повышенной влажностью и малой скоростью воздуха резко затрудняет отдачу тепла путем конвекции и испарения, в результате чего возможно перегревание организма. При низкой температуре, высокой влажности и скорости воздуха наблюдается противо­положная картина-переохлаждение. При высокой или низ­кой температуре окружающих предметов, стен снижается или увеличивается отдача тепла путем излучения. Возрастание влажности, т. е. насыщенности воздуха помещения водяными парами, приводит к снижению отдачи тепла испарением.

Неблагоприятный микроклимат производственного поме­щения может отрицательно влиять на самочувствие и работо­способность человека, а в определенных случаях может при­вести к расстройству здоровья. Особенно чувствительны к изменению микроклиматических условий лица с сердечно­сосудистыми, нервно-психическими и другими заболева­ниями.

По состоянию микроклимата можно судить об эффектив­ности воздухообмена в помещении, в частности о работе приточно-вытяжной вентиляции.

Микроклиматические условия в лечебно-профилактических учреждениях имеют важное значение в общем комплексе лечебных мероприятий. Для правильной оценки микроклиматических условий в лечебно-профилактических учреждениях врачу необходимо освоить устройство приборов, методические подходы исследования физических свойств воздушной среды и умение даватьим гигиеническую оценку.

ТЕМА 1: МЕТОДЫ ИССЛЕДОВАНИЯ И ГИГИЕНИЧЕСКАЯ ОЦЕНКА ТЕМПЕРАТУРЫ ВОЗДУХА.

КОНТРОЛЬНЫЕ ВОПРОСЫ

1. Физиолого-гигиеническое значение температуры воздуха.

2. Радиационная температура и ее гигиеническое значение.

3. Особенности неблагоприятного воздействия высоких, низких температур и их профилактика.

4. Теплообмен человека с окружающей средой.

5. Требования к температурному режиму (допустимые его колебания в течение суток при центральном и местном отоплении, колебания по вертикали и горизон­тали) в жилых, общественных зданиях и больничных помещениях. Нормы опти­мальных температур в больничных помещениях различного назначения.

6. Приборы, используемые для определения температуры воздуха, радиационной температуры, принципы их устройства и правила работы. Методы измерения температуры воздуха.

7. Отличительные особенности устройства и принцип работы максимального и минимального термометров.

8. Устройство термографа и правила регистрирования температуры данным при­бором.

Наиболее благоприятной температурой воздуха в жилых помещениях для человека, находящегося в покое и одетого в обычный домашний костюм, является 18-20 0 C, а радиационной - 20 0 С при нормальной влажности (40-60%) и подвиж­ности - (0,2 - 0,3 м/сек) воздуха. Температура воздуха выше 24-25 0 C и ниже 14-15 0 С считается неблагоприятной, способной нарушать тепловое равновесие организма и послужить причиной развития различных заболеваний. Однако при выполнении физической работы или при изменении влажности и подвижности воздуха уровни оптимальных температур будут иными. Так, при физической работе средней тяжести оптимальной температурой воздуха считается 10-15 0 C, а при тяжелой - понижается до 5-10 0 С.

При наличии в помещении источников тепловой радиации, а именно: устано­вок или приборов, с поверхности которых возможно излучение пониженной или высокой температуры, а также при наличии в помещениях большой площади остекления следует учитывать совместное воздействие на организм конвекцион­ного и лучистого тепла. В этих условиях человек не только подвергается влиянию температуры воздуха, но и находится в зоне действия лучистого тепла от имею­щихся в обследуемом помещении источников нагретых или охлажденных повер­хностей (поверхность окон и др.).

Особое значение имеет определение радиационной температуры при неравно­мерной тепловой нагрузке на человека в производственных условиях, а также при нерациональном размещении (в непосредственной близости к окнам, дверным проемам и др.) больных в лечебных учреждениях. В этих условиях определяют радиационную температуру, т.е. температуру, показывающую совместное дейст­вие всех видов радиационного воздействия,

В лечебных учреждениях нормативы температуры воздуха, приведенные в таблице 3, и рекомендуемых средних величин общей и радиационной температур в таблице 4, обосновываются производственным назначением помещений, кон­тингентом госпитализированных больных и особенностями их заболеваний.

Таблица 3. Расчетная температура воздуха и допустимые ее перепады по горизонтали и вертикали в отапливаемых помещениях

ПОМЕЩЕНИЯ Темпе­ратура Колебания тем­пературы, 0 С
по го­ризон­тали по вер­тикали
1. Жилая комната квартиры или общежития 2,5
2. Палаты для взрослых терапевтических больных, помещения для матерей детских отделений, помещения гипотерапии 2,5
3. Палаты для туберкулезных больных (взрослых, детей) 2,5
4. Палаты для больных гипотиреозом 2,5
5. Послеоперационные палаты, реанимационные залы, палаты ин­тенсивной терапии, родовые, боксы, операционные, наркозные, палаты для ожоговых больных, барокамеры 2,5
6. Послеродовые палаты 2,5
7. Палаты для недоношенных, грудных, новорожденных и травмированных детей 2,5
8. Боксы, полубоксы, фильтр-боксы, предбоксы 2,5
9. Палатные секции инфекционного отделения 2.5
10. Предродовые, фильтры, приемно-смотровые боксы, перевязочные, манипуляционные. предоперационные процедурные, комнаты для кормления детей в возрасте до одного гола, помещения для прививок 2,5
11. Стерилизационные при операционных 2.5
Вид помещения Средняя темпе­ратура воздуха Радиаци­онная темпе­ратура
1. Жилые помещения 18-20
2. Учебные лаборатории, классы 17-19
3. Аудитории, залы 16-18 16-17
4. Физкультурные залы 12-16
Ванные комнаты, бассейн 20-23 20-22
6. Врачебные кабинеты 22-24 22-24
7. Операционные 25-30 25-30
8. Палаты для соматических больных 20-23 20-22
9. Палаты для температурящих больных 18-20 18-20
10. Палаты для ожоговых больных 26-30 26-30

Измерение температуры воздуха, поверхностей оборудования, предметов в поме­щениях различного назначения производится термометрическими приборами. Термометры по своему назначению разделяются на измеряющие , рассчитанные на определение температуры в момент наблюдения, и фиксирующие , позволяющие полу­чить максимальное или минимальное значение температуры за определенный период контроля (сутки, неделя, месяц и т. д.).

Кроме того, термометры подразделяют­ся на бытовые, аспирационные, минимальные, максимальные. По своему назна­чению термометры подразделяются на пристенные, водяные, почвенные, хими­ческие, технические, медицинские и др.

Бытовой термометр - комнатный или уличный спиртовой термометр, до­статочно точный для наблюдения за температурой воздуха. Ртутные термометры - применяются для измерения температур от -35 0 C до +357 0 C. В пределах высоких температур показания ртутного термометра более точные вследствие постоянства коэффициента расширения ртути.

К измеряющим термометрам относятся спиртовые, ртут­ные и электрические, к фиксирующим - максимальный и минимальный термометры (рис. 2).

Рис. 2. Термометры: а - максимальный; б - минимальный.

Максимальный (ртутный) термометр предназначен для регистрации самой высокой температуры. Это обеспечивается за счет специальной конструкции ртутного резервуара, в дно которого впаян стеклянный штифт, последний одним концом входит в капиллярную трубку, сужая ее просвет.

При повышении температуры воздуха ртуть, расширяясь, поднимается вверх через суженный просвет капилляра. При понижении температуры воздуха находящаяся в капилляре ртуть из-за его сужения не в состоянии возвратиться в ре­зервуар. Перед началом измере­ния, чтобы возвратить ртуть в резервуар, термометр несколько раз встряхивают. Измерение тем­пературы воздуха проводят при горизонтальном положении тер­мометра.

Минимальный термометр (спиртовой) используется для определения самой низкой темпе­ратуры воздуха. Внутри его ка­пиллярной трубки, в спирту, на­ходится стеклянный штифт с утолщениями в виде булавочных головок на концах. При повы­шении температуры воздуха спирт, расширяясь, свободно обтекает штифт, не изменяя его положения. В свою очередь при понижении температуры спирт, сжимаясь, силами поверхностно­го натяжения мениска перемеща­ет штифт в сторону резервуара, устанавливая в положение, соот­ветствующее минимальной тем­пературе в данный момент. Пе­ред измерением температуры штифт необходимо привести в соприкосновение с мениском спирта, подняв резервуар вверх, и затем установить термометр в рабочее, строго горизонтальное положение.

