Каково значение водорослей. Значение водорослей. Значение водорослей для человека

Какое значение имеют зеленые водоросли, Вы узнаете из этой статьи.

Значение зеленых водорослей

Что такое зеленые водоросли?

Зеленые водоросли принадлежат к отделу низших растений, которые имеют разную морфологическую структуру и размеры. Они в себе содержат каротиноиды и пластины хлорофилла. Зеленые водоросли бывают многоклеточной и одноклеточной формы. Имеют запасное вещество – крахмал, иногда масла. Примечательно, что одноклеточные зеленые водоросли обитают не только в водной среде, но и в почве или на снегу. А вот многоклеточные растения обитают в верхних слоях водоемов, что обусловлено осуществлением продуктивного процесса фотосинтеза.

Каково значение в природе зеленых водорослей?

1. Они являются важной цепочкой в пищеварении молодых рыб, зоопланктона.

2. Зеленые водоросли в большом количестве снабжают водную среду кислородом.

3. Играют роль биологического фильтра для очистки воды – клетки зеленой водоросли всасывают органические вещества, растворенные в воде через оболочку клетки.

4. Некоторые зеленые водоросли вступают с червями, инфузориями и гидрами в симбиоз. Таким образом, они снабжают своего носителя хлоропластами. А молюски, питаясь такими водорослями, обогащают клетки дыхательной полости хлоропластами, которые находясь в чужом теле, эффективно фотосинтезируют.

Зеленые водоросли значение в жизни человека

1. Зеленые протококковые водоросли содержат в себе питательные и другие ценные соединения, которые обладают высокопродуктивными свойствами. Благодаря минимальным затратам, которые тратятся на их выращивание, данный тип водорослей используется как сырье для получения хлорофилла, витаминов. Их используют в качестве кормов для сельскохозяйственных животных.

2. Нитчатые зеленые водоросли используются в промышленности — из них изготавливают прочную бумагу высокого сорта, получают этиловый и винный спирты, ацетон и тому подобное.

3. Некоторые виды используются населением ряда стран в пищу. Для этих целей, например, в Японии, специально культивируют Ulva и Enteromorpha.

4. Отдельные виды зеленых водорослей используют как продуценты физиологически активных веществ. Виды рода Haematococcus культивируют в промышленных масштабах для получения каротиноиды астаксантина, Botryococcus — для получения липидов.

Надеемся, что из этой статьи Вы узнали, каково значение зеленых водорослей.

Биологическая роль водных и наземных водорослей многогранна и неоднозначна.

Благодаря широкому распространению водоросли имеют большое значение в жизни отдельных биогеоценозов, в круговороте веществ в природе, в жизни всей планеты Земля. Они имеют большое значение в хозяйственной, научной, практической деятельности человека.

Водоросли, приспособившись к жизни в самых разнообразных условиях, представляют собой очень удобный объект для исследования механизма адаптации, потому что водоросли, и особенно одноклеточные, сочетают в себе морфологические признаки клетки, но реагируют на изменения внешней среды как самостоятельный организм.

В последнее время водоросли приобрели большое значение в практической и научной деятельности человека. В научных исследованиях водоросли используются как удобная модель для исследований в различных отраслях биологии, фармации, ветеринарии и медицины – цитологии, биохимии, физиологии, генетике, генной инженерии, молекулярной биологии и пр.

Теоретическое значение водорослей связано с исследованиями при решении физиологических, биохимических, биофизических, экологических и общебиологических проблем.

Культуры водорослей используются в замкнутых системах, при выполнении научно – исследовательских работ в биофизике, генетике, биохимии, физиологии, биотехнологии и пр.

Водоросли, как и все зеленые растения, под влиянием солнечного света или искусственных источников ультрафиолетовых лучей используют находящуюся в воздухе углекислоту и выделяют чистый кислород. С целью очистки воздуха от углекислоты и пополнения запасов кислорода водоросли культивируют в герметически закрытых помещениях (на подводных лодках, космических кораблях).

Водоросли являются также объектами космических исследований.

Повсеместное распространение водорослей в природе и массовое развитие водорослей в разных местообитаниях определяет большую и неуклонно возрастающую их роль в практической деятельности человека.

Альгологические знания становятся необходимыми для специалистов разных областей народного хозяйства.

Водоросли являются важным звеном в процессах биологической очистки воды, почвы, воздуха. Участвуют в круговороте веществ, в том числе кальция и кремния.

Крупные водоросли используют как корм для скота, для получения агара, йода, пищевых консервов. В некоторых районах водоросли используют в качестве удобрений.

Роль, которую играют как водные, так и наземные водоросли в жизни живого и неживого окружающего нас мира многогранна и неоднозначна.

И мы постоянно сталкиваемся как с положительными, так и отрицательными проявлениями жизнедеятельности водорослей.

Микроскопические водоросли, обитающие в воде, в основном входят в группу организмов, составляющих планктон.

Планктон представляет группу водных растительных и животных организмов, которые ведут свободно плавающий (независимый от твердого субстрата, как опорного элемента), взвешенный в толще воды образ жизни.

Для фитопланктонных организмов характерно или полное отсутствие органов движения или эти органы настолько слабо развиты, что эти организмы не могут противостоять даже слабому течению воды и их активное движение происходит только в небольших пределах.

Единственной опорой для планктонных организмов служит вода, в которой они парят или плавают, будучи всей своей организацией тела приспособлены к такому своеобразному образу жизни.

К планктону относятся главным образом мелкие часто микроскопические организмы и лишь некоторые представители зоопланктона могут достигнуть размеров в несколько миллиметров.

Водоросли вместе с бактериями и простейшими являются начальными звеньями в пищевых цепях водоемов. Являются важным источником питания для многочисленных видов рыб.

Схематически это можно представить так: бактериопланктон – фитопланктон – зоопланктон – рыбы – человек и животные.

Водные водоросли являются создателями органических веществ в водоеме, без которых невозможно существование всех остальных водных организмов, в том числе зоопланктона и рыб. Водорослями питаются разнообразные мелкие животные, в том числе дафнии и циклопы, а они в свою очередь служат пищей для рыб.

Питательная ценность планктона, в том числе и фитопланктона, по содержанию белков и жиров не уступает ценности многих пищевых растений. Обилие в водоемах мельчайших растительных организмов определяет количество их животного населения.

Особенно велика роль водорослей в образовании органических веществ в естественных водоемах, где они через несколько промежуточных звеньев влияют на рыбную продукцию.

Для искусственного разведения рыб выбирают водоемы с богатым фитопланктоном.

Водоросли играют большую роль в процессах самоочищения вод открытых водоемов.

Роль водорослей в биосфере, как первичных продуцентов органического вещества очень велика: их биомасса в Мировом океане более 1,5 млрд. тонн, а продукция за год – более 25% всех органических веществ планеты.

Водоросли, являясь древнейшими фотосинтезирующими организмами на Земле, создали ее кислородную атмосферу. От них произошли наземные растения.

Распространенные по всему земному шару, они играют огромнейшую роль в жизни природы, которая в первую очередь определяется их особенностями как фотоавтотрофных организмов.

В воде, с одной стороны, они являются основными создателями органического вещества и являются одним из первых звеньев пищевых цепей, а с другой – очень важное значение водорослей состоит в том, что в процессе фотосинтеза они выделяют свободный кислород необходимый для дыхания водных живых растительных и животных организмов.

Водоросли, создавая органические вещества, поглощают при этом углекислый газ, а на свету, подобно высшим растениям, выделяют кислород, необходимый для дыхания водных организмов.

Водоросли, обитающие в водной среде, определяют уровень биологической продуктивности водоема.

Водные водоросли являются хорошими санитарами окружающей их среды. Питаясь, как и бактерии, органическими веществами, входящими в состав сточных вод, они очищают их.

Такие водоросли, как Chlorella vulgaris, Scenedesmus obliquus, Ankistrodesmus angustus, не только хорошо растут на сточной воде свинокомплекса и птицефабрики, но и способствуют более интенсивной очистке их от органо – минеральных загрязнений.

Вольвоксовые, эвгленовые, желтозеленые, пирофитовые, дианомовые, зеленые, синезеленые водоросли вместе с гетеротрофными организмами являются хорошими санитарами, осуществляя процессы естественного самоочищения сточных и загрязненных вод.