Для непрерывной регистра­ции колебаний температуры воз­духа в течение определенного отрезка времени (сутки, неделя) применяют самопишущие прибо­ры - термографы . Эле­ментом, воспринимающим изменения температуры, у этих приборов служит биметал­лическая пластинка. С повышением или понижением темпе­ратуры воздуха кривизна биметаллической пластинки изме­няется. Эти колебания через систему рычагов передаются на перо с чернилами, которое регистрирует на ленте, закрепленной на вращающемся с определенной скоростью барабане, температурную кривую.

Существуют три системы термометров, отличающихся друг от друга градуировкой шкалы:

1. Термометры Цельсия - 0 на шкале обозначает точку таяния льда, 100 - точку кипения воды.

2. Термометры Реомюра - 0 точка таяния льда, 80 - точка кипения воды.

3. Термометры Фаренгейта - +32 обозначает точку таяния льда, +212 - точку кипения воды. Для перевода градусов температуры с одной системы термометров на другую пользуются следующей таблицей:

1 0 Цельсия (C) = 4/5 градуса Реомюра = 9/5 градуса Фаренгейта.

1 0 Реомюра (R) = 5/4 градуса Цельсия = 9/4 градуса Фаренгейта.

1 0 Фаренгейта (F) = 5/9 градуса Цельсия = 4/9 град. Реомюра.

При переводе градусов Фаренгейта на градусы С и R следует предварительно вычесть из них 32, а при переводе на Фаренгейта к результатам перечисления следует прибавить 32.

ПРАВИЛА ИЗМЕРЕНИЯ ТЕМПЕРАТУРЫ ВОЗДУХА.

Измерение температуры воздуха в закрытых помещениях, школах, кварти­рах, детских, лечебных учреждениях, производственных помещениях и др. про­водится с соблюдением следующих правил: при измерении температуры воздуха необходимо защищать термометр от действия лучистой энергии печей, ламп и прочих открытых источников энергии. В жилых помещениях измерение темпера­туры воздуха проводят на высоте дыхания (1,5 м от пола) в центре комнаты. Для более точных измерений одновременно термометры устанавливаются в центре комнаты, наружном и внутреннем углах на расстоянии 0,2 м от стен.

В лечебных учреждениях измерение температуры воздуха дополнительно прово­дится и на высоте 70 см от пола. Перепады температуры определяются и оценива­ются по вертикали и горизонтали. Для определения перепада температуры по вертикали, термометры устанавливаются в центре и по углам поме­щения на высоте 0,2; 0,7 и 1,5 м от пола. Для определения перепада температуры по горизонтали вычисляется разница между максимальной и минимальной тем­пературой отдельно по каждому уровню (0,2; 0,7 и 1,5 м) во всех измеренных участках помещения. Суточный перепад температуры в палатах измеряется с помощью максимального и минимального термометров, которые устанавливают­ся в центре помещения на уровне 0,7 и 1,5 м от пола.

ПРОТОКОЛ

исследования и оценки температурного режима

в _________________________________________________________________

(наименование объекта)

Дата и время исследования ___________________________________________

Заключение:

Подпись исследователя

ТЕМА 2. МЕТОДЫ ИССЛЕДОВАНИЯ И ГИГИЕНИЧЕСКАЯ ОЦЕНКА БАРОМЕТРИЧЕСКОГО ДАВЛЕНИЯ.

КОНТРОЛЬНЫЕ ВОПРОСЫ

1. Физиолого-гигиеническое значение атмосферного давления и единицы его измерения.

2. Влияние на организм пониженного атмосферного давления и меры профилак­тики.

3. Влияние на организм повышенного атмосферного давления и меры профилак­тики.

4. Приборы для измерения атмосферного давления, их устройство и правила работы.

Давление атмосферы, способное уравновесить столб ртути высотой 760 мм при температуре 0 0 C на уровне моря и широте 45 0 , принято считать нормальным, равным 1 атмосфере, а в пересчете в гсктопаскали оно будет составлять 1013 гПа.

Для пересчета величины давления, выраженной в мм рт. ст., в гПа, надо дан­ную величину умножить на 4/3, и наоборот, для перевода гПа в мм рт. ст. надо умножить первую величину на 3/4.

Атмосферное давление измеряют с помощью ртутного барометра или барометра-анероида (рис. 3). При необходимо­сти непрерывной регистрации колебаний атмосферного дав­ления используют барограф (рис. 2). Основной частью этого прибора является анероидная коробка, реагирующая на изме­нения давления воздуха. При повышении давления стенки коробки прогибаются внутрь, а при снижении - выпрямля­ются. Эти движения передаются с помощью соединительной системы стрелке. Атмосферное давление в среднем колеблется в пределах 1013 ±26,5 гПа (760 ±20 мм рт. ст.).

A B

Рис. 3. A - барометр-анероид; B – барограф

ОФОРМЛЕНИЕ ПОЛУЧЕННЫХ РЕЗУЛЬТАТОВ

Давление атмосферы по барометру-анероиду № ________

Мм рт. ст. или · 4/3 = ____________ мб или гПа

Показания снял (подпись)

ТЕМА 3. МЕТОДЫ ИССЛЕДОВАНИЯ И ГИГИЕНИЧЕСКАЯ ОЦЕНКА ВЛАЖНОСТИ ВОЗДУХА

КОНТРОЛЬНЫЕ ВОПРОСЫ

1. Физиолого-гигиеническое значение влажности воздуха.

2. Какие понятия применяются для характеристики влажности воздуха и в каких единицах они выражаются.

3. Гигиенические нормативы влажности в помещениях и мероприятия, направ­ленные на улучшение температурно-влажностного режима помещений.

4. Приборы, используемые для определения влажности воздуха, их устройство, принцип действия и правила работы.

При гигиенической оценке влажности воздуха исполь­зуются следующие ее характеристики: абсолютная, макси­мальная, относительная влажность; физический дефицит влажности и др.

Влажность воздуха зависит от содержания в нем водяных паров. В практике чаще всего для характеристики влажности воздуха пользуются значениями относительной влажности и дефицита насыщения воздуха водяными парами.

Абсолютная влажность - упругость (парциальное давление) водяных паров, находящихся в данное время в воздухе, выраженное в миллиметрах ртутного столба.

Максимальная влажность – упругость водяных паров при полном насыщении воздуха влагой при данной температуре.

Относительная влажность – отношение абсолютной влажности к максимальной, выраженной в процентах (т.е. насыщение воздуха водяными парами в % от максимально возможного)

Дефицит насыщения (физический дефицит) – разность между максимальной и абсолютной влажностью.

Приборы, используемые для определения влажности, называются психрометрами . Бывают станционные психрометры (Августа) и аспирационные (Ассмана).

Психрометр Августа состоит из двух спиртовых термометров, укрепленных рядом в открытом футляре. Резервуар одного из термометров обернут тонкой тканью, конец которой опущен в трубку - сосуд с дистиллированной водой. С поверхности влажного термометра испаряется вода - тем сильнее, чем суше воздух, поэтому он показы­вает более низкую температуру, чем сухой термометр, и разница в показаниях термометров будет тем больше, чем суше воздух.

Психрометр устанавливают на высоте 1,5 м, ограждая от источников лучистой энергии и случайных движений воздуха. Продолжительность наблюдений 10-15 минут.

A = f – a · (t 1 - t 2) · B мм рт. ст. (1)

А - искомая абсолютная влажность,

f - максимальная влажность (по таблице 5) при t 2 ,

а - психрометрический коэффициент (для атмосферного воздуха - 0,00074; для ком­натного - 0,0011).

В - барометрическое давление (мм рт. ст.)

Относительная влажность определяется по таблице (табл. 4) или вычисляетсяпо формуле:

P - искомая влажность (относительная), %

А - абсолютная влажность,

М - максимальная влажность по таблице при температуре сухого термо­метра.

Таблица 3. Максимальная влажность воздуха при различной температуре

Темпе­ратура Напряжение водяных паров в мм рт. ст. Температура Напряжение водяных паров в мм рт.ст. Вес водяных паров, насыщаю­щих воздух, гр/м
-5 3,113 3,360 13,530 13,552
-4 3,387 3,614 14,421 14,391
-3 3,662 3,902 15,357 15,329
-2 3,995 4,194 16,364 16,203
-1 4,267 4,522 17,391 17,164
4,600 4,874 18.495 18,204
4,940 5,210 19,659 19,284
5,302 5,574 20,888 20,450
5,687 5,963 22,184 21,604
6,097 6,370 23,550 22,867
6,534 6,791 24.988 24,190
6,998 7,260 26,505 25,582
7,492 7,734 28,101 27,004
8.017 8,252 29,782 28,529
8,574 8,713 31,584 30,139
9,165 9.372 33,406 31,890
9,792 9,976 35,359 33,640
10,457 10,617 37,411 35,480
11,162 11,284 39.565 37,400
11,908 12,018 41,827 39,410
12,699 12,763 44,201 41,510
46,691 43,710

Аспирационный психрометр (Ассмана) (рис. 4) также состоит из двух, но ртутных термометров, закрепленных в специальной оправе, имеющей заводной механизм с вентилятором, с помощью которого обес­печивается равномерное движение воздуха около резервуаров обоих термомет­ров. Резервуары с ртутью окружены двойными металлическими гильзами, пре­дохраняющими термометры от нагревания лучистым теплом и движения наруж­ного воздуха. Эти условия дают возможность для более точного определения влажности воздуха, и поэтому величина "а" в формуле является постоянной.

Перед наблюдением ткань на одном из резервуаров термометра смачивается водой из пипетки. Затем необходимо завести ключом пружину вентилятора, прибор установить в месте наблюдения (на штатив или крюк), через 3-4 мин. температура обоих термометров устанавливается и можно снять показания при работающем вентиляторе.

Рис. 4. Психрометр Ассмана (аспирационный)

Абсолютная влажность вычисляется по формуле:

Мм рт. ст. (3)

K - искомая абсолютная влажность,

f - максимальная влажность при температуре влажного термометра (по

таблице 3).

0,5 - психрометрический коэффициент,

t 1 - температура сухого термометра,

t 2 - температура влажного термометра,

В - барометрическое давление (вмм рт.ст.) в момент наблюдения,

755 - среднее барометрическое давление

Определение относительной влажности производят путем пересчета по формуле (2), или определяют по таблице для аспирационного психрометра (табл. 5)

Для измерения относительной влажности существует прибор, который носит название гигрометра (рис. 5). Он со­стоит из воспринимающего элемента - обезжиренного воло­са, один конец которого укреплен на верхней части рамы, другой (нижний) перекинут через блок и прикреплен к стрелке. В данном устройстве используется свойство волоса изменять свою длину в зависимости от влажности. С увеличением влажности воздуха волос удлиняется, с уменьшением, наобо­рот, укорачивается, приводя в движение стрелку, которая перемещается по шкале, показывающей относительную влажность в процентах.

Рис. 5. Гигрометр

Для постоянной и систематической записи колебаний влажности воздуха в течение определенного промежутка вре­мени (сутки, неделя), применяют самопишущие приборы – гигрографы (рис. 6), состоя­щие из:

а) датчика влажности - пучок обезжиренных человеческих волос;

б) передаточного механизма;

в) регистрирующей части - стрелка с пером и барабан с часовым механизмом. Диаграммная бумажная лента разделена горизонтальными параллельными ли­ниями времени.

Рис. 6. Гигрограф


Таблица 4. Определение относительной влажности воздуха по психрометру Августа

Показа­ния су­хого термометра Показание влажного термометра, 0 С
5,3 5.7 6,0 6,4 6,8 7,2 7,6 8,0 8,4 8,7 9.1 9,5 9,9 10,3 10,7 11.3 11,7 12,0
5,9 6,4 6.8 7,2 7,6 8.0 8,4 8,8 9.2 9,6 10,0 10,4 10,8 11.1 11.5 11.8 12,2 12,6 13,0
6.6 7.1 7.5 8,0 8,4 8,6 9.2 9.7 10,1 10.5 10.9 11,3 11,7 12.1 12,5 12,8 13,2 13,6 14,0
7,3 7,8 8,7 9,2 9,6 10.0 10,9 11,4 11,8 12,2 12,6 13,0 13,4 14.2 14,6 15.0
8,0 8,5 9.0 9.4 9,9 10,3 10.8 11,3 11,8 12,2 12,6 13,1 13.5 14,0 14,4 14.8 15,6 15.6 16.0
8,6 9,1 9,7 10,2 10,7 11,2 11.6 12,1 12,6 13,0 13,5 13,9 14,4 14,9 15,3 15,8 16.2 16,6 17,0
9,3 9,9 10.4 10,9 11,4 11,9 12,4 12,9 13,4 13,9 14,4 14,8 15,3 15.7 16,2 16.6 17,1 17.5 18.0
10,0 10,6 11,1 11,7 12,2 12,7 13.2 13.8 14,8 14,8 15,3 15,7 16,2 16,7 17,2 17,6 18,1 18,5 19,0
10,6 11,2 11,8 12,4 12,9 13,4 14,0 14,5 15.1 15,6 16,1 16,6 17,1 17,6 18,1 18,5 19.0 19,5 20,0
11,2 11,9 12,6 13.1 13,6 14,2 14.8 15.3 15,9 16,6 17,1 17.5 18,0 18.6 19,1 19,5 20,0 20,5 21,0
11,8 12,5 13.2 13,8 14,4 15.0 15.6 16.1 16.7 17,3 17,9 18,4 18.9 19,5 20,0 20,5 21,0 21,5 22,0
12.5 13.1 13,8 14.4 15.1 15.7 16,4 17.0 17.6 18,2 18,8 19,3 19,8 20,4 20.9 21,5 22,0 22,5 23,0
13,1 13.8 14,5 15,2 15,9 16,5 17,1 17,8 18,4 19,0 19,6 20,1 20,7 21,3 21.9 22,4 23,0 23,0 24,0
13.7 14,5 15.2 15,9 16,6 17,2 17.9 18,5 19,2 19,8 20,5 21.2 21,7 22,2 22,8 23,3 23,9 24.4 25.0
Относит. влажность %

Таблица 5. Определение относительной влажности по показаниям аспирационного психрометра

Показания сухого термометра Показание влажного термометра, 0 C

ПРОТОКОЛ

исследования и оценки относительной влажности воздуха

(наименование объекта)

1. Дата исследованиявремя час

2. Исследование проводилось психрометром_____________________________

3. Показания сухого термометра_________ 0 C

4. Показания влажного термометра________ 0 C

5. Расчет влажности по формуле:

6. Расчет влажности по таблице:

Заключение по влажностному режиму в обследованном помещении:

____________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

ТЕМА 4: МЕТОДЫ ИССЛЕДОВАНИЯ И ГИГИЕНИЧЕСКАЯ ОЦЕНКА ПОДВИЖНОСТИ ВОЗДУХА; ПОСТРОЕНИЕ И ОЦЕНКА РОЗЫ ВЕТРОВ.

КОНТРОЛЬНЫЕ ВОПРОСЫ

1. Физиолого-гигиеническое значение подвижности воздуха.

2. Что такое "роза ветров", каково ее гигиеническое значение?

3. Гигиенические нормы подвижности воздуха в жилых помещениях и больнич­ной палате.

4. Профилактика неблагоприятного воздействия на человека больших и малых скоростей движения воздуха.

5. Какими способами определяют направление воздушных течений в открытой атмосфере и в помещении?

6. Какими приборами определяют подвижность воздуха в открытой атмосфере и в помещении, их устройство и правила работы?

Движение воздуха принято характеризовать направлением и скоростью . На­правление движения воздуха определяется точкой горизонта, откуда дует ветер, а скорость движения - расстоянием, пройденным массой воздуха в единицу вре­мени и выражается в м/сек.

Оба эти показателя имеют большое физиолого-гигиеническое значение, т.к. из­менение направления ветра служит показателем перемены погоды, а движение воздуха:

1) обеспечивает проветривание населенных мест, способствует рассеиванию и снижению атмосферных загрязнений;

2) является важнейшим показателем формирования микроклимата в открытой атмосфере и в помещениях;

3) оказывает большое воздействие на состояние теплового ощущения, нервно-психической сферы организма, процессы терморегуляции и функции дыхания.

Наиболее благоприятной скоростью ветра в наружной атмосфере в летнее время при обычной легкой одежде считается 1-4 м/сек. Раздражающее действие ветра проявляется при скорости выше 6-7 м/сек.

В жилых помещениях, классах, групповых комнатах, детских, лечебных учреж­дениях оптимальной считается подвижность воздуха в пределах 0,2-0,4 м/сек; при меньшей скорости имеет место недостаточный воздухообмен, а при движени­ях воздуха выше 0,4 м/сек отмечается неприятное ощущение сквозняка. В спор­тивных залах допускается скорость движения воздуха до 0.5-0,6 м/сек.

Способы определения направления воздушных течений. Направление ветра в открытой атмосфере измеряется с помощью специального прибора - флюгера и обозначается начальными буквами наименований сторон све­та: С -север, Ю - юг, В - восток, 3 - запад. Кроме четырех главных румбов, использу­ются промежуточные, находящиеся между ними, и в таких условиях направле­ние ветра определяется восемью румбами.