Большую роль играют водоросли в процессах самоочищения водоемов, потребляя биогенные элементы и обогащая воду кислородом.

Водоросли очень чувствительны к химическому составу воды, поэтому могут служить хорошими индикаторами степени загрязнения среды различными химическими загрязнителями.

Как основное фотосинтезирующее звено экосистемы, водоросли играют важнейшую роль в формировании химического состава и запасов органических веществ водоемов.

В последнее время особенно усилилось значение водорослей в накоплении растворимых органических соединений водных экосистем.

Водоросли континентальных водоемов играют большую роль в образовании лечебных грязей.

Отмерший планктон оседает, способствует накоплению осадков, входит в состав детрита и используется как питательные вещества для бактерий, грибов, актиномицетов, окончательно разрушающих мертвое органическое вещество.

Планктонные водоросли, населяющие водоемы, отмирая опускаются на дно водоема и вместе с другими отмершими организмами водоема в анаэробных условиях образуют отложения под названием сапропелей.

Сапропель – это гниющий ил, который является сырьем для получения бензина, керосина, смол, масел и других ценных продуктов, используемых для нужд народного хозяйства. Сапропелевые угли используются для отопления, а сапропелевый ил – для удобрения почвы и подкормки животных.

В формировании илов, сапропелей, известняков участвуют диатомовые, зеленые, золотистые водоросли.

Практически все пресноводные водоросли употребляются в качестве удобрений почв.

Среди водных водорослей есть фиксаторы азота. На рисовых полях, где развиваются представители рода Anabaena, урожайность риса повышается без внесения азотистых удобрений.

Диатомовые водоросли имеют непосредственное отношение к образованию осадочной породы диатомита, употребляемого в технике в качестве изоляционного материала.

Регулирование режима водохранилищ и каналов совершенно невозможно без учета экологии и физиологии сезонных изменений, происходящих в количественном и видовом составе водорослей.

Каналы, сооружаемые человеком, играют важную и разностороннюю роль в его хозяйственной деятельности. Они представляют собой особый тип водоемов.

В процессе эксплуатации каналов возникают серьезные биологические помехи, виновниками которых являются различные гидробионты.

Среди них одно из основных мест принадлежит водорослям.

В каналах развиваются преимущественно диатомовые (Stephanodiscus hantzschii), зеленые (Scenedesmus quadricauda) и синезеленые Aphanizomenon flos – aque,Microcystis aeruginosa) водоросли.

Основными факторами, определяющими динамику состава и количества фитопланктона в каналах являются скорость течения воды, работа насосных станций и других гидротехнических сооружений, состав поступающего из водоисточника фитопланктона и его приспособленность к условиям водотоков, прозрачность воды и наличие биогенных веществ как вносимых из водоисточников, так и попадающих в каналы с окружающих территорий или из иловых отложений, метеорологические условия на трассе, степень развития фитобентоса и высшей водной растительности.

Водоросли в каналах играют большую и разностороннюю роль. Она зависит от состава и обилия фитопланктона и фитобентоса, а также от назначения каналов, так как вода искусственных водотоков используется человеком для разных целей и к ней предъявляются разные требования.

В водопроводных каналах водоросли играют большую роль в формировании качества воды.

В ирригационных водах микроскопические водоросли (особенно планктонные), как правило, играют положительную роль, так как организмы, выносимые с водой на поля, служат хорошим удобрением и участвуют в повышении плодородия почвы.

Значение водорослей в народном хозяйстве разнообразно.

Водоросли используются в сельском хозяйстве, в медицине, промышленности.

Морские макрофиты (Porphyra, Rhodimenia, Laminaria, Alaria, Undaria и др.) используются для приготовления пищи, приправ, супов, кондитерских изделий (Spirulina platensis), кормов для животных.

В качестве дешевого пищевого продукта используются не только морские водоросли, но и некоторые пресноводные синезеленые (в том числе Sphaeronostoc pruniforme, Stratononostoc commune, Nematonostoc flagelliforme и др.) широко распространенные и встречающиеся на дне прудов и озер.

В мореплавании водоросли могут использоваться как показатели свободного от льда водного пространства, а для рыбаков – показателями наличия рыбы.

Для коммунального хозяйства водоросли имеют значение не только как участники процессов самоочищения воды, но и как показатели качества воды.

Многие виды водорослей являются индикаторами биологического и антропогенного загрязнения и засоления.

В настоящее время большое внимание уделяется биологическому контролю за изменениями, происходящими в окружающей среде. Показателями биологического мониторинга являются функциональные и структурные параметры. Водоросли, как биологическим индикаторам (сапробам) принадлежит одно из ведущих мест.

Сапробы (биологические индикаторы) – это группа микроорганизмов, используемых для учета степени загрязнения окружающей среды различными органическими и другими веществами. Эта группа очень обширна и разнообразна. В нее входят грибы, бактерии, актиномицеты, водоросли, простейшие и другие организмы, обитающие в почве, воде, воздухе.

Среди представителей фито- и зоопланктона, обитателей почвы и воздуха выделено более 800 видов, которые особенно чувствительны к различным органическим веществам, находящимся во взвешенном или растворимом состоянии. Одни из этих организмов нуждаются в этих веществах (как в пище), другие, наоборот, трудно или совсем не выносят присутствия этих веществ. Одни из них для сохранения вида в неблагоприятных условиях превращаются из вегетативной формы в споры или цисты и в таком состоянии десятилетиями могут сохраняться в воде, почве, не теряя своей жизнеспособности. Есть и такие, которые не выдерживают изменений рН среды, химического состава, влажности, температуры, количества и качества питательных веществ, продолжительности светового дня, радиоактивного облучения, глубины водного или почвенного слоя, высоты воздушного слоя и пр.

Особенно остро эта зависимость выражена у водных организмов – всякие изменения в окружающей среде сказываются на скорости их размножения и развития.

Это и послужило обоснованием для использования водорослей в качестве биологических индикаторов, позволяющих судить о степени и характере загрязнения воды, почвы, воздуха.

Водоросли участвуют в процессах создания лечебных грязей, являются продуцентами, используемых в медицине, витаминов и антибиотиков (Scenedesmus obliguus), биологически активных веществ.

В медицинской практике водоросли используются для получения йода, брома, препаратов применяемых с профилактической и лечебной целью при склерозе, нарушении деятельности щитовидной железы, при лечении долго не заживающих ран (Laminaria digitata, L.clustoni).

Существуют съедобные водоросли, являющиеся источниками белков, жиров, углеводов.

Водоросли, и особенно Chlorella pyrenoidosa, Scenedesmus quadricauda, используются в качестве объектов при проведении физиологических и биохимических исследований.

Водоросли, живущие в почвах, повышают их плодородие, участвуют в образовании гумуса, в результате чего свежеобвоженные субстраты становятся пригодными для жизни других растений.

Наземные водоросли выполняют роль пионеров растительности на бесплодных, каменистых участках суши, как накопители первичного гумуса, подготавливающего возможность поселения других растений.

Почвенные водоросли имеют значение для животноводства, их используют для подкормки животных.

Для повышения урожайности водоросли используют для удобрения почвы.

Водоросли играют большую роль в обогащении почв азота за счет азота атмосферы.

Около 30 видов синезеленых водорослей являются активными фиксаторами свободного азота из воздуха. Среди них такие виды как: Cylindrosperum musciola, Tolypothrix tenuis, Anabaena cylindrical, Anabaena oryzae, Anabaena variabilis, Nostoc prunifirme, Nostoc paludosum, Nostoc muscorum, Nostoc coeruleum, Nostoc lincria, Nostoc microsporicum, Nostoc punctiforme, Nostoc flagelliforme.

Среди почвенных водорослей, также как и среди водных, есть активные продуценты витаминов и других биологически активных веществ. Зеленые водоросли Chlorella vulgaris, Scenedesmus obliguus вырабатывают антибиотики, ингибирующие некоторые патогенные бактерии.

Почвенные бактерии являются биоиндикаторами промышленных загрязнений, токсичности почв после внесения гербицидов или других ядов.