В помещении направление движения воздуха можно определить по отклонению пламени свечи, по отклонению листков папиросной бумаги, подвешенных на нитке; по дыму, исходящему от зажженного кусочка ваты, пропитанного раство­ром четыреххлористого титана (TiCl 4) и укрепленного на конце проволоки. В гигиенической практике имеет значение не только одномоментное направление, как таковое. Велика роль господствующего направления ветра, которое устанавливается на основании обобщения многолетних метеорологических наблюдений повторяемости ветра по румбам, характерной для данной мест­ности.

СОСТАВЛЕНИЕ "РОЗЫ ВЕТРОВ". "Роза ветров" - это графическое изображение повторяемости ветров по румбам (сторонам света), за определенный период (месяц, сезон, год) или за несколько лет.

Для составления "розы ветров" надо сложить число всех случаев ветра и штиля за известный срок, полученная сумма принимается за 100, а число случаев ветра по каждому румбу (и штиля) вычисляется в процентах по отношению к сумме всех случаев ветра и штиля, принятой за 100.

После этого строят график. Для этого из центра проводят 8 линий, обозначающих 8 румбов (С, В, СВ, В, ЮВ, Ю, ЮЗ, 3, СЗ). Затем откладывают по всем линиям в одинаковом масштабе отрезки вычисленных процентных величин ветра всех 8 румбов и штиля, и соединяют последовательно вершины соседних между собой прямыми линиями. Из центра графика описывают окружность с радиусом, соот­ветствующим процентному числу штиля (рис.7).

Рис. 7. Роза ветров

Учитывая розу ветров, можно правильно разместить жилые, медицинские, аптечные и другие учреждения по отношению к источникам загрязнения воздуха (промышленные предприятия и др.). На рис. 7 роза ветров указывает на преимущественное северо-восточное направле­ние ветров в течение года, поэтому жилые дома, аптеки, больницы и т. д. следует размещать в северо-восточном направлении (наветренная сторона), а промышленные предприятия и другие источ­ники загрязнения - в юго-западном (подветренная сторона)

Приборы для измерения скорости движения воздуха (рис. 8.)

Скорость движения воздуха определяют с помощью анемометров (прямой способ) или кататермометров (косвенный способ). Чашечный анемометр (рис. 8A) предназначен для измерения скорости ветра от 1 до 50 метров в секунду. Воспринимающей частью прибора служит чашечная мельница, полусферы которой обращены в одну сторону. Вращение полусфер передается счетчику оборотов, который являясь регистрирующей частью прибора, ведет от­счет на циферблатах расстояния, пройденного воздушными массами.

Прибор имеет несколько циферблатов, где фиксируются единицы, десятки, сотни и тысячи метров расстояния изучаемого ветра.

A B C

Рис. 8. Анемометры: A – чашечный, B – крыльчатый, C – кататермометры

Крыльчатый анемометр (рис. 8B) предназначен для измерения скорости движения воздуха в пределах от 0,5 до 10 метров в секунду. Воспринимающей частью прибора является колесико с легкими алюминевыми крыльями, огражденными металли­ческим кольцом. Регистрирующая часть аналогично чашечному анемометру представлена тремя циферблатами.

Рабочее положение перечисленных анемометров должно быть таким, чтобы ло­пасти мельницы всегда были перпендикулярными направлению воздушного по­тока. Измерение скорости движения воздуха чашечным и крыльчатым анемомет­рами проводят в течение 1-2 мин. после чего счетчик выключают и записывают показания. Разность конечного и начального показаний делят на количество секунд работы анемометра.

ОПРЕДЕЛЕНИЕ СКОРОСТИ ДВИЖЕНИЯ ВОЗДУХА.

Чашечный и крыльчатый анемометры подносят к работающему вентилятору (открытой форточке) в выключенном состоянии, предварительно записав поло­жение стрелок на циферблатах, и после разгона полушарий одновременно вклю­чают анемометр и секундомер на 1-2 минуты, после чего выключают прибор и записывают показания циферблатов. Опре­деление производят 3 раза и берут среднее из трех измерений.

ПРОТОКОЛ

исследования и оценки подвижности воздуха

в ___________________________________________________________________

(наименование помещения)

1. Дата исследования ___________________________________________

2. Замеры движения воздуха проводились анемометром _____________

3. Результаты первого замера __________________________ м/сек

4 .Результаты второго замера __________________________ м/сек

5. Результаты третьего замера _________________________ м/сек

6. Среднее из всех замеров ____________________________ м/сек

ЗАКЛЮЧЕНИЕ: Указать, соответствуют ли полученные данные гигиениче­ским нормативам. Обосновать мероприятия по оптимизации подвижности возду­ха в обследованном помещении.

Исследование проводил (подпись)

ТЕМА 5: МЕТОДЫ ИЗУЧЕНИЯ И ГИГИЕНИЧЕСКАЯ ОЦЕНКА КОМПЛЕКСНОГО ДЕЙСТВИЯ МЕТЕОФАКТОРОВ НА ОРГАНИЗМ.

КОНТРОЛЬНЫЕ ВОПРОСЫ

1. Механизмы терморегуляции в организме

2. Физическая терморегуляция. Характеристика путей отдачи тепла и обуслав­ливающих их факторов.

3. Погода, ее определение и определяющие ее факторы. Влияние погоды на орга­низм человека.

4. Метеотропные реакции, заболевания и их профилактика.

5. Клиническая классификация погод, их характеристика и использование в работе врача.

6. Понятие о климате и климатообразующих факторах; классификация климатов и их физиолого-гигиеническая характеристика.

7. Влияние климата на здоровье, формирование, течение заболеваний и их про­филактика.

8. Проблема акклиматизации на современном этапе, и пути ее реализации.

9. Основные принципы закаливания организма, способы и методы закаливания организма.

10. Методы изучения комплексного влияния метеофакторов на организм,ихотличительные особенности, преимущества и недостатки.

11. Сущность метода определения охлаждающей способности воздуха; использу­емые для этого приборы,их устройство и правила работы.

12. Учение об эффективных температурах. Зона, линия комфорта.

Тепловое равновесие в организме человека, как и всех животных, возможно только при условии, если приход тепла равен расходу; в противном случае наблю­дается или перегревание или переохлаждение тела. В зависимости от характера питания, выполняемой работы, одежды, возраста, состояния здоровья и физиче­ских факторов окружающей среды (температуры, влажности, подвижности воз­духа, лучистой энергии) величины теплопродукции и теплоотдачи изменяются в широких пределах. Экспериментально установлено, что для поддержания тем­пературы тела на нормальном уровне необходимо, чтобы одетый человек терял при легкой работе 1,2-1,4 милликалории тепла в секунду с 1 см 2 поверхности тела; при средней и тяжелой работе теплопотери возрастают в 2-3 и более раз. Непос­редственное определение величины теплопотерь организмом крайне сложно, поэтому пользуются различными косвенными способами их определения. Одним из данных способов является метод кататермометрии, позволяющий определить величину потери тепла физическим телом в зависимости от температуры и ско­рости движения воздуха. Хотя он и не может воспроизвести условия потери тепла с поверхности тела человека, которые, как известно, зависят не только от охлаж­дающей способности воздуха, но и от работы терморегуляторных систем организ­ма. С помощью данного метода установлено, что оптимальное тепловое самочув­ствие у лиц "сидячих" профессий при обычной одежде в помещениях наблюдается при величине охлаждения кататермометра в пределах 5,5-7,0 милликалории в секунду. При более высоких показаниях кататермометра данные группы людей будут испытывать холод, а при меньших - духоту; при показаниях кататермомет­ра 3,2 милликалории в секунду повышается потоотделение.

УСТРОЙСТВО И ПРИНЦИП РАБОТЫ С КАТАТЕРМОМЕТРОМ. Кататермометры бывают двух типов: кататермометр Хилла, имеющий ци­линдрический резервуар и шаровой кататермометр. У кататермометраХиллашкала термометра разделена на градусы от 35 0 до 38 0 , у шарового – от 33 0 до 40 0 (рис. 8С)

ПРИНЦИП РАБОТЫ С КАТАТЕРМОМЕТРОМ

Если нагреть кататермометр до температуры выше температуры окружающего воздуха, то при охлаждении он потеряет, главным образом, под влиянием наруж­ной температуры и движения воздуха, некоторое количество тепла. Вследствие постоянства теплоемкости спирта и стекла, из которых сделан прибор, он теряет при охлаждении с 38 0 до 35 0 строго определенное количество тепла, которое устанавливается лабораторным путем отдельно для каждого кататермометра. Эта потеря тепла с 1 см 2 поверхности резервуара кататермометра выражается в милликалориях и обозначается на каждом кататермометре в виде его постоянного фактора - F.