Учет общего количества водорослей или дифференцированный учет групп водорослей в одном грамме почвы может быть использован при оценке токсического действия пестицидов на микрофлору почвы.

Первые гипотезы о значении водорослей в жизни почвы появились более 100 лет тому. С тех пор многократно была доказана повсеместная распространенность почвенных водорослей и их роль в заселении различных безжизненных субстратов, и создании самостоятельных групп или альгоценозов в сочетании с другими организмами.

На поверхности почвы и в ее верхних слоях водоросли в процессе фотосинтеза создают органическое вещество и являются продуктами биогеоценоза.

Почвенные водоросли – это единственная группа продуцентов наземных экосистем, у которой продукция в большинстве случаев во много раз превышает биомассу. Особенно это проявляется при преобладании Nostoc commune.

Почвенные водоросли являются центрами интенсивного развития гетеротрофных микроорганизмов.

Основная форма взаимодействия почвенных водорослей с бактериями, обитающими в почве – ассоциация. Существуют многочисленные примеры сосуществования водорослей с грибами.

Водоросли, как активные компоненты почвенной микрофлоры, участвуют в общей жизнедеятельности биогеоценоза и играют важную роль в биологическом круговороте зольных элементов.

Формируясь под влиянием основных компонентов биогеоценоза – растительного покрова и почвы, водоросли отражают их особенности и могут быть индикаторами их генезиса и состояния.

Водорослям, как и другим живым организмам, оказывать на окружающую природу и негативное влияние.

Так, отрицательное значение водорослей связано с цветением воды в водохранилищах и каналах, засорением агрегатов электростанций, фильтров водопроводных сетей, замором рыб. Встречаются токсические водоросли.

Водоросли могут засорять системы водоснабжения и водоемы по мере их эвтрофизации. Водоросли могут вызывать красные приливы, служить причиной отравления и заболевания людей и животных.

К планктонным водорослям, вызывающим нередко цветение воды, относятся Microcystisssss aeruginosa, Woronichinia noegeliana, Aphanisomenon flos – aquae, Anabaena Lemmermanii, Anabaena Scheremetievi, Rivularia echinulata.

В большинстве случаев синезеленые водоросли вызывают цветение в пресных водоемах и реже – в морской воде.

В озерах, прудах и реках с медленно текущей водой цветение чаще всего вызывают виды родов Anabaena, Microcystis, Gleotrichia.

В клетках планктонного вида Gloertichia gechinulata имеются газовые вакуоли. При массовом размножении клетки покрывают всю водную поверхность в результате чего в водоеме нарушается воздухообмен, а это в свою очередь вызывает замор рыб.

Чрезмерное накопление в водоеме водорослей отрицательно сказывается на качестве воды, ее вкуса и запаха, может вызвать массовое отравление скота, приходящего на водопой, способствует заилению водоема и его обмелению.

Водоросли выделяю альготоксины (вызывающие токсикозы и даже смерть) и другие активные метабллиты с аллергическим, мутаногенным и канцерогенным действием Некоторые виды водорослей выделяют также вещества проявляющие антигормональную, бактерицидную, инсектицидной, фунгицидную активность.

Накопление в водоеме ядовитых веществ, продуцируемых живыми клетками или выделяющихся при их гибели и разрушении, оказывает губительное действие на живые организмы.

Чаще всего появление токсических веществ при цветении водоема связано с массовым размножением видов синезеленых водорослей родовAphanizomrnon, Microcystis, Nostoc, Anabaena, Nodularia, Gloeotrichia и вида золотистых водорослей Primnesium parvum.

Появление токсических морских вод известно с давних времен. В настоящее время определены и виды морских водорослей, выделяющие токсические и пигментные вещества, от действия которых гибнут люди, морские птицы, моллюски, рыбы и другая морская живность.

Красное цветение морской воды вызывает Haematococcus pluvialis.

Токсические вещества выделяют виды Gonyaulax catenella, Gonyaulax monilata, Gymnodinium breve, Gymnodinium veneficium, Nodularia spumigena, Gloeotrichia echinulata, Oscillatoria vauch, Nostoc rivulare.

Виды рода Gimnodinium днем вызывают желтое, ржавокрасное, мутнорозовое, а ночью – серебристобелое цветение моря.

Выделяют токсические вещества и вызывают цветение моря также виды родов Nactiluca, Cyricistis, Ceratium.

Отравляющее действие синезеленых водорослей связано с фенолами, которые они продуцируют и выделяют в окружающую среду. У людей эти токсические вещества вызывают поражение желудочно – кишечной, дыхательной, мышечной, кожно – слизистой систем. Кроме того, у людей развиваются аллергические явления, конъюнктивиты, зуд носа и глаз, опухание век, астма, дерматит.

Отравляющее действие этих токсинов на людей может проявиться опосредовано через отравленных рыб или птиц, съевших отравленную рыбу.

Токсическое действие ядовитых метаболитов синезеленых водорослей при употреблении отравленной воды животными (крупный и мелкий рогатый скот, овцы, лошади, собаки и др.) и птицами (чайки, утки и др.) проявляется в возникновении сильной слабости, тошноты и рвоты, сильной жажды, поноса с примесью крови, шелушения слизистой, полостных кровоизлияний, асцитов.

Поражение нервной системы у лошадей, кошек, собак, диких животных, прибрежных птиц проявляется в виде судороги, неуверенной походке, подергивания и мигания глаз, вытягивания шеи, понижения температуры тела, оцепенения, летаргии, закупорки мозговых и спинномозговых кровеносных сосудов и оболочек мозга. Развиваются поражение печени и селезенки, вздутие и расширение сердца, поражение перикарда.

Прижизненно экстрагируемые водорослями полисахариды, гидролизуемые бактериями на моно- и олтгосахариды, ухудшают качество природных вод и придают им неприятный запах и вкус, обуславливают тем самым биологическую непригодность вод.

Особое значение для водоснабжения имеют некоторые виды водорослей, продуцирующие ароматические вещества, обеспечивающие трудно устраняемые запах и вкус – рыбный, травянистый, затхлый, прелый, гераниевый, землистый, гнилостный и пр.

Ароматические водоросли встречаются среди диатомовых, зеленых, синезеленых, золотистых, пирофитовых.

При развитии астерионелл (Asterionella) у воды появляются землистый, гераниевый и рыбный запахи. Виды рода Synura способствуют возникновению огуречного и рыбного запахов, представители рода Melosira обеспечивают наличие запаха несвежего рыбьего жира, а при массовом развитии видов Anabaena и Aphanizomenon у воды появляются травянистый, настурциевый, гнилостный и плесневой запахи.

На продукцию ароматических веществ водорослями влияют концентрация азотсодержащих веществ, физиологическое состояние водоросли, наличие факторов, изменяющих процессы метаболизма, количество сбрасываемых в водоем промышленных и сточных вод.

Аминокислоты, продуцируемые такими водорослями как Anabaena cylindrical, Chlorella vulgaris, Navicula pelliculosa ингибируют процессы метаболизма водорослей и других организмов.

При массовом размножении водорослей – обрастателей возникают трудности в водоснабжении и эксплуатации водного транспорта и гидротехнических сооружений.

Обрастание водорослями водного транспорта ниже ватерлинии, вызывает замедление скорости передвижения этих судов. Массовой размножение диатомовых водорослей в толще морской воды обуславливает помутнение перископных линз подводных лодок.

Массовое развитие планктонных и бентосных водорослей вызывает механические помехи на гидротехнических сооружениях, уменьшает пропускную способность каналов, водохранилищ и других судоходных водоемов, существенно ухудшает качество воды по гидрохимическим и биологическим параметрам, приводит к нарушению работы водоочистных сооружений и способствует затруднению очистки воды на этих сооружениях

Массовое развитие микроскопических водорослей способствует увеличению расходов реагентов, применяемых для очистки воды и удалению трудно устраняемых запахов.

Микроскопические водоросли родов Cladophora, Enteromorpha, Spirogira, Oedogonium, Chara вызывают серьезные помехи в эксплуатации водоемов практически всех типов.

Массовое развитие водорослей способствует зарастанию водоемов и обрастанию водопроводов.