ПОРЯДОК РАБОТЫ С КАТАТЕРМОМЕТРОМ

A. Прибор нагревают в горячей воде (65-70°) до тех пор, пока спирт не заполнит половины верхнего резервуара; вынув из воды, кататермометр вытирают насухо и помещают на штативе в исследуемое место, защищая при этом от действия лучистой энергии; фиксируют время опускания спирта с 38 0 до 35 0 . Производят расчет по следующей формуле:

H - величина охлаждения прибора, характеризующая охлаждающую спо­собность воздуха при данных условиях мкал/см /сек;

F - фактор прибора;

a - количество секунд, в течение которых спирт опустился 38 0 до 35 0 .

B. Определение скорости движения слабых потоков воздуха производится по эмпирическим формулам:

2 = (менее 1 м/сек)

2 = (более 1 м/сек),

V - скорость движения воздуха в м/сек;

H - величина охлаждения кататермометра;

Q - разность между средней температурой тела 36,5° и температурой воздуха в комнате в момент исследования;

0,20 и 0,40, а также 0,1,3 и 0,47 - коэффициенты.

Однако производить все вычисления по данным формулам нет необходимости. Нужно предварительно определить, чему равно выражение H/Q, а затем по таб­лицам 6 и 7 найти соответствующую этой величине скорость движения воздуха в обследуемом помещении.

Таблица 6. Скорость движения воздуха меньше 1 метра в секунду с учетом поправок на температуру

Н Q Температура воздуха в градусах
10,0 12,5 15,0 17,5 20.0 22,5 25,0 26,0
0,27 - - - - 0,047 0,051 0,059
0,28 - - - 0,049 0,051 0,061 0,070 0,070
0,29 0,041 0,050 0,051 0,060 0,067 0,076 0,085 0,089
0,30 0,051 0,060 0,065 0,073 0,082 0,091 0,101 0,104
0,31 0,061 0,070 0,079 0,088 0,096 0,107 0,116 0,119
0,32 0,076 0,085 0,094 0,104 0,113 0,124 0,136 0,140
0,33 0,091 0,101 0,110 0,119 0,128 0,140 0,153 0,159
0,34 0,107 0,115 0,129 0,139 0,148 0,160 0,174 0,179
0,35 0,127 0.136 0,145 0,154 0,167 0,180 0,196 0,203
0,36 0,142 0,151 0,165 0,179 0.192 0,206 0,220 0,225
0,37 0,163 0,172 0,185 0.198 0,212 0,226 0,240 0.245
0,38 0,183 0,197 0,210 0,222 0,239 0,249 0,266 0,273
0,39 0,208 0,222 0,232 0,244 0,257 0,274 0,293 0,300
0,40 0,229 0,242 0,256 0,269 0,287 0,305 0,323 0,330
0,41 0,254 0,267 0,282 0,299 0,314 0.330 0.349 0,364
0,42 0,280 0,293 0,311 0,325 0,343 0,361 0,379 0,386
0,43 0,310 0,324 0,342 0,356 0,373 0,392 0,410 0,417
0,44 0,340 0,354 0,368 0,385 0,401 0.417 0,445 0,449
0,45 0,366 0,351 0,398 0,412 0,429 0,449 0,471 0.478
0,46 0,396 0,415 0,429 0,446 0,465 0,483 0,501 0,508
0,47 0,427 0,445 0,464 0,482 0,500 0,518 0,537 0,544
0,48 0,468 0,481 0,499 0,513 0,531 0,551 0,572 0.579
0,49 0,503 0,516 0,535 0,566 0,571 0,590 0,608 0.615
0,50 0,539 0,557 0,571 0.589 0,604 0,622 0,640 0,651
0,51 0,574 0,593 0.607 0,628 0,648 0.666 0,684 0,691
0,52 0,615 0.633 0,644 0,665 0,683 0,701 0,720 0,727
0,53 0,656 0,674 0,688 0,705 0,724 0,742 0,760 0,768
0,54 0,696 0,715 0,729 0,746 0,783 0,801 0,808
0,55 0,737 0,755 0,770 0,790 0,807 0,807 0,844 0,851
0,56 0,788 0,801 0,815 0,833 0.851 0,867 0,884 0.894
0,57 0,834 0,852 0,867 0,882 0,898 0,915 0,940
0,58 0,879 0,898 0,912 0,929 0,911 0,959 0,972 0,977
0,59 0,930 0,943 0,957 0,971 0,985 1,001 1,018 1,023
0,60 0,981 0,994 1,008 1,022 1,033 1,014 1,056 1,060

Таблица 7. Скорость движения воздуха больше 1 метра в секунду.

Н Q Скорость м/сек Н Q Скорость м/сек Н Q Скорость м/сек
0,60 1,00 0,83 2,22 1,15 4,71
0,61 1,04 0,84 2,28 1,18 4,99
0,62 1,09 0,85 2,34 1,20 5,30
0,63 1,13 0,86 2,41 1,23 5,43
0,64 1,18 0,87 2,48 1,25 5,69
0.65 1,22 0,88 2,54 1,28 5,95
0,66 1,27 0.89 2,61 1,30 6,24
0,67 1,32 0,90 2,68 1,35 6,73
0,68 1,37 0,91 2,75 1,40 7,30
0,69 1,42 0,92 2,82 1,45 7,88
0,70 1,47 0.93 2,90 1,50 8,49
0,71 1.7

Контрольная работа по Общей гигиене

Студентки 3 курса ПГФА заочного факультета

Дударевой Александры Вячеславовны

Задание №1.Решить ситуационную задачу. Ответить на вопросы

1.Гигиеническое значение физических свойств воздуха

Физическое свойства воздуха - это температура, влажность, подвижность воздуха, барометрическое давление, электрическое состояние. Физические свойства воздуха в значительной степени определяют теплообмен организма с окружающей средой.

Температура воздуха - постоянно действующий фактор окружающей среды. Человек подвергается действию колебаний температуры воздуха в различных климатических районах, при изменении погодных условий, нарушения температурного режима в живых и общественных зданиях.

Атмосферный воздух нагревается от земной поверхности за счет тепла, полученного от солнца. Самая высокая температура наблюдается в южных широтах, где в теплое время года она достигает летом 63°С, в холодное время года снижается до -15°С. В Антарктиде температура может понизится до -94°С. Температура воздуха снижается с увеличением высоты над уровнем моря. Под воздействием температуры происходят различные физиологические сдвиги во многих системах организма. При повышенных температурах (25-35°С) воздуха нарушается отдача тепла конвекционным путем, организм освобождается от излишнего тепла путем потоиспарения. Так при температуре воздуха более 35 °С и умеренной влажности потеря влаги потоиспарения может достигнуть 5-8 л/сут. Вместе с потом из организма выделяется соли 30-40 г NaCl, водорастворимые витамины С и группы В. потеря солей плазмой крови ведет к повышению вязкости крови, что затрудняет работу ССС. Нарушается водно-солевой баланс и могут резвится судороги. При повышенных температурах (25-35°С) учащается дыхание, оно становится поверхностным; усиливается кровообращение подкожной клетчатки за счет расширения системы капилляров. Чистота сердечных сокращений возрастает вследствие раздражения терморецепторов; артериальное давление снижается; повышение вязкости крови и увеличение содержания эритроцитов и гемоглобина также наблюдается при повышении температуры. Влияние высокой температуры воздуха отрицательно сказывается на функциональном состоянии нервной системы, что проявляется ослаблением внимания, нарушением точности и координации движений, замедлением реакций. Длительное воздействие высокой температуры приводит к гипертермии; ее основные признаки высокая температура тела до 38 и более °С, гиперемия лица, потоотделения, слабость, головокружение, тошнота, рвота. В тяжелых случаях развивается тепловой удар: температура поднимается до 41°С, ад падает, человек теряет сознание, наблюдается судороги, частное и поверхностное дыхание. При низких температурах воздуха возрастает теплопотеря путем радиаций и конвекций, снижаются теплопотери испарением. Теплопотери превышают теплопродукцию, что приводит к дефициту тепла, понижению температуры кожи, при этом ухудшается тактильная чувствительность, понижается сократительная способность мышц. Изменяется функциональное ЦНС: ослабляется болевая чувствительность, наблюдается адинамия, сонливость.