Мир водорослей настолько разнообразен, что невозможно найти место на нашей планете, где бы не встречались эти растения. Водоросли обитают везде: в океанах, морях, реках, озерах, на почве, скалах, деревьях. Даже в снегу и горячих источниках можно встретить эти удивительные растения.

Предлагаем вашему вниманию серию статей об экологических особенностях водорослей.

Роль водорослей в природе колоссальна. Они являются первопищей для многих организмов, в первую очередь ракообразных с фильтрационным типом питания. Рачков в свою очередь поедают рыбы. На долю водорослей приходится, по сведениям разных авторов, от 30 до 50% выделяемого растениями кислорода.

Водоросли, так же как и наземные растения, помогают нам решать проблему избыточного количества углекислого газа в атмосфере. Порой они развиваются в таких больших количествах, что окрашивают воду в различные цвета.

В третьих, водоросли очень красивые существа. К примеру, диатомовые водоросли (на микрофотографии морские центрические диатомеи) являются обширной группой одноклеточных морских и пресноводных водорослей. Обратите внимание на радиальную симметрию, которая взята за основу в систематике этой группы водорослей. Они являются пищей для криля, которым в свою очередь питаются рыбы, киты, птицы и другие морские существа.

Способность водорослей адаптироваться к разнообразным условиям уникальна. Они живут в дождевой воде с минимальным количеством солей, в соленых и сверхсоленых водоемах, на высокогорных льдах и поверхности раскаленных скал. Водоросли обнаруживаются даже в верхних слоях почвы, куда едва проникает солнечный свет. Они первыми заселяют безжизненный субстрат скал и почв, создавая условия для дальнейшего развития плодородия почв.

Водоросли, как и все растения, на свету синтезируют органические вещества. И в то же время многие их них способны жить за счет гетеротрофного питания, т.е. потреблять уже готовые органические вещества.

Благодаря широкому распространению, водоросли играют важную роль в круговороте веществ в природе. Водоросли водоемов являются основной пищей планктонных, бентосных (донных) организмов, некоторых видов рыб.

Многие виды водорослей (особенно красные и бурые) с давних пор используются человеком в пищу. Из водорослей получают агар-агар, альгинат натрия, некоторые кислоты, используемые во многих отраслях промышленности. Выброшенные на берег водоросли с давних пор используются в виде кормовых добавок в пищу сельскохозяйственным животным и птице, а после перегнивания - в качестве удобрения для растений.

Развитие промышленности требует новых источников органических и неорганических веществ. Возрастающие потребности способствуют интенсивному культивированию в морях многих видов водорослей. Человеком получены различные штаммы микроскопических водорослей, богатых белками, жирами, углеводами. Некоторые виды водорослей используются в качестве пищевых добавок для человека, в качестве корма животным и птицам. Водоросли используются для получения из них метана.

Водоросли, как и указывает название, - это растения, обитающие в воде. В ботанике термин «водоросли» применяют в более узком смысле, применительно к низшим, лишенным расчленения на стебель и листья, фотосинтезирующим растениям. Это связано с тем, что в воде обитают и высшие водные растения.

Однако значительная часть водорослей встречается и на суше: на поверхности и приповерхностном слое почвы, на скалах, стволах деревьев, постройках и даже … в волосах белых медведей, живущих в зоопарках или волосах ленивцев, обитающих во влажных лесах Южной Америки. Однако жизнь этих растений как бы то ни было связана с водой.

Эти водоросли легко переносят высыхание, промерзание и очень быстро оживают при малейшем увлажнении. Стоит появиться достаточному количеству влаги, как поверхность предметов покрывается зеленым или красным (в зависимости от видового состава) налетом.

Некоторые водоросли обитают в качестве симбионтов внутри организма некоторых животных (простейших, кораллов, червей, моллюсков и других). Есть виды водорослей встречающихся во льдах (на нижней или верхней поверхности) и горячих источниках. Так что термин «водоросли» представляет собой скорее экологическое понятие, означая жизненную форму растительных организмов, объединенных в одну группу образом жизни.

Цветов и семян у водорослей нет. Тело водорослей - слоевище или таллом (от греч. «таллос» - молодая ветка, побег) - по своему строению значительно проще, чем у мхов, папоротников и других наземных растений, часто отсутствует дифференциация клеток на ткани. Споры - органы размножения водорослей, как правило, лишены твердой оболочки. Клеточная стенка водорослей состоит из целлюлозы, пектиновых веществ, кремнийорганических соединений (у диатомовых водорослей), альгина и фуцина (бурые водоросли). В качестве запасных веществ представлены крахмал, гликоген, полисахариды, липиды.

На основании различий в строении клетки (ядерного аппарата, набора пигментов, клеточной оболочки, запасных веществ и других) различают прокариотические и эукариотические водоросли.

У прокариотов (от лат. «про» - перед, раньше, вместо и греч. «карион» - ядро) клетки не имеют ограниченного мембраной ядра. К ним относятся все бактерии и синезеленые водоросли (или же Cyanobacteria - цианобактерии). У эукариотов (от греч. «эу» - хорошо, полностью и «карион» - ядро) клетки содержат оформленное ядро. К эукариотам относятся все высшие животные и растения, а также одноклеточные и многоклеточные водоросли, грибы и простейшие.

Водоросли объединены в отделы, названия которых в основном совпадают с характером их окраски, а у некоторых - и с особенностями строения.

Прокариотические водоросли (Procaryota):

1. Синезеленые водоросли (Cyanophyta);

2. Прокариотические (первичные) зеленые водоросли (Prochlorophyta).

Эукариотические водоросли (Eukaryota):

1. Эвгленовые водоросли (Euglenophyta);

2. Динофитовые водоросли (Dinophyta);

3. Криптофитовые водоросли (Cryptophyta);

4. Рафидофитовые водоросли (Raphidophyta);

5. Золотистые водоросли (Chrysophyta);

6. Диатомовые водоросли (Bacillariophyta);

7. Желтозеленые водоросли (Xanthophyta);

8. Красные водоросли (Rhodophyta);

9. Бурые водоросли (Phaeophyta);

10. Зеленые водоросли (Chlorophyta);

11. Харовые водоросли (Charophyta).

Необходимо отметить, что систематика водорослей полностью не устоялась, поэтому некоторые исследователи используют иную систематику, немного отличающуюся от приведенной выше.

Несмотря на то, что история изучения водорослей насчитывает несколько столетий, среди специалистов все еще нет единого мнения относительно положения их в общей классификации. Это в первую очередь относится к синезеленым, а также ко всем тем водорослям, которые снабжены органами движения - жгутиками (почти все Euglenophyta, большая часть Dinophyta, отдельные классы Xanthophyta, Chlorophyta).

Синезеленые и прокариотические зеленые водоросли относят к прокариотам (т.е. к неядерным организмам), так как их клетки лишены оформленного ядра.

Отдел прокариотические (первичные) зеленые водоросли выделен в отдельную группу совсем недавно - в 1976 году - после описания одного рода Prochloron и одного входящего в него вида Р. didemni (Lewin.). Эта группа водорослей занимает промежуточное положение между прокариотами - бактериями и cинезелеными водорослями, с одной стороны, и эукариотами (ядерными организмами) - зелеными водорослями, с другой. С бактериями их роднит отсутствие оформленного ядра, с синезелеными - отсутствие ядра и способность к фотосинтезу, с зелеными - наличие хлорофилла «b». Разными исследователями вопрос о систематической определенности этой малочисленной группы водорослей решается по-разному, в зависимости от взятого за основу критерия.

В последнее время синезеленые водоросли Cyanophyta стали относить к бактериальным, а не к растительным организмам по ряду признаков (в ботанической литературе чаще всего используется термин «синезеленые водоросли», а в микробиологической - «цианобактерии»). У Cyanophyta, в отличие от эукариот, нет оформленного ядра, что сближает их с другими прокариотами, основу клеточных стенок составляет гликопептид муреин, половой процесс или отсутствует, или протекает по типу коньюгации, то есть слияния протопластов двух вегетативных клеток.

Жгутиковые формы имеют признаки, как растений, так и животных, что послужило поводом для объединения их всех в общую систематическую группу «жгутиковых организмов» и включения их в систему животного мира. В отличие от животных-жгутиконосцев, водоросли имеют хлорофилл и хроматофоры (от греч. «хрома» - цвет, «форео» - несу). Однако в темноте они могут утрачивать пигменты, становятся бесцветными и существуют за счет поглощения растворенных в воде органических веществ. Некоторые виды одноклеточных водорослей (из Dinophyta) способны, подобно простейшим, захватывать органические частицы.

Наука, изучающая водоросли, - альгология (от лат. «альга» - водоросли, «логос» - наука) - рассматривает вопросы систематики, морфологии, физиологии, экологии водорослей и их практическое значение. Альгология является одним из разделов ботаники, тесно связана с микробиологией и гидробиологией.

При реализации проекта использованы средства государственной поддержки, выделенные в качестве гранта в соответствии c распоряжением Президента Российской Федерации от 29.03.2013 № 115-рп») и на основании конкурса, проведенного Обществом «Знание» России.

Материал подготовлен к 90-летию кафедры гидробиологии МГУ.

А.П.Садчиков,

профессор МГУ имени М.В.Ломоносова, вице-президент Московского общества испытателей природы

Водоросли являются древнейшими низшими фотосинтезирующими организмами, живущими преимущественно в водной среде. Многие из них вторично приспособились к жизни в почве и некоторых наземных местообитаниях. По данным ученых, в мире насчитывается до 40 тыс. видов водорослей. Роль водорослей в природе и хозяйственной деятельности человека чрезвычайно велика.

Водоросли – это основные образователи органического вещества в водоемах. Донные водоросли в Баренцевом море у Мурманского побережья дают до 15 кг сырой массы на метр. В некоторых районах Антарктиды биомасса водорослей составляет в среднем 70 т/га, у Калифорнийского побережья – 100 т/га. Годовая продукция донных водорослей в Баренцевом море составляет до 231 т органического вещества в сырой массе на гектар, а фитопланктона – до 30–50 т/га. По расчетам ученых вклад водорослей в общую продукцию органического углерода на планете составляет около 80 %.

Как мощный и неиссякаемый источник органического вещества водоросли, особенно планктонные формы, являются постоянной кормовой базой и первоначальным звеном в пищевых цепях для многих беспозвоночных животных и рыб. Заросли водорослей служат пристанищем и укрытием для многочисленных видов животных, местом нереста рыб.

В водной среде водоросли – почти единственный продуцент свободного кислорода, необходимого для дыхания разнообразных водных организмов и для жизнедеятельности аэробных бактерий, грибов и других организмов – активных агентов самоочищения загрязненных естественных вод. Вместе с тем водоросли участвуют в утилизации органических соединений, солей тяжелых металлов, радионуклидов.

Однако при массовом развитии водоросли могут быть причиной вторичного биологического загрязнения и интоксикации природных вод. В последние десятилетия в различных водоемах участились случаи "цветения" воды, возникающие вследствие массового развития одного или нескольких наиболее приспособленных к данным условиям видов водорослей. Прижизненные выделения водорослей и ядовитые вещества, которые образуются при их распаде, губительно действуют на животные организмы.

Водоросли играют большую роль в общем балансе кислорода на нашей планете. В наземных местообитаниях совместно с другими микроорганизмами они являются пионерами растительности. При отсутствии органического вещества поверхность скальных пород, вулканического пепла, промышленных отвалов и других субстратов заселяется прежде всего микроорганизмами одноклеточных водорослей и сопутствующих им бактерий. В результате происходит первичное накопление органических веществ.

Водоросли, которые живут на почве и в почве, повышают ее плодородие. Особенно это касается азотфиксирующих синезеленых водорослей, или цианобактерий.


Водоросли нередко вступают в симбиоз с грибами, образуя единый организм – лишайник. Особенно велика роль лишайников в растительном покрове тундровых, лесотундровых и лесных экосистем.

Проблема продовольствия, обеспечение растущего населения планеты полноценным питанием стали важным экономическим и политическим фактором в современном мире. В связи с этим растет интерес к новым, нетрадиционным источникам белка, жиров, углеводов, витаминов, ферментов и к другим физиологически активным веществам. Водоросли в этом плане являются весьма перспективными организмами. Они содержат большой процент белка (до 70 % сухой массы), включающего все аминокислоты, необходимые для нормального питания человека.

Выход белка на единицу площади за единицу времени при выращивании водорослей на один-три порядка превышает таковой по сравнению с другими традиционными источниками (бобовыми, злаками, крупным рогатым скотом и др.). Водоросли – богатейший источник витаминов, микроэлементов и других физиологически активных веществ. Содержание витаминов в 100 г хлореллы превышает суточную потребность в них человека. Поэтому рекомендуется вводить водоросли в рацион больных сердечно-сосудистыми и желудочными заболеваниями.

Морские водоросли используются человеком в пищу с 850 г. до н. э. В настоящее время как продукт питания они употребляется главным образом населением Востока и островов Тихого океана. Известно около 170 видов съедобных макроскопических водорослей, из них 81 вид красных, 54 – бурых, 25 – зеленых, 8 – синезеленых.

Наибольшей известностью у нас пользуется так называемая морская капуста. Это главным образом водоросль ламинария и близкие к ней (например, алария и ундария). Широко известна и высоко ценится красная водоросль порфира, которая используется в пищу под названием красный морской салат. Такое же применение имеет зеленая морская водоросль ульва, которую часто употребляют в сыром виде в качестве салата.

В последние 50 лет значительное развитие получила аквакультура водорослей. В довольно больших количествах выращиваются виды родов ламинария, порфира, макроцистис, ундария, спирулина и др. В Японии, например, из 10 млн т морских продуктов, получаемых ежегодно, 1 млн т поступает за счет аквакультуры. В пищевом рационе японцев водоросли составляют почти 20 %.

В пищу человек использует микроскопическую водоросль – хлореллу, а также несколько видов синезеленых водорослей. Широко культивируется синезеленая водоросль спирулина, содержащая более 60 % белка. Энергетическая ценность пищи изводорослей невысока, но не это определяет их пищевое значение. В первую очередь оно обусловливается наличием в них разнообразных биологически активных веществ, таких как свободные аминокислоты, полиненасыщенные жирные кислоты и др. Водоросли, например, содержат моно- и дийодтирозин, успешно применяемые при лечении заболеваний щитовидной железы, и полиненасыщенные жирные кислоты, антиоксидантная активность которых превосходит соответствующую активность витамина Е. Хотя часть полисахаридов водорослей не расщепляется ферментами пищеварительного тракта, они способствуют выведениюиз организма токсических продуктов метаболизма, а также поступающих в организм извне солей тяжелых металлов и радионуклидов. При этом низкомолекулярные полисахариды, поступающие в кровь, способны сорбировать и выводить из организма депонированные стронций и кадмий.

В водорослях в достаточно больших количествах содержатся практически все необходимые для нормального развития организма минеральные элементы. При этом особую ценность минерального состава водорослей для организма человека и животных определяет то, что содержание натрия у них значительно превышает содержание кальция. Какизвестно, соотношение между этими элементами в организме влияет на растворимость солей кальция. При остаточном содержании натрия не происходит накопления кальция и, как следствие этого, не протекают процессы склеротизации кровеносных сосудов и образования камней в почках и печени. Высокое содержание в водорослях калия обеспечивает его потребность для осуществления многих важнейших физиологических функций организма. Хлор стимулирует деятельность лимфы во всем теле и способствует очищению печени и почек. Совместное воздействие серы и хлора приводит к очищению слизистой оболочки желудка и кишечника.

Богатый минеральный состав и высокое содержание витаминов и других биологически активных веществ обусловливает то, что потребление водорослей наилучшим образом обеспечивает организм строительным материалом для образования в органах кроветворения кровяных клеток, особенно красных кровяных телец. Вместе с тем следует учитывать, что бурые водоросли содержат очень высокое количество хлора, калия, серы, магния и йода; при неумеренном употреблении водоросли могут оказать неблагоприятное воздействие на организм человека, например может возникнуть гипериодизм.

В качестве пищевого продукта водоросли используются как в свежем, так и в консервированном виде, а также при изготовлении хлебобулочных и кондитерских изделий.