Влажность воздуха. Влажность воздуха влияет на теплообмен организма с окружающей средой. Абсолютная влажность воздуха дает представление об абсолютном содержании водяных паров в граммах в 1 м3 воздуха, но не показывает степень насыщения воздуха парами воды. Чем выше температура воздуха тем больше требуется паров воды, для его полного насыщения; чем ниже температура воздуха, тем меньше водяных паров необходимо для его полного насыщения. В гигиеническом отношении наиболее важное значение имеет относительная влажность воздухи и дефицит его насыщения, т.е. разность максимальной и абсолютной влажностей воздуха. Эти величины влияет на процессы теплоотдачи человека путем потоиспарения. Чем больше дефицит влажности, тем суше воздух, тем больше водяных паров он может воспринять, следовательно, тем интенсивней может быть отдача тепла потоиспарением. Высокая температура переносится легче, если воздух сухой. При температуре воздуха, близкой к температуре кожи, теплоотдача излучением и конвекцией резко снижена, но возможна теплоотдача через потоиспарения. При сочетании высокой температуры воздуха и высокой относительной (более 90%) испарения пота практически исключена, пот выделяется, но не испаряется, поверхность кожи не охлаждается, наступает перегревание организма. При низких температурах сухой воздух уменьшает теплопотери вследствие плохой теплопроводности. Чрезмерно сухой воздух при низкой температуре уменьшает теплопотери вследствие плохой теплопроводности. Насыщение воздуха водяными парами в условиях низкой температуры будет способствовать переохлаждению тела. Оптимальная влажность 40-60%.

Подвижность воздуха влияет на теплопотери организма путем конвекции и потоиспарения. При высокой температуре воздуха его умеренная подвижность способствует охлаждению кожи. Мороз в тихую погоду переносится легче, чем при сильном ветре, наоборот, зимой ветер вызывает переохлаждение кожи и может вызвать обморожение. Сильный ветер (более 20 м/с) нарушает ритм дыхания; умеренный ветер оказывает бодрящее действие; сильный, продолжительный ветер резко угнетает человека. Благоприятная скорость ветра летом 1-5 м/с.

Барометрическое давление. В норме составляет 760 мм. рт. ст. На поверхности земли колебания атмосферного давления составляют 4-10 мм. рт. ст. Понижение атмосферного давления способствует развитию у людей высотной болезни (летчики, альпинисты и тд.)ю Основным экологическим фактором высотной (горной) болезни является понижение парциального давления кислорода во вдыхаемом воздухе по мере подъема на высоту. Симптомы горной болезни: поражение ЦНС (сонливость, тяжесть в голове, головная боль, нарушение координации движения, психическое возбуждение - эйфория, сменяющаяся апатией и депрессией, зрительные расстройства), поражение ССС, дыхательной системы. При быстром подъеме на высоту, более 8 км. развиваются симптомы схожие с кессонной болезнью: эйфория, боли в суставах, костях, зуд кожи и др. Повышение атмосферного давления (водолазы, рабочие метро, строители подводных тоннелей) вызывает урежение пульса и частоты дыхания, уменьшение максимального и понижение минимального артериального давления, возрастание жизненной емкости легких, глуховатый тембр голоса, понижение слуха и кожной чувствительности, ощущение сухости слизистых оболочек, усиление перистальтики и др. В зоне повышенного атмосферного давления происходит насыщение крови и тканей организма азотом. При быстром подъеме на поверхность с нормальным атмосферным давлением возникает кессонная болезнь - появляется риск возникновения газовых эмболов и массивная закупорка ими сосудов.

2. Дать гигиеническую оценку микроклиматических условий в стерилизационной по комплексу физических показателей воздуха

Исходные данные

Средняя температура 24,2 °С;

Показание «сухого» термометра 23,6°С

Показание «влажного» термометра 21,4°С

Барометрическое давление 742 мм.рт.ст.

Время охлаждения кататермометра 2 мин

Фактор кататермометра 530

2.1. средняя температура стерилизационной.

По приказу №309 от 21,10,1997 средняя температура в стерилизационной должна быть 18°С, следовательно средняя температура в помещении завышена.

2.2. относительная влажность рассчитывается через значение абсолютной влажности: К = Fв-0,5(t-t1)*В/755, где к- абсолютная влажность. г/м3

Fв - максимальное давление водяных паров при температуре «влажного» термометра 19,11 мм.рт.ст.

0,5 - постоянная;

t- температура «сухого» термометра 23,6 °С;

t11 - температура «влажного» термометра 21,4 °С;

В - барометрическое давление в момент исследования 742 мм.рт.ст.

К = 19,11-0,5(23,6° -21,4°)* 742/755=18,02 мм.рт.ст.

Относительная влажность: R=К*100/Fc

Где К - абсолютная влажность 18,02 мм.рт.ст.

Fc - максимальное давление водяных паров при температуре «сухого» термометра 21,84 мм.рт.ст.

R = 18,02*100/21,84=82,5%

Относительная влажность в стерилизационной выше нормы.

2.3. скорость движения воздуха: рассчитывается по величине кататермометра, которая характеризует охлаждающую способность воздуха, ее находят по формуле:

Где f - фактор кататермометра 530,

tc - время в с, в течении которого столбик спирта термометра опустится с 38°С до 35°С.

Н = 530/60=8,83

V = [Н/Q-0,20/0,40] = = 1,637 м/сек

0,20 и 0,40 эмпирические коэффициенты;

V - скорость движение воздуха, м/с

Q - разность между средней температурой кататермометра (36,5°С) и температурой окружающего воздуха: Q = 36,5° - 24,2°)=12,3 °С.

Скорость движения в стерилизационной выше нормы.

Установленные показатели микроклимата стерилизационной не соответствует гигиеническим нормам: повышенная средняя температура воздуха (24,2°С) и относительная влажность (82,5%). При повышенной температуре и повышенной относительной влажности испарение пота затруднено, пот выделяется, но не испаряется, поверхность кожи не охлаждается, может наступить перегревание организма. В стерилизационной следует снизить влажность и температуру воздуха, а также скорость движение воздуха.

Задание №2.Решить ситуационную задачу, ответить на вопросы

1.Химический состав атмосферного воздуха и его гигиеническое значение

гигиенический воздух микроклиматический вентиляция

Гигиенические требование к естественной и искусственной вентиляции аптечных учреждений. Воздушная среда, составляющая земную атмосферу, представляет собой смесь газов. Сухой атмосферный воздух содержит 20,95% кислорода, 783,9% азота, 0,03% углекислого газа, инертные газы (аргон, гелий, неон, водород, радон, водяные пары, немного озона и др.) в атмосфере присутствуют примеси природного происхождения, разнообразные загрязнения, поступившие туда в результате деятельности человека.

Кислород потребляется при дыхании человека, животных и растений, он необходим для горения и окисления. Кислород - побочный продукт фотосинтеза растений. Концентрация кислорода на поверхности земли колеблется лишь в пределах десятых долей процента, что не имеет существенного гигиенического значения. При подьеме на высоту падает парциальное давление кислорода до 50-60 мм.рт.ст. несовместимо с жизнью. Повышение парциального давления кислорода более 600 мм.рт.ст. ведет к уменьшению жизненной емкости легких, отеку и пневмонии. При подьеме в гору, у летчиков высотников может развиться горная болезнь. Ее симптомы 0 головокружение, одышка, слабость мышц, сердцебиение. При повышения содержания N2 во вдыхаемом воздухе, снижается парциальное давление. Кислород, что может оказать наркотическое действие, например, у аквалангистов при быстром всплытии могут наблюдаться такие симптомы: возбуждение, нарушение координации движений, запаздывание зрительных, слуховых, обонятельных реакций. При подъеме с глубины N2выделяется из крови в виде пузырьков газа, может произойти закупорка мелких сосудов, приводящая к отеку тканей, закупорка сосудов головного мозга и сердца со смертельным исходом.

Азот - это инертный газ, он не поддерживает горение и дыхание. Азот является разбавителем кислорода, т.к. дыхание чистым кислородом приводит к необратимым изменениям в организме. При повышении содержания азота во вдыхаемом воздухе наступает гипоксия и асфиксия вследствие снижения парциального давления кислорода. Наиболее неблагоприятное действие азот проявляет в условиях повышенного давления, что связано с его наркотическим действием.