Достаточно широко водоросли используются в качестве корма и кормовых добавок в рационе животных. В Европе и Северной Америке крупный рогатый скот, овцы и лошади часто пасутся на литорали. Применение водорослей в животноводстве повышает устойчивость животных к различным заболеваниям, ускоряет их рост и размножение, повышает качество товарной продукции.

Данные физиолого-биохимических исследований свидетельствуют о том, что наиболее перспективным первичным утилизатором солнечной энергии являются микроводоросли. Так, у некоторых зеленых водорослей КПД фотосинтеза составляет 21 %, т. е. более чем в 200 раз превышает среднее значение КПД фотосинтеза на земном шаре.

В закрытых полностью автоматизированных опытных установках космического назначения при искусственном освещении продуктивность хлореллы составляет 100–140 г сухого вещества на 1 м в сутки. Это соответствует 1000–1400 кг/га в сутки или 360–500 т сухой биомассы на 1 га в год.

Энергию, получаемую за счет фотосинтеза водорослей с последующей наиболее рентабельной ее конверсией в газ, считают конкурентоспособной в глобальных масштабах с ядерной энергией. Уже созданы установки для получения метана из водорослей, выращенных на сточных водах. Продуктивность их составляет до 80 т/га сухой биомассы в год, которая может дать 74 тыс. кВт часов электроэнергии.

Разработанная биотехнология получения биогаза из биомассы водорослей, выращенных на сточных водах, позволяет одновременно решать вопросы очистки стоков, охраны окружающей среды от загрязнения, получения дополнительных источников энергии и удобрений, позволяющих экономить природные ресурсы.

Использование водорослей в качестве источника промышленного сырья имеет сравнительно длительную историю. В начале XIX в. из морских водорослей начали получать йод, несколько позже – бром, натрий, калий и другие элементы. Наибольшую ценность из органических веществ, извлекаемых из морских водорослей, представляют фикоколлоиды (агар, агароид, агароза, каррагенин, нори, агаропектин), альгиновая кислота и ее соли – альгинаты.

Фикоколлоиды, содержащиеся в красных водорослях (филлофора, анфельция, грацилярия, гелидиум и др.), широко используются в пищевой, кондитерской, фармацевтической, химической, микробиологической, текстильной, бумажной, косметической и других отраслях промышленности. Агар в больших количествах потребляется для научных целей, санитарно-эпидемиологической службы, техники.

Альгинаты и альгиновая кислота, продуцентами которых являются бурые водоросли, применяются в химической промышленности для стабилизации растворов и суспензий, а также при изготовлении консервов, фруктовых соков, хлебобулочных и кондитерских изделий, при производстве клея, лаков, красок, пластмасс, синтетических волокон, строительных материалов, в полиграфии, в текстильной и фармацевтической промышленности (при изготовлении лечебных мазей, паст и др.).

Маннит, получаемый из бурых водорослей, используется в фармакологии (лекарства для диабетиков), при изготовлении синтетических смол, красок, бумаги, взрывчатых веществ, при выделке кож. Из морских водорослей получают дорогостоящие дефицитные медицинские препараты для лечения лучевой болезни, для обработки незаживающих ран, заменители крови и др.

Обильное развитие водорослей в прошедшие геологические эпохи привело к формированию мощных горных пород. За многие тысячелетия водоросли образовали известняки толщиной до 1100 м, простирающиеся нередко на несколько километров. Всем известный писчий мел на 95 % состоит из остатков известкового панциря золотистых водорослей кокколитофорид.

Из массового скопления панцирей диатомовых водорослей образовались диатомиты, мощность которых достигает нескольких сотен метров. Диатомиты являются источником около 150 разнообразнейших продуктов, в том числе хрусталя, жидкого стекла, шлифовальных материалов, сорбентов, оптического кварца и стекловолокна, необходимых для развития электроники, энергетики и других отраслей народного хозяйства. Диатомиты используются при изготовлении динамита и бездымного пороха, в различных отраслях легкой, химической и металлургической промышленности. Диатомит – легкий, дешевый, огнеупорный материал, с высокими звуко- и теплоизоляционными свойствами.

Горючие сланцы, некоторые угли, возможно и нефть тоже имеют водорослевое происхождение.

Водоросли – исходный материал, из которого образовались в сравнительно неглубоких водоемах органические илы – сапропели, являющиеся источником получения кокса, смолы, бензина, керосина, парафина, горючих газов, органических кислот, спиртов, смазочных масел, аммиака, пластмасс, изоляционных лаков, красок, бумаги, фармацевтических препаратов и др. В больших количествах сапропели используются как топливо, как высококачественное органическое удобрение и на корм скоту.

Из водорослей континентальных водоемов образованы лечебные грязи, применяемые при лечении ревматизма, подагры, некоторых расстройств нервной системы и других заболеваний. Известно, что еще в I тыс. до н. э. восточная медицина использовала их при лечении ряда заболеваний. В настоящее время обнаружено, что морские водоросли содержат самые разнообразные по своей химической природе вещества, положительно влияющее на работу сердца, желудка, кишечника, эндокринных желез, нервной и иммунной систем, а также что они обладают противосклеротическим действием, улучшают процессы кроветворения, являются антиоксидантами и задерживают процессы старения организма.

Наряду с созидательной деятельностью водоросли принимают участие в процессах «выветривания», разрушения горных пород. К экологической группе так называемых сверлящих принадлежат синезеленые, зеленые и красные водоросли. Разрушая минеральный субстрат, водоросли получают из него необходимые минеральные соли.

Учитывая все возрастающий интерес к водорослям со стороны ученых и практиков, уже в недалеком будущем можно ожидать открытия у них новых уникальных органических соединений с полезными для человека свойствами, выявления новых аспектов их использования в различных отраслях народного хозяйства и медицины.

Водоросли – древнейшие фотосинтезирующие организмы нашей планеты, создавшие кислородную атмосферу. Велико значение водорослей в биосфере как первичных продуцентов органического вещества. Повсеместное распространение водорослей в природе и нередко массовое их развитие в водоемах разного типа, на наземных субстратах и в почве определяют огромное их значение в жизни человека, в его хозяйственной деятельности. В настоящее время водорослям отводят важную роль в решении ряда глобальных проблем, таких как продовольственная, энергетическая, охрана окружающей среды, освоение недр Земли, богатств Мирового океана, космического пространства, получение новых источников промышленного сырья, стройматериалов, фармацевтических препаратов, биологически активных веществ, новых объектов биотехнологии.

Царство Cyanobiontes – оксигенные фототрофные бактерии

К царству Cyanobiontes относятся прокариотические, грамотрицательные, одиночные или собранные в колонии тонкостенные клетки, многоклеточные организмы. Фотосинтез идет с выделением кислорода. Содержат хлорофиллы а , реже b , у части встречаются фикобиллипротеины. В качестве доноров кислорода, как правило, используют воду. Это аэробные и факультативно аэробные организмы.

Отдел Синезеленые водоросли (Cyanophyta ), или Цианеи, или Цианобактерии

Синезеленые водоросли, или цианеи, представляют собой древнейшую группу организмов, широко распространенных в разнообразных водных и вневодных биотопах. Отдел синезеленых водорослей объединяет около 2000 видов. Их индивиды могут быть одноклеточными, колониальными и многоклеточными, от микроскопических до крупных колониальных структур, прикрепленных или неприкрепленных к субстрату. Несмотря на полное отсутствие жгутиковых стадий, ряд синезеленых водорослей способен к скользящему движению. Типичная окраска таллома – сине-зеленая. Однако в зависимости от соотношения пигментов она может варьировать и быть желтовато-зеленой, зеленой, оливковой и др.

Клетка одета оболочкой, нередко легко ослизняющейся (рис. 3). Клеточная оболочка, или клеточная стенка, обычно состоит из четырех четко разграниченных слоев. Кнаружи от цитоплазматической мембраны расположен электронно-прозрачный слой L 1 , за ним – электронно-плотный слой L 2 , состоящий из муреина – основного компонента стенки бактерий. Слой L 2 определяет прочность оболочки. За муреиновым слоем следует электронно-прозрачный слой L 3 и мембраноподобный L 4 . Поперечные стенки, или септы, нитчатых форм состоят только из слоев L 1 и L 2 . В септах нитчатых форм имеются поры, через которые соединяются цитоплазматические мембраны с протопластами соседних клеток. Такие цитоплазматические тяжи называются микроплазмодесмами. Установлено, что между двумя вегетативными клетками в септе анабенопсиса может быть до 4000 микроплазмодесм. Поры имеются и в продольных стенках нитей.