Углекислый газ. Поступает в атмосферу в результате дыхания животных и растений, а также горения, гниения, брожения; выделяется с вулканическими газами, при промышленном обжиге извястников и доломитов. Углекислый газ - возбудитель дыхательного центра. При вдыхании больших концентраций нарушается окислительно-восстановительные процессы. Чем больше углекислый газ во вдыхаемом воздухе, тем менее его может выделить организм. Накопление углекислого газа в крови и тканях ведет к развитии тканевой аноксии. При увеличении содержания углекислого газа во вдыхаемом воздухе до 4% отмечаются: головная боль, шум в ушах, сердцебиение, возбужденное состояние. При 8% возникает тяжелое отравление и наступает смерть. По содержанию углекислого газа судят о чистоте воздуха в жилых помещениях. В обычных условиях при естественной вентиляции помещения содержание углек. газа в воздухе помещения не превышает 0,2%. В этих концентрациях диоксид углерода не токсичен для человека, но пребывание в такой атмосфере приводит к ухудшению самочувствия и снижению работоспособности. Это объясняется тем, что с увеличением концентрации углек.газа. ухудшаются и другие свойства воздуха: повышаются температура и влажность, появляются токсичные газообразные продукты жизнедеятельности человека (индол, сероводород, аммиак), увеличивается содержание пыли и м/о. В жилых помещениях уровень содержания углек. газа не должен превышать 0,1%. Естественная вентиляция помещений обуславливается разностью температур наружного и комнатного воздуха и силой ветра. Воздух, нагретый в помещении поднимается вверх и уходит из комнат через оконные и дверные проемы. На его место в нижнюю часть помещения устремляется холодный атмосферный воздух. В аптеках используется механическая приточно-вытяжная вентиляция. При механической вентиляции воздух перемещается под действием вентилятора. По способу подачи и удаления воздуха системы делят на: приточные; вытяжные; приточно-вытяжные; системы циркуляций.

Во всех аптеках имеется естественная вентиляция за счет окон, форточек. Но, кратность воздухообмена при этом не всегда обеспечивает удаление производственных вредностей, поэтому она является достаточный только для административных и санитарно-бытовых помещений аптек. Устройство искусственный вентиляции необходимо в помещениях, где посредственно естественного воздухообмена не достигаются нормируемые параметры микроклимата, содержание пыли, микроорганизмов и газообразных примесей. Вся система искусственной вентиляции аптечных помещений должна быть смонтирована таким образом, чтобы воздух из одного помещения не проникает в другое. Разный характер работы в различных помещениях аптеки определяет подходк выбору системы вентиляции и типа вентиляционных устройств. В дефектарской, асептической, ассистентской, заготовочной, фасовочной, стерилизационной, автоклавной, дистилляционной устраивается общеобменная приточно-вытяжная вентиляция с приоблоданием притока над вытяжкой (4:2). Вытяжки и приточные отверстия распологаются в верхней зоне помещения. В аналитической должна быть еще местная вытяжная вентиляция - вытяжной шкаф. В зале обслуживания населения общеобменная приточно-вытяжная вентиляцияс преобладанием вытяжки над притоком (4:3). Краткость вытяжки ествественного воздухообмена. В помещении оформления заказов прикрепленных ЛПУ, для приема и оформления заказав, в рецептурной приток преобладает над вытяжкой (2:1) . в контрольно-аналитической, стерилизационной растворов, распоковочной вытяжка преобладает над притоком (3:2). В помещении для приготовления лекарств в асептических условиях приток преобладает над вытяжкой (4:2). Не допускается кратность вытяжки есть воздухообмена. В помещениях хранения запаса: вытяжка преобладает над притоком, а в помещении для хранения ядовитых препаратов и наркотиков, легковоспламеняющихся и горючих жидкостей, дез.средств, кислот и в дезинфекционной - притока воздуха нет вообще.

2. Оценить эффективность работы искусственной приточно-вытяжной вентиляции в помещении аптеки путем сравнения с соответствующими нормами

Помещение - моечная

Площадь помещения 24 м2,

Высота помещения 2,8 м,

Площадь сечения приточно-вентиляционного канала 0,04 м2,

Объем движения воздуха в приточ.вент.канале 0,5 м/с,

Площадь сечения вытяж.вент.канала 0,02 м2,

Объем движения воздуха в вытяж.вент.канале 0,55 м/с

2 а) Объем воздуха, подаваемого или удаляемого через вентиляционное отверстие определяется по формуле:

Где Q - объем воздуха, м/с;

А - площадь вентиляционного отверстия, м2;

V - скорость движения воздуха в вентиляц.отверстии, м/с;

Q по притоку = 0,04*0,6*3600=86,4 м3/ч

Q по вытяжке = 0,02*0,55*3600=39,6 м3/с

2 б) Кратность воздухообмена рассчитывается по формуле:

Где p - кратность воздухообмена;

Q - количество воздуха, подаваемого или удаляемого из помещеия в тесение часа, м3;

W - объем помещения = S*h = 24*2,8=67,2 м3;

Р по притоку = Q по прит./W = 86,4/67,2=1,28

Р по вытяжке = Q по вытяж/W = 39,6/67,2=0,59

Вентиляция в моечной обеспечивает 1,28 кратный обмен воздуха по притоку и 0,59 по вытяжке. Это не соответствует гигиеническим нормам, т.к. в соответствии с нормами (приложение 1) вентиляционная система моечной должна обеспечить 2 х кратный обмен по притоку и 3 х кратный обмен по вытяжке. Рекомендуется увеличить по притоку и по вытяжке в соответствии с нормами (приказ №309 от 21.10.1997).

n = Р/К *(1,6-0,4)*Н

где Р - кратность воздухообмена по притоку равно 1(приложение 1);

К - количество углекислого газа в литрах, выдыхаемое взрослым человеком в час равно 22,6 л;

n - число людей в помещении;

Н - кубатура помещения: 24 м2 *2,8 м =67,2 м3.

1,6 - максимально допустимое содержание углекислого газа в помещении;

n = 1/22,6 * (1,6-0,4) * 67,2=3,56 приблизительно 4 человека.

При естественной вентиляции в моечной может работать 4 человека.

Задание 3. Решить ситуационную задачу, ответить на вопросы

1. Дать санитарно-гигиеническую характеристику водоисточнику - артезианская скважина

Доля подземных вод как источников централизованного водоснабжения составляет 32%. Подземные воды формируются в результате фильтрации через почву атмосферных осадков и подземных вод. По глубине залегания и расположению по отношению к земным слоям все подводные воды делятся на: верхнюю, среднюю и нижнюю зоны. С увеличением залегания подземных вод, при продвижении с севера на юг повышается минерализация подземных вод. При проникновении поверхностных вод через слой почвы происходит их постепенное фильтрация, адсорбция м/о и органических веществ на почвенных структурах, а затем окисление орг.остатков с участием аэробных м/о. Качество подземных вод определяется строением земной коры. Наиболее стабильными и надежными в санитарно-эпидемиологическом отношении межпластовые воды, располагающиеся между водонепроницаемыми пластами. Особое место среди межпластовых вод занимают артезианские воды. Им свойственно малое аэрирование и слабое развитие биологических процессов и форм жизни, стабильный химический состав, более высокая минерализация, чем у грунтовых вод, содержание необходимых для человека макро- и микроэлементов (Са, Мg ,I ,F), низкая стабильная температура, хорошие органолептические показатели. Артезианские воды обычно доброкачественные и могут употребляться для питья без дополнительного кипячения. Артезианские воды находятся под повышенным давлением. Свойства артезианских вод в бактериальном отношении надежны и благоприятны.

Артезианская скважина.

показатели

Артезианская скважина.

Цвет, градусы

Это значение меньше нормы, установленной СанПиНом. Вода не требует обесцвечивания и осветление; в ней почти нет взвешенных веществ и окрашенных коллоидов.

Запах, балы

Вода не имеет запаха, доброкачественная по этому показателю.

Вкус, балы

Вкус воды соответствует норме, определяется минеральным составом воды.

Мутность мг/л

Вода по этому показателю ниже нормы т.е. почти не содержит посторонних частиц.

Аммиак, мг/л

Вода отличного качества, почти не содержит аммиак т.е. нет фекального загрязнения воды.

Нитриты, мг/л

Нитритов нет, нет загрязнения воды азотосодержащими орг. веществами, свежего загрязнения.

Нитраты, мг/л

10 (в переводе на азот) и 45 мг/л

Показатель превышает норму в 2 раза. Нитраты - соли азотной кислоты. Это говорит о заключительном этапе минерализации орг. азотистых соединений.

Окисляемость, мг о2/л

Показатель ниже нормы. Нет загрязнения воды свежими органическими остатками.

Общая минерализация, мг\мл

Вода слабоминерализованна, но при постоянном употреблении такой воды могут возникнуть патологические состояния. Воду следует деминерализировать.

Жесткость, мг-экв/л

Вода жесткая, содержит соли кальция и магния в 2 с лишним раза больше нормы, это вода малопригодно для бытовых нужд вызывает мочекаменную болезнь, нарушает минеральный обмен, приводит к появлению заболевания ССС.

Фтор, мг/л

Микробное число

Не более 50

Вода эпидемически безопасна, нет фекального загрязнения.

Количество колиформных бактерий

отсутствует

Нет загрязнения бытовыми и с/х сточными водами.