У многих цианей над клеточной стенкой расположены слизистые слои. Они могут быть толстыми и плотными в виде чехлов или капсул, объединяющих обычно несколько клеток, или тонкими и жидкими. Тонкая структура слизи представляет собой фибриллярную, или волокнистую, систему, в которой фибриллы в аморфном матриксе располагаются либо по спирали, либо беспорядочно.

Цитоплазма синезеленых водорослей вязкая. Преимущественно в ее периферической части локализованы тилакоиды, которые никогда не образуют групп и располагаются в цитоплазме клетки обособленно. В мембранах тилакоидов содержатся пигменты. К ним относятся хлорофилл а , каротиноиды (α-, β-, ε-каротин и ксантофиллы – эхиненон, зеаксантин, криптоксантин и др.), а также фикобилипротеиды – фикоцианин, аллофикоцианин и фикоэритрин. Последние в форме глобул (фикобилисом) располагаются на поверхности мембран тилакоидов. Центр клетки представлен нуклеоплазмой, в которой находятся фибриллы ДНК. Настоящие мембранные ядра у цианей отсутствуют. В ядерном материале (нуклеоиде) Cyanophyta , как и у бактерий, нет гистонов.

В цитоплазме клеток цианей имеются рибосомы и нередко газовые вакуоли (псевдовакуоли). Последние состоят из плотноупакованных мембранных субъединиц – газовых везикул, имеющих форму полых цилиндрических трубок с коническими шапочками на концах. Мембраны газовых везикул состоят из белков.

Запасными веществами являются гликоген, волютин (полифосфатные гранулы), цианофициновые гранулы, липидные включения.

Только немногие синезеленые водоросли – одноклеточные организмы. Большинство образует колонии или многоклеточные нити. Последние могут быть соединены в ложнопаренхимные колонии.

Нить, образованная путем деления клеток, где соседние клетки соединены друг с другом при помощи плазмодесм, называется трихомом. У одних форм все клетки нити (трихома) могут быть одинаковы. Это гомоцитные талломы. У других в нитях, состоящих в основном из вегетативных клеток, различают еще гетероцисты и акинеты . Гетероцисты и акинеты формируются из вегетативных клеток.

Гетероциста – клетка с сильно утолщенной стенкой, где кнаружи от слоев L 1 –L 4 развиваются еще пластинчатый слой, гомогенный и фибриллярный (рис. 4). В протопласте гетероцисты можно обнаружить единственные гранулярные структуры – рибосомы. При дифференцировке гетероцист происходит реорганизация мембранной системы – разрушение тилакоидов и формирование новых плотноупакованных мембран. В гетероцистах можно обнаружить только хлорофилл и каротиноиды, фикобилинов почти нет. Фибриллы ДНК в гетероцистах рассеяны по всей цитоплазме. В оболочках гетероцист в местах примыкания к соседним вегетативным клеткам остаются поровые каналы, которые у зрелых гетероцист закрыты пробками. В гетероцистах фиксируется в аэробных условиях атмосферный азот. По гетероцистам происходит распад нитей на отдельные части – гормогонии, которые дают новые талломы.

Другими специализированными клетками являются акинеты (споры) (рис. 5). Дифференцировка акинет из вегетативных клеток происходит следующим образом. Заметно утолщается муреиновый слой оболочки. Кроме того, вокруг клеточной стенки формируется широкая обвертка. В протопласте акинет синтезируется много запасных веществ, особенно цианофициновых зерен. Содержание ДНК резко возрастает в сравнении с ее содержанием в вегетативных клетках. Структура тилакоидов в акинете остается той же, что и в вегетативной клетке. В отличие от гетероцисты, у акинеты отсутствуют поровые каналы и покров окружает ее со всех сторон в равной мере. Акинеты могут долгое время выдерживать неблагоприятные условия, губительные для вегетативных клеток, и затем прорастать в новый таллом.

Большинство одноклеточных и колониальных форм размножается делением клеток пополам. Подавляющее большинство нитчатых цианей размножается гормогониями, которые образуются в результате распада нити на фрагменты. Обычно после некоторого периода движения гормогонии вырастают в новые нити. Многие гетероцитные нитчатые цианеи размножаются акинетами. Некоторые одноклеточные и колониальные формы образуют мелкие эндогенные клетки – эндоспоры или постепенно отшнуровывают от вершины материнской клетки экзоспоры. В качестве репродуктивных клеток цианей могут быть кокки – клетки без четко выраженных оболочек и планококки – клетки, способные к движению.

Половой процесс у синезеленых водорослей не отмечен.

В ископаемом состоянии синезеленые водоросли известны с докембрия. Возраст некоторых ископаемых цианей составляет свыше 3 млрд лет. Первыми возникли одноклеточные формы, не имеющие утолщенных клеточных покровов, затем одноклеточные с многослойными клеточными стенками, не прикрепленные и прикрепленные к субстрату. Позже появляются слизистые колонии и нитчатые талломы, состоящие из неветвящихся и ветвящихся нитей. Достигнув высокой степени дифференциации таллома еще в далекие геологические периоды, синезеленые водоросли с тех пор почти не изменились.

Благодаря способности к усвоению азота атмосферы при оксигенном фотосинтезе и высокой устойчивости к действию неблагоприятных факторов многие представители отдела Cyanophyta развиваются в условиях, которые непригодны для развития организмов, имеющих оформленное ядро. Они нередко поселяются на бесплодных, голых скалах, на продуктах извержения вулканов – пепле и туфе. Массовое развитие этих организмов возможно в горячих источниках. Известны синезеленые водоросли, живущие в Антарктиде, в пустынных районах. Они широко представлены в почве, на почве, камнях, коре деревьев и т.п. Нередки случаи массового развития цианей в планктоне эвтрофных водоемов, приводящие к «цветению» воды – нежелательного для человека явления. Синезеленые водоросли могут вступать в симбиоз с грибами, образуя талломы лишайников. Отдельные виды представителей отдела Cyanophyta могут использоваться в пищу, азотфиксирующие формы – для повышения плодородия почв, особенно в районах орошаемого земледелия. В последнее время разрабатываются способы промышленного культивирования некоторых видов Cyanophyta как продуцентов лекарственных препаратов и других ценных веществ (аминокислот, пигментов и др.).

В основу классификации синезеленых водорослей положены особенности строения клетки и таллома, формы размножения.

Класс Хроококкофициевые (Сhroococcophyceae )

Включает колониальные, реже одноклеточные формы. Клетки почти у всех не дифференцированы на вершину и основание. Размножение больше делением клеток надвое.

Основной порядок хроококкальные (Chroococcales ). Объединяет организмы в виде свободноплавающих слизистых колоний, реже в виде одиночных клеток (рис. 6).

Род микроцистис (Microcystis ). Распространенный представитель пресноводного планктона. Виды рода микроцистис при массовом развитии вызывают «цветение» воды. Колонии микроскопические, слизистые, сферические или неправильной формы, часто продырявленные. Клетки в колонии шаровидные, нередко с газовыми вакуолями, расположены обычно беспорядочно. Клетки делятся по разным направлениям.

Род мерисмопедия (Merismopedia ). Колонии плоские, пластинчатые, состоящие из одного слоя клеток. Клетки шаровидные (эллипсовидные), делящиеся поочередно в двух направлениях. Часто встречается в прибрежной зоне пресноводных водоемов между макрофитами.

Род глеокапса (Gleocapsa ). Клетки шаровидные, покрыты слизистой обверткой, одиночные или чаще в небольших колониях. При делении дочерние клетки окружаются собственными слизистыми обвертками, при этом материнская слизистая обвертка сохраняется. В результате многократных делений образуется система вставленных друг в друга слизистых обверток, в которых находятся клетки. Одни виды рода глеокапса живут в воде в виде бесцветных слизистых колоний, другие – на суше (сырой почве, скалах) в виде окрашенных в желтый, красный, фиолетовый и другие цвета налетов и корочек.

Класс Хамесифонофициевые (Chamaesiphonophyceae )

Класс объединяет одноклеточные, обычно эпифитные водоросли, клетки часто дифференцированы на основание и вершину, и нитчатые, которые состоят из изолированных клеток. Размножение эндоспорами и экзоспорами.

Порядок дермокарпальные (Dermocarpales ). Одноклеточные водоросли. Клетки дифференцированы на основание и вершину, прикреплены к субстрату. Живут одиночно или образуют скопления типа колонии. Пресноводные и морские формы.

Род дермокарпа (Dermocarpa ) (см. рис. 6). Клетки шаровидные, грушевидные или булавовидные, часто растут тесными группами. Эндоспоры образуются в результате деления протопласта клетки в трех направлениях и выходят через разрыв стенки на вершине материнской клетки или при ослизнении всей стенки.

Род хамесифон (Сhamaesiphon ) (см. рис. 6). Широко распространен только в пресных водах. Клетки эллиптические, грушевидные или пальцевидные, отшнуровывают на вершине шаровидные экзоспоры, отделяющиеся обычно по мере созревания.

Класс Гормогониофициевые (Hormogoniophyceae )

Самый крупный класс цианей, включает нитчатые формы, у которых протопласты соседних клеток соединены плазмодесмами. Размножение – гормогониями , специальными фрагментами нитей (трихомов), способных к активному движению и прорастанию новыми особями. Многие представители образуют акинеты (споры).

Порядок осциллаториальные (Oscillatoriales ). К порядку осциллаториальных относятся трихальные (нитчатые) гомоцитные водоросли. Гетероцисты и акинеты отсутствуют.

Род осциллатория (Oscillatoria ) (рис. 7). Многочисленные представители рода широко распространены и встречаются в виде крупных слизистых лепешек, плавают на поверхности стоячих, обычно сильно загрязненных водоемов. Осциллатория часто развивается в виде сине-зеленых пленок на илистом дне, на влажной почве.

Неветвящиеся трихомы осциллатории сложены из одного ряда цилиндрических клеток. Рост трихомов происходит в результате деления клеток. Часто можно наблюдать движение трихомов. При этом они вращаются вокруг продольной оси, спирально изгибаются и поступательно передвигаются по субстрату. Размножается осциллатория гормогониями.

Род спирулина (Spirulina ) (см. рис. 7). Трихомы, спирально закручены вдоль длинной оси. Она, как и осциллатория, способна к поступательному движению.

Род лингбия (Lyngbya ) отличается от осциллатории тем, что их трихомы покрыты плотным чехлом (см. рис. 7).

Порядок ностокальные(Nostocales ) . К порядку ностокальных относятся водоросли с гетероцитными трихомами, не ветвящиеся или ложно ветвящиеся (рис. 8).

Рода анабена (Anabaena ). Виды этого рода вместе с видами рода микроцистис вызывают «цветение» воды. Трихомы прямые или изогнутые, нередко собраны в неправильные скопления. Вегетативные клетки округлые или бочонкообразные, часто с газовыми вакуолями. Гетероцисты и акинеты (споры) интеркалярные. При размножении трихомы распадаются на гормогонии, из которых вырастают новые трихомы.

Род носток (Nostoc ). Представлен слизистыми или студенистыми колониями от микроскопических до макроскопических, от сферических до распростертых. Обычно под более плотной поверхностной пленкой колонии в слизи располагаются различным образом изогнутые, переплетающиеся или расходящиеся более или менее радиально от центра колонии. Трихомы схожи с трихомами анабены. Гетероцисты и акинеты интеркалярные. Размножение – гормогониями. Гормогонии образуются в результате фрагментации трихомов по гетероцистам. После некоторого периода движения гормогонии останавливаются и прорастают в трихомы, обильно выделяющие слизь. За счет дальнейшего деления клеток трихомов и обильно выделяемой ими слизи формируются молодые колонии. Ностоки сферической формы размножаются также почкованием колоний, например носток сливовидный (N. pruniforme ). Сферические колонии ностока сливовидного, достигающего 8 см в диаметре, распространены преимущественно на дне водоемов в зоне умеренного климата и севернее. Некоторые виды рода носток (например, N. flagelliforme ), произрастающие на почвах пустынь и полупустынь, в высокогорных районах в виде пластинчатых колоний до 0,5 м в поперечнике, используются в пищу как лакомство.

Род афанизоменон (Aphanizomenon ). Часто вызывает «цветение» воды. Трихомы симметричные, обычно короткие, не ветвящиеся, нередко параллельно соединенные в продолговатые пучки, заметные невооруженным глазом. Клетки на концах трихомов бесцветные и более вытянутые (удлиненные), чем в средней части.

Род калотрикс (Calothrix ). Это бичевидные трихомы, часто заканчивающиеся многоклеточными волосками. Трихом покрыт слизистым чехлом, на базальном конце имеет гетероцисту. Он может ложно ветвиться. При этом отдельные клетки трихома отмирают. Участок нити, расположенный ниже отмершей клетки, прорывает слизистый чехол и продолжает расти в сторону в виде боковой ветви. Конечная клетка верхнего фрагмента может превратиться в гетероцисту или дать вторую боковую ветвь (двойное ложное ветвление).

Составляют основную часть растительности в водных экосистемах. В результате фотосинтеза и боль-шой скорости размножения они создают огромную мас-су органических веществ, которые используют для пита-ния другие организмы .

В слоевищах и между ризоидами зелёных и бурых водорослей проживает множество мелких животных: полипов, червей, моллюсков , ракообразных . Для од-них водоросли — источник питания, для других — убежище или место прикрепления. Многие рыбы (например, дальневосточная сельдь) откладывают на слоевища бурых водорослей икринки.

Геологическое значение

У кремнистых, или диатомовых, водорослей клетки имеют твёр-дую кремнезёмную оболочку. Скопления отмерших клеток этих водорослей образуют горную породу — диатомит. Помимо этого, диатомовые — важнейшие продуценты органического ве-щества.

Планктон

Водоросли — составная часть планктона. Планктон (греч. planktos — блуждающий) — совокупность орга-низмов, населяющих толщу пресноводных и морских вод оёмов и пассивно переносимых течением. Планк-тонные водоросли составляют фитопланктон — основ-ной производитель органического вещества и началь-ное звено большинства пищевых цепей в водных экосистемах. От его обилия зависит численность жи-вотных в водоёме. На состояние фитопланктона оказы-вают влияние экологические факторы : освещённость, температура, солёность воды, степень загрязнения вод.

Употребление в пищу

Среди водорослей нет ядовитых форм, поэтому люди , живущие на побережьях рек и морей, издавна используют водоросли в пищу и на корм скоту. В Китае из водорослей делают лапшу, пирожки, голубцы, их добавля-ют в муку.

Важный объект промысла для человека — крас-ные водоросли. На островах Океании, в Китае, Корее, Японии из них готовят супы, салаты, приправы. Ши-роко используют красные водоросли в пищевой про-мышленности.

Из красных водорослей получают агар — сложную смесь углеводов. Уже 20 г ага-ра в 1 л воды после остывания образу-ют плотный студень. Агар используют для изготов-ления мармелада, пастилы, нечерствеющего хлеба и незасахаривающегося варенья. Его добавляют в мороженое и желе. Материал с сайта

Лечебные свойства

Морские водоросли богаты витаминами, минераль-ными солями, йодом, поэтому они обладают лечебны-ми свойствами. Так, ламинария японская (морская капуста) используется для приготовления салатов и служит для профилактики рахита, склероза, полезна при заболеваниях кишечника. Бурые водоросли используют в медицине для изготовления препаратов, способствующих выведению радиоактивных веществ из организма.

Китайские врачи использовали водоросли в качестве лекарств более 3 тыс. лет назад. В настоящее время стало известно, что некоторые вещества, содержащиеся в крас-ных водорослях, подавляют рост вируса, вызывающего опасную болезнь — СПИД.

В микробиологических лабораториях на основе агара изготавливают твёрдые питательные среды , на которых высевают колонии микроорганизмов . Без агара работа микробиологов была бы очень сложной.

Промышленность

Агар, полученный из красных водорослей, используют в про-изводстве бумаги и тканей: он придаёт им блеск.



Просмотров