Количество термотолерант-ных колиформных бактерий

отсутсвует

Фекального загрязнения воды нет.

Вывод: На основании анализа каждого показателя качество воды, взятой из артезианской скважины, можно сказать, что вода пригодна для использования. Но следует провести умягчения воды (например, кипячение) для удаления солей кальция и магния, содержания которых в 2 раза превышают норму. Количество нитратов превышает в 8 раз (по азоту) норму; проводят обессоливание воды, т.к. нитраты могут вызвать метгемоглобипемию; нитраты образуют в организме человека нитрозамины с выраженными концерогенными свойствами. Нитрозамины оказывают токсическое действие на печень, некоторые из них обладают мутогенными и тератогенными свойствами. Снижение жесткости артезианской воды и количество нитратов снизит и общую минерализацию артезианской воды до нормы. Артезианская вода по данным анализ эпидемически безопасна.

Задание 4.Решить ситуационную задачу, ответить на вопрос

Где К - фактическая среднесменная концентрация почли в зоне дыхания работника 8мг/м3;

N - число рабочихсмен, отработанных в календарном году в условиях воздействия АПФД 236;

T - количество лет контакта с АПФД 18;

ПН = К*N*T*Q= 8*236*18*4= 135936 мг.

2 Определить контрольную пылевую нагрузку (КПН) за тот же период работы по формуле: КПН = ПДКСС*N*T*Q

Где ПДКСС -среднесменная ПДК пыли 3иг\м3;

n = ПН/КПН=135936/50976=2,66

Пылевая нагрузка превышает контрольную пылевую нагрузку в 2,66

4 Определить класс условий труда работника по величине превышения КПН (приложения 2).

Превышения КПН =2,66. Класс условий труда вредный.

Ti = КПН25/K*N*Q

Где Ti - допустимый стаж работы в данных условиях;

КПН25 - контрольная пылевая загрузка за 25 лет работы в условиях соблюдения ПДК;

K -это фактическая среднесменная концентрация пыли;

N - количество смен в календарном году;

Q - это объем легочной вентиляции за смену.

КПН25 = ПДКСС*N*T25*Q =3*236*25*4=70800мг

Ti = 70800/8*236*4=9,3 года

В условиях превышения КПН в 2,66 раза стаж работы составит 9,3 года.

Задание 5

Гигиеническая оценка технологических процессов получения галеновых и новогаленовых лекарственных форм. Характеристика вредных факторов. Профессиональные заболевания работников. Мероприятия по охране и оздоровлению условий труда

Галеновые препараты получают из разных частей растений (корней, корневищ, листьев, цветков, коры, плодов и т.д.) путем определенных операций. К галеновым препаратам относят растворы, настойки, отвары, эликсиры, сиропы, экстракты, мази и др. Обычно галеновые препараты приготавливаются из сухих растений в галеновом цехе, где сосредоточенно производство экстрактов и настоек, а также новогаленовых препаратов и т.д. В этом цехе производится экстрактогирование растительного сырья различными методами, операции по разделению жидкой и твердой фаз (отстаивание, фильтрование, центрифунгирование, прессование), отгонка спирта и других экстагентов, выпаривание, сушка под вакуумом, растворение, смешение и.т.д. При производстве галеновых препаратов в воздух производственных помещений поступают пылевые частицы от сухих лекарственных растений, эфирные масла, пары спирта и другие вещества. Производственная пыль раздражающая пары и газы могут вызвать поражения органов дыхания при их хроническом воздействии. Производственная пыль служит причиной развития различной заболеваний кожи и слизистых оболочек (гнойничковые заболевания кожи, дерматиты, конъюктивиты и др.), неспецифические заболевания органов дыхания (риниты, фарингиты, пылевые бронхиты, пневмонию), заболевания кожи и органов дыхания аллергической природы (аллергические дерматиты, экземы, астматические бронхиты, бронхиальная астма). Пары эфирных масел могут привести к заболеваниям аллергической природы, пары спирта обладают раздражающим действием на организм работников. Профилактика проф заболеваний включает систему оздоровительных мероприятий. К ним относятся законодательные, административные, организационные, технологические, санитарно-технические, лечебно-профилактические меры, использование средств индивидуальной защиты. Законодательные и административные мероприятия - это: правовое регулирование рабочего времени, времени отдыха, нормы, обеспечивающие создание безопасных и здоровых условий труда, льготы.

Организационные мероприятия - это: мероприятия, направленные на оптимизацию режима труда, режима трудового процесса, соотношения труда и отдыха, правильного чередования рабочих операций, обеспечения производственной этики, оптимальной планировки и т.д. Для максимального снижения неблагоприятного воздействия на работающих вредных факторов производственной среды, сохранения работоспособности и предупреждения утомления.

Технологические мероприятия - это: применение механизации трудоемких работ, автоматизация технологических процессов, исключения ручных операций.

Санитарно-технические мероприятия - это: прежде всего промышленная вентиляция (естественная и искусственная; местная и общая); освещение должно обеспечивать наилучшее условия для работы органов зрения и самочувствие работающих.

Средство индивидуальной защиты - это: противогазы, респираторы, защитные очки, спецодежда и спецобувь. Противогазы используются, как правило, при аварийных ситуациях, при чистке, ремонте загрязненной аппаратуры и др.

Лечебно-профилактические мероприятия - это: диспансеризация и профилактические медицинские осмотры (предварительные и периодические). Предварительные медосмотры способствуют предупреждению профзаболеваний, а периодические медосмотры направлены на выявление ранних признаков не только профзаболеваний, но и заболеваний, которые не связанны с профессией, но становятся опасными из-за контакта с определенными вредными производственными факторами.

Литература

Мельниченко П.И. идр. Гигиена с основами экологии человека, «ГЭОТАР-Медиа», 2012г.

Пивоваров Ю.П., Королик В.В., Зиневич Л.С. гигиена с основами экологии человека. Ростов-на-Дону. «Феникс», 2002г.

Подобные документы

    Классификация и гигиеническая характеристика физических факторов воздушной среды. Влияние комплекса метеорологических факторов на организм человека. Принципы гигиенического нормирования и оценка микроклимата помещений. Анализ степени ионизации воздуха.

    реферат , добавлен 25.12.2010

    Характеристика микробного загрязнения воздуха стоматологических кабинетов. Комплексная оценка условий труда стоматологов. Психофизические показатели организма медицинских работников в начале и конце рабочего дня. Оценка факторов риска для здоровья врачей.

    реферат , добавлен 22.12.2015

    Характеристика работы городской клинической больницы. Гигиеническая оценка места расположения и работы приемного отделения. Санитарное благоустройство терапевтического отделения. Организация питания пациентов. Условия труда медицинского работника.

    контрольная работа , добавлен 02.03.2009

    Непосредственное влияние параметров микроклимата на тепловое самочувствие человека и его работоспособность. Микроклимат помещения учебного заведения, его влияние на состояние здоровья. Оценка температурно-влажностного режима в учебных аудиториях.

    научная работа , добавлен 25.05.2016

    Гигиеническая оценка организации учебного процесса в школе: режим и расписание уроков. Оценка состояния здоровья детей одного из классов: анализ медосмотров, учет состояния здоровья детей. Гигиеническая оценка урока, наблюдение за учениками на уроке.

    практическая работа , добавлен 04.06.2010

    Санитарно-гигиеническая характеристика условий труда. Биомеханический анализ рабочих поз врача. Работоспособность хирургов во время операции. Радиационная характеристика лучевых нагрузок. Опасность инфекции. Охрана здоровья врачей хирургического профиля.

    контрольная работа , добавлен 26.11.2013

    Эпидемиологическое значение воды, ее химический состав и влияние на здоровье населения. Гигиенические требования к качеству питьевой воды. Гигиеническая характеристика и санитарная охрана источников водоснабжения. Методы улучшения качества питьевой воды.

    реферат , добавлен 24.12.2010

    Основные цели, задачи и методы исследования влияния атмосферного воздуха на состояние здоровья населения. Определение источников загрязнения и основные мероприятия, направленные на ограничение воздействия загрязнения, охрана атмосферного воздуха.

    методичка , добавлен 19.04.2009

    Функции врожденного пищевого рефлекса, последствия игнорирования принципов рационального питания. Энергетическое и пластическое значение пищи, ее физиологическая ценность. Гигиеническая оценка пищевых веществ: белки, углеводы, минеральные соли, витамины.

    реферат , добавлен 28.08.2011

    Личная гигиена студентов. Гигиена спортивной одежды и обуви. Гигиенические принципы организации занятий физическими упражнениями. Гигиенические требования к структуре, объему и интенсивности физических нагрузок в процессе физического воспитания.



Просмотров